Advanced Search
Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

ZHOU WangYang, DUAN FuCai, CHEN JianShun, ZHU LiDong, LI FengQuan, WANG TianYang. Variations in Monsoonal Precipitation in the Lower Reaches of the Yangtze River During the H1 Indicated by Stalagmite Uranium Element from Hulu Cave, Nanjing, China[J]. Acta Sedimentologica Sinica, 2021, 39(4): 932-941. doi: 10.14027/j.issn.1000-0550.2020.027
Citation: ZHOU WangYang, DUAN FuCai, CHEN JianShun, ZHU LiDong, LI FengQuan, WANG TianYang. Variations in Monsoonal Precipitation in the Lower Reaches of the Yangtze River During the H1 Indicated by Stalagmite Uranium Element from Hulu Cave, Nanjing, China[J]. Acta Sedimentologica Sinica, 2021, 39(4): 932-941. doi: 10.14027/j.issn.1000-0550.2020.027

Variations in Monsoonal Precipitation in the Lower Reaches of the Yangtze River During the H1 Indicated by Stalagmite Uranium Element from Hulu Cave, Nanjing, China

doi: 10.14027/j.issn.1000-0550.2020.027
Funds:

Natural Science Foundation of Zhejiang Province, China LY19D020001, LY16D010001

National Natural Science Foundation of China 41602182, 41971111, 41572345

  • Received Date: 2020-01-06
  • Publish Date: 2021-08-10
  • The Heinrich 1 (H1) event was an extremely cold period when the northern ice sheet at high latitudes rapidly collapsed during the transition from the last glaciation to the Holocene. This event influenced global climate widely. Stalagmite δ18O records in the East Asian monsoon domain shifted to a heavier value and indicated weakened East Asian summer monsoonal intensity during the event. Stalagmite trace element and carbon isotope records both reflect hydrological variations at the cave site, and they indicated increased Meiyu rainfall in the middle reaches of the Yangtze River during the H1. This finding indicates an anti⁃phased relationship between Meiyu rain and East Asian summer monsoonal intensity. This relationship is further supported by a new Hulu record as suggested in this study. The stalagmite uranium element record in Hulu Cave indicated increased Meiyu rain in the lower reaches of the Yangtze River during the H1 event. In terms of the internal structure of the H1 event, previous high⁃resolution stalagmite δ18O records have depicted two different phases of the intensity of East Asian summer monsoons at the boundary of ~16.1 ka B.P. within the H1. A similar structure is also recorded in our uranium element data, with the increase in Meiyu rainfall corresponding to weakened East Asian summer monsoonal intensity. Higher⁃resolution stalagmite δ18O records suggest that the shift at ~16.1 ka B.P. ceased within 20 years. Although of a lower resolution, the uranium element records also indicate that the corresponding change in the Meiyu rain was rapid. These observations reveal that the uranium element responded positively to the East Asian monsoon circulation, and they support the supposition that uranium element is a valuable indicator of climate change. In sum, the increased Meiyu rain in the lower reaches of the Yangtze River documented by the Hulu uranium element data further supports the inverse relationship between the Meiyu rain and monsoonal intensity during the H1 event. Furthermore, our records point to a spatial discrepancy in monsoonal precipitation in Eastern China.
  • [1] Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2): 142-152.
    [2] Bond G, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period[J]. Nature, 1992, 360(6401): 245-248.
    [3] Bond G C, Showers W, Elliot M, et al. The North Atlantic's 1-2 kyr climate rhythm: Relation to Heinrich Events, Dansgaard/Oeschger cycles and the Little Ice Age[M]//Clark P U, Webb R S, Keigwin L D. Mechanisms of global climate change at millennial time scales. Washington DC: American Geophysical Union, 1999: 35-58.
    [4] Sanchez Goñi M F, Harrison S P. Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology[J]. Quaternary Science Reviews, 2010, 29(21/22): 2823-2827.
    [5] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
    [6] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529): 305-308.
    [7] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49.
    [8] Zhang H B, Griffiths M L, Chiang J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362(6414): 580-583.
    [9] 郭其蕴,蔡静宁,邵雪梅,等. 1873~2000年东亚夏季风变化的研究[J]. 大气科学,2004,28(2):206-215.

    Guo Qiyun, Cai Jingning, Shao Xuemei, et al. Studies on the variations of East-Asian summer monsoon during A D 1873~2000[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(2): 206-215.
    [10] 黄荣辉,陈际龙,刘永. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J]. 大气科学,2011,35(4):589-606.

    Huang Ronghui, Chen Jilong, Liu Yong. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(4): 589-606.
    [11] 黄荣辉,顾雷,陈际龙,等. 东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展[J]. 大气科学,2008,32(4):691-719.

    Huang Ronghui, Gu Lei, Chen Jilong, et al. Recent progresses in studies of the temporal-spatial variations of the East Asian monsoon system and their impacts on climate anomalies in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 691-719.
    [12] Ge Q S, Guo X F, Zheng J Y, et al. Meiyu in the middle and lower reaches of the Yangtze River since 1736[J]. Chinese Science Bulletin, 2008, 53(1): 107-114.
    [13] Kong X G, Wang Y J, Wu J Y, et al. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science China (Seri. D): Earth Sciences, 2005, 35(12): 2174-2181.
    [14] Wu J Y, Wang Y J, Cheng H, et al. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite[J]. Science China (Seri. D): Earth Sciences, 2009,52(3): 360-368.]
    [15] North Greenland Ice Core Project Members. High-resolution record of northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
    [16] Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6442): 143-147.
    [17] Eynaud F, De Abreu L, Voelker A, et al. Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07U05.
    [18] Tzedakis P C, Frogley M R, Lawson I T, et al. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period[J]. Geology, 2004, 32(2): 109.
    [19] Combourieu Nebout N, Turon J L, Zahn R, et al. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y[J]. Geology, 2002, 30(10): 863-866.
    [20] Hall B L, Porter C T, Denton G H, et al. Extensive recession of Cordillera Darwin glaciers in southernmost South America during Heinrich Stadial 1[J]. Quaternary Science Reviews, 2013, 62: 49-55.
    [21] Putnam A E, Schaefer J M, Denton G H, et al. Warming and glacier recession in the Rakaia valley, southern Alps of New Zealand, during Heinrich Stadial 1[J]. Earth and Planetary Science Letters, 2013, 382: 98-110.
    [22] Sachs J P, Anderson R F. Increased productivity in the subantarctic ocean during Heinrich events[J]. Nature, 2005, 434(7037): 1118-1121.
    [23] EPICA community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198.
    [24] Loulergue L, Schilt A, Spahni R, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years[J]. Nature, 2008, 453(7193): 383-386.
    [25] Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial antarctic climate variability over the past 800,000 Years[J]. Science, 2007, 317(5839): 793-796.
    [26] Parrenin F, Masson-Delmotte V, Köhler P, et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming[J]. Science, 2013, 339(6123): 1060-1063.
    [27] Stenni B, Buiron D, Frezzotti M, et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation[J]. Nature Geoscience, 2011, 4(1): 46-49.
    [28] Barker S, Diz P, Vautravers M J, et al. Interhemispheric Atlantic seesaw response during the last deglaciation[J]. Nature, 2009, 457(7233): 1097-1102.
    [29] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985): 834-837.
    [30] Lippold J, Grützner J, Winter D, et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic meridional overturning circulation?[J]. Geophysical Research Letters, 2009, 36(12): L12601.
    [31] Deplazes G, Lückge A, Peterson L C, et al. Links between tropical rainfall and North Atlantic climate during the last glacial period[J]. Nature Geoscience, 2013, 6(3): 213-217.
    [32] Hessler I, Dupont L, Bonnefille R, et al. Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial[J]. Quaternary Science Reviews, 2010, 29(21/22): 2882-2899.
    [33] Carolin S A, Cobb K M, Adkins J F, et al. Varied response of western Pacific hydrology to climate forcings over the last glacial period[J]. Science, 2013, 340(6140): 1564-1566.
    [34] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449(7161): 452-455.
    [35] Wang X F, Auler A S, Edwards R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701.
    [36] Tierney J E, Russell J M, Huang Y S, et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 Years[J]. Science, 2008, 322(5899): 252-255.
    [37] Jullien E, Grousset F, Malaizé B, et al. Low-latitude “dusty events” vs. high-latitude “icy Heinrich Events”[J]. Quaternary Research, 2007, 68(3): 379-386.
    [38] Torfstein A, Goldstein S L, Stein M. Enhanced Saharan dust input to the Levant during Heinrich stadials[J]. Quaternary Science Reviews, 2018, 186: 142-155.
    [39] Sijinkumar A V, Nagender Nath B, Clemens S. North Atlantic climatic changes reflected in the Late Quaternary foraminiferal abundance record of the Andaman Sea, North-eastern Indian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 446: 11-18.
    [40] Shakun J D, Burns S J, Fleitmann D, et al. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen[J]. Earth and Planetary Science Letters, 2007, 259(3/4): 442-456.
    [41] Peterson L C, Haug G H, Hughen K A, et al. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last Glacial[J]. Science, 2000, 290(5498): 1947-1951.
    [42] Stager J C, Ryves D B, Chase B M, et al. Catastrophic drought in the Afro-Asian Monsoon region during Heinrich event 1[J]. Science, 2011, 331(6022): 1299-1302.
    [43] 明庆忠,苏怀,史正涛,等. 云南小中甸盆地湖相沉积记录的最近5次Heinrich事件[J]. 地理学报,2011,66(1):123-130.

    Ming Qingzhong, Su Huai, Shi Zhengtao, et al. Last five heinrich events revealed by lacustrine sediments from Xiaozhongdian Basin in Yunnan province[J]. Acta Geographica Sinica, 2011, 66(1): 123-130.
    [44] Zhang S R, Xiao J L, Xu Q H, et al. Differential response of vegetation in Hulun Lake region at the northern margin of Asian summer monsoon to extreme cold events of the last deglaciation[J]. Quaternary Science Reviews, 2018, 190: 57-65.
    [45] Liu X T, Rendle-Bühring R, Henrich R. High-and low-latitude forcing of the East African climate since the LGM: Inferred from the elemental composition of marine sediments off Tanzania[J]. Quaternary Science Reviews, 2018, 196: 124-136.
    [46] Jennerjahn T C, Ittekkot V, Arz H W, et al. Asynchronous terrestrial and marine signals of climate change during Heinrich events[J]. Science, 2004, 306(5705): 2236-2239.
    [47] Wang X F, Auler A S, Edwards L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7018): 740-743.
    [48] Crivellari S, Chiessi C M, Kuhnert H, et al. Increased Amazon freshwater discharge during Late Heinrich Stadial 1[J]. Quaternary Science Reviews, 2018, 181: 144-155.
    [49] Strikis N M, Cruz F W, Barreto E A S, et al. South American monsoon response to iceberg discharge in the North Atlantic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3788-3793.
    [50] Ayliffe L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 2908.
    [51] Denniston R F, Wyrwoll K H, Asmerom Y, et al. North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the last glacial period[J]. Quaternary Science Reviews, 2013, 72: 159-168.
    [52] Muller J, Kylander M, Wüst R A J, et al. Possible evidence for wet Heinrich phases in tropical NE Australia: The Lynch's Crater deposit[J]. Quaternary Science Reviews, 2008, 27(5/6): 468-475.
    [53] Rhodes R H, Brook E J, Chiang J C H, et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic[J]. Science, 2015, 348(6238): 1016-1019.
    [54] Denton G H, Anderson R F, Toggweiler J R, et al. The last Glacial termination[J]. Science, 2010, 328(5986): 1652-1656.
    [55] Rahmstorf S. Ocean circulation and climate during the past 120,000 years[J]. Nature, 2002, 419(6903): 207-214.
    [56] Veres D, Bazin L, Landais A, et al. The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years[J]. Climate of the Past, 2013, 9(4): 1733-1748.
    [57] Zhang H B, Griffiths M L, Huang J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial–Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251.
    [58] Chen S T, Wang Y J, Cheng H, et al. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales[J]. Scientific Reports, 2016, 6: 32995.
    [59] Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959.
    [60] Bar-Matthews M, Ayalon A, Matthews A, et al. Carbon and oxygen isotope study of the active water-carbonate system in a Karstic Mediterranean Cave: Implications for paleoclimate research in semiarid regions[J]. Geochimica et Cosmochimica Acta, 1996, 60(2): 337-347.
    [61] Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 326(5950): 248-252.
    [62] 张美良,程海,林玉石,等. 贵州荔波1.5万年以来石笋高分辨率古气候环境记录[J]. 地球化学,2004,32(1):65-74.

    Zhang Meiliang, Cheng Hai, Lin Yushi, et al. High resolution paleoclimatic environment records from a stalagmite of Dongge Cave since 15 000 a in Libo, Guizhou province, China[J]. Geochimica, 2004, 32(1): 65-74.
    [63] 张美良,程海,袁道先,等. 末次冰期贵州七星洞石笋高分辨率气候记录与Heinrich事件[J]. 地球学报,2004,25(3):337-344.

    Zhang Meiliang, Cheng Hai, Yuan Daoxian, et al. The high resolution climate records from two stalagmites in Qixing Cave of Guizhou and the Heinrich events of the last glacial period[J]. Acta Geoscientica Sinica, 2004, 25(3): 337-344.
    [64] Yang Y, Yuan D X, Cheng H, et al. Precise dating of abrupt shifts in the Asian monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou province, China[J]. Science China Earth Sciences, 2010, 53(5): 633-641.
    [65] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
    [66] Li Y L, Chen X, Xiao X Y, et al. Diatom-based inference of Asian monsoon precipitation from a volcanic lake in southwest China for the last 18.5 ka[J]. Quaternary Science Reviews, 2018, 182: 109-120.
    [67] Xiao X Y, Haberle S G, Shen J, et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan province, southwestern China[J]. Quaternary Science Reviews, 2014, 86: 35-48.
    [68] Bian H Y, Pang J L, Huang C C, et al. The response of transitional pedogenic characteristics of loess in the Yunxian Basin to abrupt climatic events in the northern subtropics since the Last Glacial Maximum[J]. CATENA, 2018, 171: 166-175.
    [69] 张德忠,白益军,桑文翠,等. 末次冰消期亚洲季风强度变化的黄土高原西部万象洞石笋灰度记录[J]. 第四纪研究,2011,31(5):791-799.

    Zhang Dezhong, Bai Yijun, Sang Wencui, et al. Asian monsoon intensity variations during the last deglaciation recorded by stalagmite gray scale from Wanxiang Cave, western Loess Plateau[J]. Quaternary Sciences, 2011, 31(5): 791-799.
    [70] 谭明. 环流效应:中国季风区石笋氧同位素短尺度变化的气候意义:古气候记录与现代气候研究的一次对话[J]. 第四纪研究,2009,29(5):851-862.

    Tan Ming. Circulation effect: Climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China: Dialogue between paleoclimate records and modern climate research[J]. Quaternary Sciences, 2009, 29(5): 851-862.
    [71] Tan M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42(3/4): 1067-1077.
    [72] Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment[J]. The Holocene, 2008, 18(6): 861-866.
    [73] Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480.
    [74] Li D, Tan L C, Cai Y J, et al. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon?[J]. Climate Dynamics, 2019, 53(5/6): 2969-2983.
    [75] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
    [76] 张美良,林玉石,覃嘉铭. 桂林水南洞石笋的沉积学特征[J]. 沉积学报,1999,17(2):233-239.

    Zhang Meiliang, Lin Yushi, Qin Jiaming. Sedimentological characteristics of a stalagmite from Shuinan Cave, Guilin[J]. Acta Sedimentologica Sinica, 1999, 17(2): 233-239.
    [77] 崔田丰,段福才,张伟宏,等. 石笋初始234U/238U值的冰量周期特征及其环境意义:以湖北三宝洞为例[J]. 沉积学报,2019,37(2):301-308.

    Cui Tianfeng, Duan Fucai, Zhang Weihong, et al. Ice volume cycle characteristics and the environmental significance of the initial 234U/238U ratio inferred from stalagmites: A case study from Sanbao Cave, Hubei[J]. Acta Sedimentologica Sinica, 2019, 37(2): 301-308.
    [78] 黄俊华,胡超涌,周群峰,等. 长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J]. 沉积学报,2002,20(3):442-446.

    Huang Junhua, Hu Chaoyong, Zhou Qunfeng, et al. Study on high-resolution carbon, oxygen isotope and trace element records and paleoclimate from Heshang Cave, the middle reach of the Yangtse River[J]. Acta Sedimentologica Sinica, 2002, 20(3): 442-446.
    [79] 李辰丝,杨勋林,黄帆,等. 重庆羊子洞MIS5a/MIS4转换时期石笋微量元素记录及其气候意义[J]. 沉积学报. 2015,33(2):299-305.

    Li Chensi, Yang Xunlin, Huang Fan, et al. Stalagmite trace element and its implications from Yangzi Cave during 76~69 ka B.P.[J]. Acta Sedimentologica Sinica, 2015, 33(2): 299-305.
    [80] 史维浚. 铀水文地球化学原理[M]. 北京:原子能出版社,1990.

    Shi Weijun. Principles of uranium hydrogeochemistry[M]. Beijing: Atomic Energy Press, 1990.
    [81] Gascoyne M. Geochemistry of the actinides and their daughters[M]//Ivanovich M, Harmon R S. Uranium-series disequilibrium: Applications to earth, marine and environmental sciences. Oxford: Clarendon Press, 1992.
    [82] 牟保磊. 元素地球化学[M]. 北京:北京大学出版社,1999.

    Mou Baolei. Element geochemistry[M]. Beijing: Peking University Press, 1999.
    [83] Kuang R Y, Wang Y J, Zhang X H, et al. Implications for soil environment from uranium isotopes of stalagmites[J]. Chinese Science Bulletin, 2002, 47(19): 1653-1658.
    [84] Kaufman A, Wasserburg G J, Porcelli D, et al. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations[J]. Earth and Planetary Science Letters, 1998, 156(3/4): 141-155.
    [85] Han Z Y, Li X S, Yi S W, et al. Extreme monsoon aridity episodes recorded in South China during Heinrich Events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 467-474.
    [86] 董进国,刁伟,孔兴功. 湖北三宝洞石笋238U值变化的古气候意义[J]. 海洋地质与第四纪地质,2013,33(1):129-135.

    Dong Jinguo, Diao Wei, Kong Xinggong. Variation in uranium isotopes of stalagmites from Sanbao Cave, Hubei province: Implications for palaeoclimate[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 129-135.
    [87] 程汝楠,尹金双. 潮湿气候下天然水中铀的迁移形式和沉淀富集条件的探讨[J]. 沉积学报,1985,3(1):42-53.

    Cheng Ru'nan, Yin Jinshuang. On migration form and sedimentary enrichments of uranium in natural water under wet climate in South China[J]. Acta Sedimentologica Sinica, 1985, 3(1): 42-53.
    [88] Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 547-569.
    [89] Zhang W H, Wu J Y, Wang Y, et al. A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records[J]. Quaternary Research, 2014, 82(1): 154-163.
    [90] Cheng H, Zhang H W, Zhao J Y, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China (Seri. D): Earth Sciences, 2019, 62(10): 1489-1513.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(324) PDF downloads(85) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-01-06
  • Published:  2021-08-10

Variations in Monsoonal Precipitation in the Lower Reaches of the Yangtze River During the H1 Indicated by Stalagmite Uranium Element from Hulu Cave, Nanjing, China

doi: 10.14027/j.issn.1000-0550.2020.027
Funds:

Natural Science Foundation of Zhejiang Province, China LY19D020001, LY16D010001

National Natural Science Foundation of China 41602182, 41971111, 41572345

Abstract: The Heinrich 1 (H1) event was an extremely cold period when the northern ice sheet at high latitudes rapidly collapsed during the transition from the last glaciation to the Holocene. This event influenced global climate widely. Stalagmite δ18O records in the East Asian monsoon domain shifted to a heavier value and indicated weakened East Asian summer monsoonal intensity during the event. Stalagmite trace element and carbon isotope records both reflect hydrological variations at the cave site, and they indicated increased Meiyu rainfall in the middle reaches of the Yangtze River during the H1. This finding indicates an anti⁃phased relationship between Meiyu rain and East Asian summer monsoonal intensity. This relationship is further supported by a new Hulu record as suggested in this study. The stalagmite uranium element record in Hulu Cave indicated increased Meiyu rain in the lower reaches of the Yangtze River during the H1 event. In terms of the internal structure of the H1 event, previous high⁃resolution stalagmite δ18O records have depicted two different phases of the intensity of East Asian summer monsoons at the boundary of ~16.1 ka B.P. within the H1. A similar structure is also recorded in our uranium element data, with the increase in Meiyu rainfall corresponding to weakened East Asian summer monsoonal intensity. Higher⁃resolution stalagmite δ18O records suggest that the shift at ~16.1 ka B.P. ceased within 20 years. Although of a lower resolution, the uranium element records also indicate that the corresponding change in the Meiyu rain was rapid. These observations reveal that the uranium element responded positively to the East Asian monsoon circulation, and they support the supposition that uranium element is a valuable indicator of climate change. In sum, the increased Meiyu rain in the lower reaches of the Yangtze River documented by the Hulu uranium element data further supports the inverse relationship between the Meiyu rain and monsoonal intensity during the H1 event. Furthermore, our records point to a spatial discrepancy in monsoonal precipitation in Eastern China.

ZHOU WangYang, DUAN FuCai, CHEN JianShun, ZHU LiDong, LI FengQuan, WANG TianYang. Variations in Monsoonal Precipitation in the Lower Reaches of the Yangtze River During the H1 Indicated by Stalagmite Uranium Element from Hulu Cave, Nanjing, China[J]. Acta Sedimentologica Sinica, 2021, 39(4): 932-941. doi: 10.14027/j.issn.1000-0550.2020.027
Citation: ZHOU WangYang, DUAN FuCai, CHEN JianShun, ZHU LiDong, LI FengQuan, WANG TianYang. Variations in Monsoonal Precipitation in the Lower Reaches of the Yangtze River During the H1 Indicated by Stalagmite Uranium Element from Hulu Cave, Nanjing, China[J]. Acta Sedimentologica Sinica, 2021, 39(4): 932-941. doi: 10.14027/j.issn.1000-0550.2020.027
  • 1988年Heinrich发现北大西洋深海沉积物中有数层陆源碎屑层[1]。四年后,Bond et al.[2]进一步证实了这些碎屑层的存在,并命名Heinrich事件(简称H事件)。整个末次冰期和末次冰消期共发生了6次H事件,按照发生的顺序编号为H6~H1,他们发生的时间依次为63.2 ka B.P.、50 ka B.P.、40.2 ka B.P.、32.7 ka B.P.、26.5 ka B.P.、18 ka B.P.[34]

    东亚季风与北大西洋的气候遥相关早已在石笋和黄土等地质记录中得到证实[57]。东亚石笋δ 18O记录显示H事件时亚洲季风强度显著减弱。然而,Zhang et al.[8]指出H1事件期间长江中游地区呈现异常湿润的水文气候,认为大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,简称AMOC)减弱导致北高纬温度下降,极地赤道温度梯度增加,西风带北移时间推迟,梅雨期延长,降水量增加。此石笋微量元素与δ 18O记录的显著不同,反映了梅雨与东亚季风强度的差异。在年年代际尺度上,东亚季风区降水量在空间分布上具有经向三极子模式[911],即季风增强时,中国南北部多雨,长江中下游降水减少,反之亦然。此外,Ge et al.[12]借助清朝史料和器测降水数据,重建了清朝后期长江流域梅雨量变化序列,指出与季风强度存在反相关关系,即季风强度减弱或增强时,梅雨期延长或缩短,降水量增加或减少。

    梅雨量与季风强度的反相关关系在千年尺度上是否仍然存在有待进一步验证。本文选取梅雨带的南京葫芦洞H82石笋,通过铀同位素数据来研究长江下游地区的水文变化特征,揭示梅雨带与东亚季风强度在H1事件期间的协同性和差异性,对梅雨与东亚季风强度的反相关关系是否成立来做进一步验证。

  • 南京市位于长江下游,地貌特征属宁镇扬丘陵地区,以低山缓岗为主,具有典型的北亚热带湿润气候特征,四季分明,年温差较大。年均温为15.4 °C,年均降水量1 275 mm,其中67月份降水量将近30%。葫芦洞(119°2′ E,32°3′ N;海拔90 m),位于南京东部汤山镇西,发育在下奥陶统红花园组白云质灰岩和灰岩中,洞穴上覆植被以C3植物为主,洞顶土壤厚度30~40 cm[13]。本文进一步分析了葫芦洞H82的δ 18O和铀元素数据。数据来自网络(https://www.ncdc.noaa.gov/)。样品细节及测试结果见相关文献描述[14]

  • 在千年尺度上,H事件在南北半球记录中均有体现:格陵兰冰芯记录[15]图1a)和欧洲大陆及附近海域沉积物记录[1619]反映温度和降水量下降;而在南半球,陆地冰川快速退缩[2021]、南大洋生物生产量增加[22]、南极冰芯记录的温度[23]图1f)和大气CO2浓度升高[2428]。南北半球H事件时的温度变化显示了晚更新世以来两极气候间存在的跷跷板模式[23]。H事件期间,北大西洋岩心231Pa/230Th记录[2930]图1b)显示AMOC强度减弱,卡里亚科岩心[31]图1d)和环赤道大西洋孢粉[32]记录显示ITCZ显著南移。印尼石笋[3334]图1c)与巴西石笋δ 18O记录[35]图1e)表明,H事件期间ITCZ以南和以北的低纬地区气候状况相反。以北地区的非洲[3638]、北印度洋[3940]、中美洲[41]区域降水量大幅下降,亚非季风减弱[4244];而以南地区湿度增加[45],南美季风[4649]、澳洲季风[5052]强盛,导致热带湿地甲烷释放量增加[53]

    Figure 1.  Global records of the Heinrich events from various archives

    南北半球高低纬地区对H事件的快速响应,表明了全球气候系统之间密切联系。在H事件机制上,主流观点认为与AMOC的强度有关[29,5455]。当北半球升温时,冰盖崩塌并进入北大西洋,抑制了深层水的形成,导致AMOC输送到北高纬的热量减少,造成北半球气候冷干,西风带和ITCZ南移,南半球气候变得暖湿。

    高分辨率石笋δ 18O记录的东亚弱季风事件,与南北极冰芯差值所反映的温度梯度下降相对应(图2g,h)。H事件发生时,葫芦洞[5,14]、豪猪子洞[57]、永兴洞[58]、小白龙洞[59]石笋δ 18O值偏正反映东亚季风强度减弱(图2b~d),对应于格陵兰岛NGRIP冰芯δ 18O值偏负[15]指示的北高纬降温(图2a)和南极TALDICE[27]与EDML[23]冰芯δ 18O值偏正(图2e,f)指示的南高纬升温阶段。H事件时南北两极温度梯度减小表明AMOC减弱导致南北两极能量传输减弱,两极能量趋于平衡。

    Figure 2.  Heinrich events recorded in polar ice cores and Chinese stalagmites

    关于石笋δ 18O指标,在平衡分馏情况下,其变化主要受洞穴温度和滴水δ 18O值影响[60]。经过研究,东亚季风区石笋δ 18O值主要继承了降水的δ 18O信号,在千年尺度上反映东亚夏季风强度[61]。西南地区石笋δ 18O记录[59,6265]和湖泊记录[6667]、西北地区石笋灰度记录和黄土剖面记录[6869],都支持H1期间季风强度减弱带来降水量减少的理论。然而,有些研究认为东亚大陆石笋δ 18O值与降水量之间可能不存在线性关系[7072]。Pausata et al.[73]通过模拟认为在H1事件发生时,东亚季风区的石笋δ 18O指示了印度季风强度的变化。此时印度地区降水减少,水汽δ 18O值偏正,使得风向下游区中国石笋δ 18O值偏正。另一种观点则认为,印度夏季风并不是控制中国石笋δ 18O值的唯一因素,H1事件期间中印石笋氧同位素的变化幅度间存在差异,认为中国石笋δ 18O值还受到热带太平洋的影响[74]。Cheng et al.[75]认为不论水汽是来自印度洋还是太平洋,二者并不矛盾,中国石笋δ 18O记录了从水汽源到洞穴地点全程降水的累计结果,从总体上反映了亚洲季风的强弱。为了进一步认识石笋δ 18O在东亚季风区的气候意义,分析同支石笋的微量元素能成为有效补充。

  • 石笋微量元素是当地水文条件变化的重要指标[7679],其变化对理解石笋δ 18O指标的气候意义具有重要参考价值。微量元素铀(U),具有放射性,其天然同位素有238U、235U和234U。学术界对石笋U元素的研究主要集中于238U浓度、δ 234UInitial值两方面。在自然界中,U主要以+4和+6两种价态为主,其价态转换主要受氧化还原环境的影响[8082]。大气降水、洞穴上覆土壤带和石灰质母岩是U主要的来源途径。石笋中U含量受土壤和母岩、岩溶水的渗透路径和滞留时间的长短等因素影响,其变化可能指示土壤湿度和有效降水变化[8384]δ 234UInitial值可通过公式计算得到:δ 234UInitial = δ 234Umeasured×eλ234×tδ 234UInitial代表了石笋碳酸盐物质沉淀时岩溶水中过剩234U(234Uexc)与238U之间的放射比。Kuang et al.[83]分析葫芦洞U来源的比重,认为该指标受土壤有机质作用强烈,受控于地表土壤发育过程,具有反映洞穴上覆土壤成壤作用的环境意义。当水热条件好时,土壤发育,234U/238U>1,表土234U富集,富含U+6234U比富含U+4238U更容易形成溶于水的化合物。此外,α衰变形成234Th时的反冲作用导致234U更易迁移到地下水中,使洞穴沉积中δ 234UInitial值增大。因此,石笋δ 234UInitial值可反映土壤发育程度,间接指示当地降水量变化。

    葫芦洞石笋δ 234UInitial值和238U浓度记录在H事件存在对应关系(图3)。δ 234UInitial值和238U浓度的高低对应气候的湿干状况,反映降水量的变化。

    Figure 3.  Uranium element records of stalagmites H82 and MSD in Hulu Cave

    葫芦洞石笋δ 234UInitial在H4和H5事件期间处于高值,指示湿润气候状况。不远的鄱阳湖土壤剖面未产生H5事件的风沙沉积层,暗示此时并不是极端干旱期[85]。因此,δ 234UInitial值在H4、H5事件的表现可能与此时湿润水文气候有关;H2和H3时δ 234UInitial值变化不明显或处于低值,却没有像H1、H4和H5事件那样升高,这表明所有H事件在长江下游地区的水文影响并不相同。δ 234UInitial值在H2和H3事件的表现可能反映东亚季风强度减弱并未造成该地区降水增加,使得土壤有机质含量降低,土壤发育程度变弱,δ 234UInitial值不高。

    238U浓度变化对H事件也有明显响应。湿润的H事件发生时238U浓度升高或者处于升高时期(图3)。这表明湿润的水文气候有利于238U的富集。在三宝洞石笋238U记录分析中,董进国等[86]认为在降水高的情况下石笋238U含量会有所增加。H事件期间南京地区降水量增加,土壤pH值下降,溶解基岩能力增强,易溶的UO2OH+增加[87],导致石笋238U浓度增加。总之,在湿润的H事件中,土壤微生物活动增强,导致表层土壤进一步风化和溶解基岩能力增强,促使石笋238U浓度和δ 234UInitial值增加。

    此外,不同于H2事件期间δ 234UInitial值的变化,238U浓度的明显增加可能与U的另一个环境意义有关:在气候干旱期,土壤水分含量降低构成氧化环境,U氧化形成易溶于水的[UO2]2+,并加入石笋沉积过程,使U含量增加[88];另一方面,岩溶水的滞留时间延长,也有利于从母岩含铀矿物中淋滤出更多的U。

    H1事件期间H82石笋δ 234UInitial值和238U浓度记录也存在对应关系。δ 234UInitial值在204.93~226.57区间内波动,平均值约为214.88(图4a)。δ 234UInitial值的整体趋势表现为自末次盛冰期后大幅增加,随后其值在210上下波动,在~16.1 ka B.P.快速达到峰值,对应于H82石笋δ 18O记录的最大值,此后以波动减小的形式进入博林间冰阶。在整个H1事件期间,δ 234UInitial值变化总体呈倒“V”型;238U浓度在114.28~234.49 ng/g区间内波动,平均值约为190.1 ng/g(图4b)。值得注意的是,石笋δ 18O记录在~16.1 ka B.P.时于20年内突增2‰,指示东亚夏季风快速从强变弱[5,89]。这一突变事件得到δ 234UInitial值和238U浓度记录的支持(图4)。此外,~16.1 ka B.P.的气候转型在石笋铀元素记录中的对应关系也证实了δ 234UInitial值和238U浓度对大尺度气候环境变化的敏感性。不同的是,H82石笋δ 18O均值从阶段I的-6.26‰偏正到阶段II的-5.8‰(偏正幅度0.46‰),指示季风强度的逐渐减弱;而δ 234UInitial均值则由阶段I的209.210 8增至阶段II的218.835(增幅约9.62个单位);而238U浓度均值由阶段I的212.7降至阶段II的169.3 ng/g(减幅约43.4 ng/g)。δ 234UInitial值和238U浓度虽然在变化幅度上不同,但总体上仍都反应降水量的增加,这表明二者与δ 18O记录反映的水文气候变化存在指向差异,影响机制也不尽相同。

    Figure 4.  Stalagmite δ 18O and trace element records in the middle and lower reaches of the Yangtze River

  • 豪猪子洞石笋微量元素记录[8]δ 18O记录出现反相关关系(图4c)。石笋微量元素变化指示了H1期间该地区变得湿润,归因为北半球变冷引起半球间温度梯度减小、西风带北移时间偏晚,东亚夏季风减弱,导致梅雨带在长江中游地区停留时间长,促使降水增多。

    H82石笋δ 234UInitial值和238U浓度在H1期间增高,表明该时期降水量增加。可能的原因为梅雨带在长江下游地区停留时间长、降水增多,提高了南京地区土壤发育程度,导致δ 234UInitial值升高;同时,土壤腐殖质中富里酸所结合的铀以UO2OH+-腐殖酸络合物的形式存在并迁移,导致238U浓度增大。H82石笋δ 234UInitial值和238U浓度的变化特征进一步支持了梅雨与季风强度变化间的反相关关系。

    总体而言,H82石笋U元素变化在H1期间以~16.1 ka B.P.为界分为两个阶段:在H1事件早期,对应于δ 18O记录总体偏正趋势,δ 234UInitial值小幅增加,而238U浓度则因土壤酸碱度下降改变了岩溶水中铀的沉淀富集条件而增大。整体反应该时期季风强度呈减弱趋势、降水量呈增加趋势。在~16.1 ka B.P.,δ 18O记录指示季风强度快速减弱,而δ 234UInitial值和238U浓度快速到达峰值;在H1事件结束期,δ 18O记录快速偏负指示季风增强,而δ 234UInitial值和238U浓度则相应减少,指示降水量的减少。δ 234UInitial值和238U浓度大致经历了先增后减的过程,与δ 18O记录呈正相关。

    纵上所述,H1事件期间东亚季风区并不表现为一致的气候冷干,经向三极子模式的提出,为解释季风降水的时空差异提供了一种新思路。石笋δ 18O指标应用最多,但其水文气候意义备受争议[90],而石笋微量元素受当地环境影响较大,能够反映当地降水量变化,石笋微量元素的研究有益于石笋δ 18O指标的解译。

  • 本文对葫芦洞H82石笋δ 234UInitial值和238U浓度记录在H1期间的变化进行分析,认为U元素及δ 234UInitial值的变化能够指示区域水文变化,并发现H1事件期间研究洞穴所在的长江下游地区降水增多,可能与季风减弱,梅雨带在该区域停留时间较长有关,这支持了H1期间梅雨与季风强度变化间的反相关关系,且有助于完善石笋δ 18O指标的水文气候学意义。

Reference (90)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return