Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

XIE XiaoPing, LI ShuZhen, LU Ning, WANG YongDong, XI ShuNa. Sedimentary Facies and Sedimentary Environment Evolution of First Member of the Xujiahe Formation in Guangyuan Area, Northern Sichuan Province[J]. Acta Sedimentologica Sinica, 2021, 39(2): 493-505. doi: 10.14027/j.issn.1000-0550.2020.024
Citation: XIE XiaoPing, LI ShuZhen, LU Ning, WANG YongDong, XI ShuNa. Sedimentary Facies and Sedimentary Environment Evolution of First Member of the Xujiahe Formation in Guangyuan Area, Northern Sichuan Province[J]. Acta Sedimentologica Sinica, 2021, 39(2): 493-505. doi: 10.14027/j.issn.1000-0550.2020.024

Sedimentary Facies and Sedimentary Environment Evolution of First Member of the Xujiahe Formation in Guangyuan Area, Northern Sichuan Province

doi: 10.14027/j.issn.1000-0550.2020.024
Funds:

State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) 183126, 2019 1103

National Natural Science Foundation of China 41072164, 41572014

Strategic Priority Program (B) of the Chinese Academy of Scien⁃ces XDB26000000

  • Received Date: 2019-12-06
  • Publish Date: 2021-04-23
  • The Norian stage of the Upper Triassic was an important transitional episode from marine to terrestrial environment in the development of the Sichuan Basin. The Late Triassic environment and climate became more complex following the mass extinctions at the turn of the Triassic⁃Jurassic periods, with the most significant impact being on terrestrial ecosystems. The well developed and exposed Triassic⁃Jurassic strata in the northern Sichuan Basin, which comprise continuous deposits of the Upper Triassic Xujiahe Formation and the Lower Jurassic Zhenzhuchong Formation, represents an excellent record of the paleoclimatic and paleoenvironmental changes. In particular, in the Sichuan Basin the Norian and Rhaetian stages were crucial in the transition of the marine and terrestrial environmental changes. We investigated the first member of the Xujiahe Formation in Guangyuan, northern Sichuan Basin, focusing on analysis of the sedimentary facies and environmental evolution. The results show that lagoon marshes, delta plains and braided rivers facies developed in the section in the Guangyuan region, which is a remarkable continental transitional⁃continental facies sedimentary system. Through the influence of the formation and development of the Ganzi⁃Aba back⁃arc basin, the transgression that had begun in the Carnian stage at the beginning of the Upper Triassic affected the Guangyuan region during the late Norian. The uplift of the Qinling orogenic belt and Longmen Mountain ended the production of marine facies in the Guangyuan area, and terrestrial facies are then seen in the first member of Xujiahe Formation. We have reconstructed the paleoclimate in the later Norian stage in the Guangyuan area by analyzing the plant fossil assemblage combined with the sedimentary cycle and facies characteristics. We suggest that the Guangyuan area experienced a humid, subtropical coastal climate from the depositional stage of the first member of the Xujiahe Formation until the late Norian in the Upper Triassic.
  • [1] 邹光富,夏彤,娄雄英. 四川广元地区上三叠统小塘子组、须家河组层序地层研究[J]. 沉积与特提斯地质,2003,23(3):73-80.

    Zou Guangfu, Xia Tong, Lou Xiongying. Sequence stratigraphy of the Late Triassic strata in the Guangyuan region, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(3): 73-80.
    [2] 梅冥相. 中上扬子印支运动的地层学效应及晚三叠世沉积盆地格局[J]. 地学前缘,2010,17(4):99-111.

    Mei Mingxiang. Stratigraphic impact of the Indo-China Movement and its related evolution of sedimentary-basin pattern of the Late Triassic in the middle-upper Yangtze region, South China[J]. Earth Science Frontiers, 2010, 17(4): 99-111.
    [3] 刘兆生,李丽琴,王永栋. 四川宣汉晚三叠世孢粉组合及其古植被与古气候意义[J]. 微体古生物学报,2015,32(1):43-62.

    Liu Zhaosheng, Li Liqin, Wang Yongdong. Late Triassic spore-pollen assemblage from Xuanhan of Sichuan, China[J]. Acta Micropalaeontologica Sinica, 2015, 32(1): 43-62.
    [4] 刘兆生,李丽琴,王永栋. 重庆合川地区晚三叠世须家河组孢粉组合[J]. 古生物学报,2015,54(3):279-304.

    Liu Zhaosheng. Li Liqin, Wang Yongdong. Late Triassic spore-pollen assemblage from the Xujiahe Formation in Hechuan of Chong qing, China[J]. Acta Palaeontologica Sinica, 2015, 54(3): 279-304.
    [5] 时志强,张华,曾德勇,等. 龙门山前缘上三叠统卡尼阶特征及其古环境、古气候意义[J]. 成都理工大学学报(自然科学),2010,37(4):424-431.

    Shi Zhiqiang, Zhang Hua, Zeng Deyong, et al. Characters of Carnian in the frontal area of Mt. Longmenshan: Implications for palaeoenvironment and paleoclimate[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(4): 424-431.
    [6] 黄其胜. 川北晚三叠世须家河期古气候及成煤特征[J]. 地质论评,1995,41(1):92-99.

    Huang Qisheng. Paleoclimate and coal-forming characteristics of the Late Triassic Xujiahe Stage in northern Sichuan[J]. Geological Review, 1995, 41(1): 92-99.
    [7] 王永栋,付碧宏,谢小平,等. 四川盆地陆相三叠系与侏罗系[M]. 合肥:中国科学技术大学出版社,2010:1-178.

    Wang Yongdong, Fu Bihong, Xie Xiaoping, et al. The terrestrial Triassic and Jurassic systems in the Sichuan Basin, China[M]. Hefei: University of Science and Technology of China Press, 2010: 1-178.
    [8] Lai J, Wang G W, Fan Z Y, et al. Sedimentary characterization of a braided delta using well logs: The Upper Triassic Xujiahe Formation in Central Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 154: 172-193.
    [9] 赵霞飞,刘树根,彭靖淞,等. 川西龙门山前上三叠统小塘子组沉积环境、构造含意与含气远景[J]. 地质学报,2018,92(3):604-617.

    Zhao Xiafei, Liu Shugen, Peng Jingsong, et al. Sedimentary environment, tectonic implication and exploration perspective of the Upper Triassic Xiaotangzi Formation in front of Longmenshan in western Sichuan[J]. Acta Geologica Sinica, 2018, 92(3): 604-617.
    [10] 鲁宁,谢小平,王永栋,等. 四川宣汉七里峡T3x/T2l界线沉积环境演化分析[J]. 沉积学报,2015,33(6):1149-1158.

    Lu Ning, Xie Xiaoping, Wang Yongdong, et al. The analysis of sedimentary environmental evolution of the T3x/T2l boundary transition in Qilixia of Xuanhan, Sichuan[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1149-1158.
    [11] Chen Z X, Li W, Wang L N, et al. Structural geology and favorable exploration prospect belts in northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(2): 413-425.
    [12] Li Y J, Shao L Y, Eriksson K A, et al. Linked sequence stratigraphy and tectonics in the Sichuan continental foreland basin, Upper Triassic Xujiahe Formation, Southwest China[J]. Journal of Asian Earth Sciences, 2014, 88: 116-136.
    [13] Raup D M. Large-body impact and extinction in the Phanerozoic[J]. Paleobiology, 1992, 18(1): 80-88.
    [14] Tanner L H, Lucas S G, Chapman M G. Assessing the record and causes of Late Triassic extinctions[J]. Earth-Science Reviews, 2004, 65(1/2): 103-139.
    [15] De Jersey N J, McKellar J L. The palynology of the Triassic-Jurassic transition in southeastern Queensland, Australia, and correlation with New Zealand[J]. Palynology, 2013, 37(1): 77-114.
    [16] Williford K H, Grice K, Holman A, et al. An organic record of terrestrial ecosystem collapse and recovery at the Triassic–Jurassic boundary in East Greenland[J]. Geochimica et Cosmochimica Acta, 2014, 127: 251-263.
    [17] Steinthorsdottir M, Elliott-Kingston C, Bacon K L. Cuticle surfaces of fossil plants as a potential proxy for volcanic SO2 emissions: Observations from the Triassic–Jurassic transition of East Greenland. Palaeobiodiversity and Palaeoenvironments, 2018, 98(1): 49-69.
    [18] Tanner L H, Hubert J F, Coffey B P, et al. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature, 2001, 411(6838): 675-677.
    [19] Mander L, Kürschner W M, McElwain J C. Palynostratigraphy and vegetation history of the Triassic-Jurassic transition in East Greenland. Journal of the Geological Society, 2013, 170(1): 37-46.
    [20] 李勇,贺佩,颜照坤,等. 晚三叠世龙门山前陆盆地动力学分析[J]. 成都理工大学学报(自然科学版),2010,37(4):401-411.

    Li Yong, He Pei, Yan Zhaokun, et al. Dynamics of Late Triassic Longmenshan Foreland Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(4): 401-411.
    [21] 郭正吾,邓康龄,韩永辉. 四川盆地形成与演化[M]. 北京:地质出版社,1996:89-139.

    Guo Zhengwu, Deng Kangling, Han Yonghui. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996: 89-139.
    [22] Li L Q, Wang Y D. Late Triassic palynofloras in the Sichuan Basin, South China: Synthesis and perspective[J]. Palaeoworld, 2016, 25(2): 212-238.
    [23] Tian N, Wang Y D, Philippe M, et al. New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 464: 65-75.
    [24] Lu N, Wang Y D, Popa M E, et al. Sedimentological and paleoecological aspects of the Norian-Rhaetian transition (Late Triassic) in the Xuanhan area of the Sichuan Basin, Southwest China[J]. Palaeoworld, 2019, 28(3): 334-345.
    [25] Li M S, Zhang Y, Huang C J, et al. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2017, 475: 207-223.
    [26] Pole M, Wang Y D, Dong C, et al. Fires and storms—a Triassic-Jurassic transition section in the Sichuan Basin, China[J]. Palaeobiodiversity and Palaeoenvironments, 2018, 98(1): 29-47.
    [27] Wang Y D, Li L Q, Guignard G, et al. Fertile structures with in situ spores of a dipterid fern from the Triassic in southern China[J]. Journal of Plant Research, 2015, 128(3): 445-457.
    [28] Li L Q, Wang Y D, Liu Z S, et al. Late Triassic palaeoclimate and palaeoecosystem variations inferred by palynological record in the northeastern Sichuan Basin, China[J]. PalZ, 2016, 90(2): 327-348.
    [29] 徐兆辉,胡素云,汪泽成,等. 古气候恢复及其对沉积的控制作用:以四川盆地上三叠统须家河组为例[J]. 沉积学报,2011,29(2):235-244.

    Xu Zhaohui, Hu Suyun, Wang Zecheng, et al. Restoration of paleoclimate and its geological significance: As an example from Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2011, 29(2): 235-244.
    [30] 陈楚震,黎文本,马其鸿. 西南地区的三叠系[M]//中国科学院南京地质古生物研究所. 西南地区碳酸盐生物地层. 北京:科学出版社,1979:289-336. [

    Chen Chuzhen, Li Wenben, Ma Qihong. Triassic strata of SW China[M]. Beijing: Science Press, 1979: 289-336.]
    [31] 任纪舜. 印支运动及其在中国大地构造演化中的意义[J]. 中国地质科学院院报,1984(9):31-44.

    Ren Jishun. The Indosinian orogeny and its significance in the tectonic evolution of China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1984(9): 31-44.
    [32] 李智武,刘树根,陈洪德,等. 龙门山冲断带分段—分带性构造格局及其差异变形特征[J]. 成都理工大学学报(自然科学版),2008,35(4):440-454.

    Li Zhiwu, Liu Shugen, Chen Hongde, et al. Structural segmentation and zonation and differential deformation across and along the Longmen thrust belt, West Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(4): 440-454.
    [33] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010:109-124.

    Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010: 109-124.
    [34] 谢小平,佟再三,沈焕庭. 甘肃景泰红水堡晚石炭世沉积环境与沉积相分析[J]. 沉积学报,2003,21(3):381-390.

    Xie Xiaoping, Tong Zaisan, Shen Huanting. Analysis on sedimentary environment and facies in Later Carboniferous epoch of Hongshuibao, Jingtai county, Gansu province[J]. Acta Sedimentologica Sinica, 2003, 21(3): 381-390.
    [35] 黄其胜. 四川盆地北缘达县、开县一带早侏罗世珍珠冲植物群及其古环境[J]. 地球科学:中国地质大学学报,2001,26(3):221-228.

    Huang Qisheng. Early Jurassic flora and paleoenvironment in Daxian and Kaixian Counties, north border of Sichuan Basin, China[J]. Earth Science:Journal of China University of Geosciences, 2001, 26(3): 221-228.
    [36] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:80-102. [Zhu Xiaomin:. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 80-102.]
    [37] 梅冥相. 上扬子地区晚三叠世层序地层格架:扬子地台消亡与上扬子前陆盆地形成的地层学效应[J]. 地质学报,2014,88(10):1944-1969.

    Mei Mingxiang. The sequence-stratigraphic framework of the Late Triassic in the upper Yangtze region, South China: Stratigraphic forcing for the death of the Yangtze Platform and the birth of the Upper-Yangtze Foreland Basin[J]. Acta Geologica Sinica, 2014, 88(10): 1944-1969.
    [38] 夏宗实,王梦筠,刘啸虎,等. 晚三叠世至老第三纪沉积—构造史概述[M]//四川盆地陆相中生代地层古生物编写组. 四川盆地陆相中生代地层古生物. 成都:四川人民出版社,1982:209-235. [

    Xia Zongshi, Wang Mengjun, Liu Xiaohu, et al. The sedimentary construction history overview of Late Triassic to Paleogene[M]//The Writing Group for Continental Mesozoic Stratigraphy and Paleontology in Sichuan Basin. Continental Mesozoic stratigraphy and paleontology of Sichuan Basin. Chengdu: People’s Publishing House, 1982: 209-235.]
    [39] 施振生,赵正望,金惠,等. 四川盆地上三叠统小塘子组沉积特征及地质意义[J]. 古地理学报,2012,14(4):477-486.

    Shi Zhensheng, Zhao Zhengwang, Jin Hui, et al. Depositional characteristics and its geological significance of the Upper Triassic Xiaotangzi Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2012, 14(4): 477-486.
    [40] 刘树根,杨荣军,吴熙纯,等. 四川盆地西部晚三叠世海相碳酸盐岩—碎屑岩的转换过程[J]. 石油与天然气地质,2009,30(5):556-565.

    Liu Shugen, Yang Rongjun, Wu Xichun, et al. The Late Triassic transition from marine carbonate rock to clastics in the western Sichuan Basin[J]. Oil & Gas Geology, 2009, 30(5): 556-565.
    [41] 杨荣军,刘树根,吴熙纯,等. 龙门山前缘上三叠统马鞍塘组沉积分布特征及其控制因素[J]. 成都理工大学学报(自然科学版),2008,35(4):455-462.

    Yang Rongjun, Liu Shugen, Wu Xichun, et al. Distribution characteristics and controlling factors of Upper Triassic Ma'antang Formation in the front of Longmen Mountians, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(4): 455-462.
    [42] 张健,李国辉,谢继容,等. 四川盆地上三叠统划分对比研究[J]. 天然气工业,2006,26(1):12-15.

    Zhang Jian, Li Guohui, Xie Jirong, et al. Stratigraphic division and correlation of Upper Triassic in Sichuan Basin[J]. Natural Gas Industry, 2006, 26(1): 12-15.
    [43] 郑荣才,李国辉,常海亮,等. 四川盆地东部上三叠统须家河组层序—岩相古地理特征[J]. 中国地质,2015,42(4):1024-1036.

    Zheng Rongcai, Li Guohui, Chang Hailiang, et al. Sedimentary sequence and paleogeographic characteristics of the Upper Triassic Xujiahe Formation in eastern Sichuan Basin[J]. Geology in China, 2015, 42(4): 1024-1036.
    [44] 郭旭升. 川西地区中、晚三叠世岩相古地理演化及勘探意义[J]. 石油与天然气地质,2010,31(5):610-619,631.

    Guo Xusheng. Litho-paleogeographic evolution in the Middle-Late Triassic in western Sichuan province and its significance for petroleum exploration[J]. Oil & Gas Geology, 2010, 31(5): 610-619, 631.
    [45] 曾允孚,李勇. 龙门山前陆盆地形成与演化[J]. 矿物岩石,1995,15(1):40-49.

    Zeng Yunfu, Li Yong. The formation and evolution of Longmen Mountains Foreland Basin[J]. Journal of Mineralogy and Petrology, 1995, 15(1): 40-49.
    [46] 刘和甫,梁慧社,蔡立国,等. 川西龙门山冲断系构造样式与前陆盆地演化[J]. 地质学报,1994,68(2):101-118.

    Liu Hefu, Liang Huishe, Cai Liguo, et al. Structural styles of the Longmenshan Thrust Belt and evolution of the foreland basin in western Sichuan province, China[J]. Acta Geologica Sinica, 1994, 68(2): 101-118.
    [47] 韩永辉,郭正吾. 四川盆地成盆前地质结构及其向盆地转化[J]. 石油实验地质,1984,6(4):288-297.

    Han Yonghui, Guo Zhengwu. Pre-basining construction of Sichuan Basin and its transformation[J]. Experimental Petroleum Geology, 1984, 6(4): 288-297.
    [48] 吴舜卿. 试论中国晚三叠世和早、中侏罗世的植物群及其地理分区[M]//古生物学基础理论丛书编委会. 中国古生物地理区系. 北京:科学出版社,1983:121-130. [

    Wu Shunqing. On the Late Triassic, Early and Middle Jurassic floras and palaeogeographic provinces of China[M]//Editoral Committee of Fundamenatl Theory of Palaeontological Book Series. Palaeobiogeographic Provinces of China. Beijing: Science Press, 1983: 121-130.]
    [49] 邓胜徽. 中生代主要植物化石的古气候指示意义[J]. 古地理学报,2007,9(6):559-574.

    Deng Shenghui. Palaeoclimatic implications of main fossil plants of the Mesozoic[J]. Journal of Palaeogeography, 2007, 9(6): 559-574.
    [50] Wang Y D. Fern ecological implications from the Lower Jurassic in western Hubei, China[J]. Review of Palaeobotany and Palynology, 2002, 119(1/2): 125-141.
    [51] Zhou N, Wang Y D, Li L Q, al et, Diversity variation and tempo-spatial distributions of the Dipteridaceae ferns in the Mesozoic of China[J]. Palaeoworld, 2016, 25(2): 263-286.
    [52] 芶宗海. 四川江油马鞍塘地区晚三叠世双壳类动物群[J]. 古生物学报,1993,32(1):13-30.

    Gou Zonghai. Bivalve fauna of Upper Triassic in Maantang area, Jiangyou, Sichuan[J]. Acta Palaeontologica Sinica, 1993, 32(1): 13-30.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(613) PDF downloads(160) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-12-06
  • Published:  2021-04-23

Sedimentary Facies and Sedimentary Environment Evolution of First Member of the Xujiahe Formation in Guangyuan Area, Northern Sichuan Province

doi: 10.14027/j.issn.1000-0550.2020.024
Funds:

State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) 183126, 2019 1103

National Natural Science Foundation of China 41072164, 41572014

Strategic Priority Program (B) of the Chinese Academy of Scien⁃ces XDB26000000

Abstract: The Norian stage of the Upper Triassic was an important transitional episode from marine to terrestrial environment in the development of the Sichuan Basin. The Late Triassic environment and climate became more complex following the mass extinctions at the turn of the Triassic⁃Jurassic periods, with the most significant impact being on terrestrial ecosystems. The well developed and exposed Triassic⁃Jurassic strata in the northern Sichuan Basin, which comprise continuous deposits of the Upper Triassic Xujiahe Formation and the Lower Jurassic Zhenzhuchong Formation, represents an excellent record of the paleoclimatic and paleoenvironmental changes. In particular, in the Sichuan Basin the Norian and Rhaetian stages were crucial in the transition of the marine and terrestrial environmental changes. We investigated the first member of the Xujiahe Formation in Guangyuan, northern Sichuan Basin, focusing on analysis of the sedimentary facies and environmental evolution. The results show that lagoon marshes, delta plains and braided rivers facies developed in the section in the Guangyuan region, which is a remarkable continental transitional⁃continental facies sedimentary system. Through the influence of the formation and development of the Ganzi⁃Aba back⁃arc basin, the transgression that had begun in the Carnian stage at the beginning of the Upper Triassic affected the Guangyuan region during the late Norian. The uplift of the Qinling orogenic belt and Longmen Mountain ended the production of marine facies in the Guangyuan area, and terrestrial facies are then seen in the first member of Xujiahe Formation. We have reconstructed the paleoclimate in the later Norian stage in the Guangyuan area by analyzing the plant fossil assemblage combined with the sedimentary cycle and facies characteristics. We suggest that the Guangyuan area experienced a humid, subtropical coastal climate from the depositional stage of the first member of the Xujiahe Formation until the late Norian in the Upper Triassic.

XIE XiaoPing, LI ShuZhen, LU Ning, WANG YongDong, XI ShuNa. Sedimentary Facies and Sedimentary Environment Evolution of First Member of the Xujiahe Formation in Guangyuan Area, Northern Sichuan Province[J]. Acta Sedimentologica Sinica, 2021, 39(2): 493-505. doi: 10.14027/j.issn.1000-0550.2020.024
Citation: XIE XiaoPing, LI ShuZhen, LU Ning, WANG YongDong, XI ShuNa. Sedimentary Facies and Sedimentary Environment Evolution of First Member of the Xujiahe Formation in Guangyuan Area, Northern Sichuan Province[J]. Acta Sedimentologica Sinica, 2021, 39(2): 493-505. doi: 10.14027/j.issn.1000-0550.2020.024
  • 四川盆地中生代海相—非海相沉积保存完整,地层剖面出露连续,古生物化石丰富,蕴藏有石油、天然气和煤炭等重要能源资源,在层序地层、沉积环境、古生物、古地理、古气候等研究和能源勘探方面都有重要的意义[17]。此前已有很多学者运用不同方法对川西地区、川中地区及川东北地区须家河组的沉积相、沉积环境和构造进行了探讨[812]

    三叠纪—侏罗纪之交曾发生过著名的生物大灭绝事件[1314],对陆地生态系统产生显著影响[1517],古环境和古气候在晚三叠世时期已趋于复杂[1819]。晚三叠世发生的印支运动促使川西拗陷的形成和龙门山的崛起,是龙门山构造隆升的关键时期[20],四川盆地也完成了从海洋到陆地的转化。现已查明,四川盆地晚三叠世须家河组主要由洪积扇相、河流相、三角洲相、沼泽相、湖泊相及其交互相组成,盆地西北部沉积速度大于沉降速度,沉积厚度在盆地内呈现西北厚东南薄的不对称特征[21]

    近年来,诸多国内外学者对于四川盆地晚三叠世古气候和古环境开展了深入的研究,并取得了一系列积极进展和成果。对川东北及川北孢粉及木化石的研究,发现该地区晚三叠时期在热带—亚热带温暖湿润的气候背景下存在气候和生态环境的波动变化[22];在晚三叠世气候整体变暖的趋势下,也存在着在短期降温事件[23];对宣汉地区沉积环境及古气候的研究,证实了须家河末期四川盆地生态系统受生物大灭绝事件影响的程度有区域性的变化[24]。部分研究者从天文旋回的角度尝试建立了该时期四川盆地古气候、古环境变化的时间限制和磁性年代学框架[25]。最近,Pole et al.[26]还揭示了四川盆地晚三叠世存在着风暴沉积和火灾记录等事件。

    虽然对于四川盆地晚三叠世的研究在古植物学、孢粉学、磁性地层学、古气候和古生态等领域取得了积极进展[2528],但是关于该时期古环境变化的沉积学研究关注较少[10,24,29]。目前已知,四川广元须家河组须一段形成于晚三叠世诺利期末,但是长期以来,对于须家河组一段的沉积环境和演化的研究尚涉及不多。

    本文在前人关于四川盆地陆相三叠系研究的基础上[7,21,3031],结合野外实地测量和室内分析结果,对四川盆地北部广元地区须家河组早期沉积微相、沉积环境和沉积相演化进行分析,并对该时期古环境、古气候变化进行了探讨。

  • 四川盆地位于我国大陆西南部(28°~32° N,103°~108° E),属于扬子地台西部一级构造单元,处于松潘—甘孜造山带与扬子陆块的结合部位。早三叠世,四川盆地所在地区为浅海碳酸盐岩和蒸发岩台地,地势西高东低;中三叠世,受早期印支运动影响,太平洋板块自东南向西北挤压,使得四川盆地地势变为东高西低,盆地海水向西部退出,结束了碳酸盐台地阶段[2,32]图1)。

    Figure 1.  Tectonic and geological map of central range of the Longmenshan Mountains and adjacent area (modified from Li et al.[32])

    晚三叠世初,受甘孜—阿坝弧后盆地发育影响,扬子板块西缘逐步由被动大陆边缘向前陆盆地转换,海水自盆地西部侵入,使之形成陆棚浅海相沉积;晚三叠世中期,特提斯海域逐渐关闭,部分地区上升露出海面成为岛屿,使四川盆地成为一个海湾。随着构造活动的发展,逐渐由海陆交替相演变为陆相沉积。在晚三叠世由海向陆转换的过程中,龙门山的发展对盆地西部沉积相的变化起到了关键作用[20]

  • 四川盆地上三叠统须家河组是一套含煤碎屑岩系,受拉丁期大规模海退影响,普遍假整合于中三叠统雷口坡组之上,尤其在广元地区较为典型。本文以王永栋等[7]的划分方案为基础,将广元地区须家河组分为两个亚组、四个岩性段,并重点研究须一段(即小塘子组)地层。

    研究剖面位于四川省广元市城北约3 km处,并且沿嘉陵江西岸的须家河村(现新建镇)所测制(图2)。值得说明的是,先前的须家河组研究地点和剖面均位于嘉陵江东岸的川陕公路旁,由于护坡和建筑等因素的影响,该剖面覆盖严重,已不再适合测量和研究。因此,本文经野外地质调查并结合前人的研究成果,对位于广元市嘉陵江西岸的须家河剖面的须一段地层进行了详细的野外考察。该剖面地层的分层及岩性描述如下:

    Figure 2.  Sketch maps of Sichuan Basin and location of the section in Guangyuan

    上覆地层:上三叠统瑞替阶须家河组第二段(T3 x 2

    黄色、灰黄色巨厚层块状石英砂岩、薄层粉砂岩 156 m

    整合

    上三叠统须家河组第一段(T3 x 1

    24.深灰色薄—中层状砂岩与灰色薄层状粉砂岩互层。 11.2 m

    23.黄灰色中—厚层状细砂岩,夹薄层状粉砂岩。石英质砂岩,可见小型双壳类化石。 8.7 m

    22.灰色薄—中层状粉砂岩与薄层状粉砂岩互层。石英质细砂岩,具滑塌构造。 12.5 m

    21.深灰色巨厚层状泥岩。具块状层理,可见菱铁矿结核和小型双壳类化石。 9.7 m

    20.深灰—黑色薄层状细砂岩与层状细砂岩互层,夹薄层粉砂岩。石英质细砂岩,

    具波痕构造,层面及层内均可见潜穴遗迹,含有菱铁矿结核与植物茎干化石。 4.0 m

    19 黄灰色中层状石英质细砂岩,上部见深灰色薄层状粉砂岩。 3.8 m

    18.深灰色薄—中层石英质细砂岩,上部与粉砂岩互层。 4.8 m

    17.深灰色粉砂岩,夹薄层风化煤。 0.2 m

    16.深灰色薄层状泥岩、粉砂岩,夹细砂岩。泥岩与粉砂岩具块状层理,含小型双壳类化石。 5.5 m

    15.此层被覆盖,预计为风化煤。 2.3 m

    14.灰褐色中层状石英质细砂岩。 0.3 m

    13.深灰色薄层状粉砂岩。垂直层面方向可见潜穴遗迹。 1.8 m

    12 黄灰色薄—中层状石英质细砂岩,具波痕与小型交错层理。 3.8 m

    11.深灰色薄层状粉砂岩,夹中层状石英质细砂岩。发育具复合交错层理与潜穴遗迹。 0.3 m

    10.灰黄色中层状细砂岩。大量发育波痕与潜穴遗迹,可见植物茎干化石。 5.5 m

    9.黄灰色中—厚层状石英质细砂岩。具滑塌构造。 4.9 m

    8.下部灰色薄层与中层石英质细砂岩互层,上部灰色中层状细砂岩。 3.3 m

    7.灰色薄层与中层石英细砂岩互层。砂岩层面可见波痕与潜穴遗迹,并含菱铁矿结核。 4.6 m

    6.深灰色薄—中层状粉砂岩与石英质细砂岩互层,且大量发育波痕及生物遗迹。 1.9 m

    5.黑色薄层状炭质粉砂岩,夹风化煤。 2.7 m

    4.深灰色薄层状粉砂岩,褐色菱铁矿结核较多。 2.6 m

    3.深灰色薄—中层状粉砂岩,夹细砂岩,植物化石丰富:Neocalamites sp.,Cladophlebis sp.,

    Dictyophyllum nathorsti Zeiller,Clathropteris sp.,Scoresbya sp.,Phlebopteris sp.,

    Lepidopteris sp.,Pterophyllum sp.,P.sinense Li,Anomozamites sp.,Sinoctenis sp. 5.5 m

  • 下伏地层:中三叠统安尼阶雷口坡组(T2 l

    1.青灰色厚层白云质灰岩,具块状层理。

    未见底

    本剖面主要出露黄灰色、灰色、深灰色石英质细砂岩(约占57.2%)、粉砂岩(约占22.5%)和少量泥岩(约占15%),不含中—粗粒砂岩和砾岩。碳酸岩的产出形式主要为菱铁矿结核,约占剖面厚度1.7%,风化煤夹层在多层岩石中均有产出,约占剖面厚度的3.5%。

    本剖面细砂岩多以石英质产出,纯净的石英砂岩的结构和成分成熟度高,形成于河流或湖泊环境;粉砂岩也出现于多层剖面,粉砂岩是经过较长距离搬运,缓慢沉降于稳定的水动力条件,产于浅湖、河漫滩、潟湖、沼泽地区[33]。结合剖面层理、构造及所产植物及植物茎干化石、多处风化煤,未见植物根系化石等特征,可以判断该剖面以三角洲环境为主。

    本剖面煤层层数多,厚度较小,多以风化煤的形式产出,且煤层内含菱铁矿结核。这说明当时的水环境为滞水弱还原环境[34],同时也说明成煤时期气候适于植物生长。据前人分析可知[35],湿度增加的同时温度下降最有利于煤的形成,而温度与湿度同时升高,反而不利于煤形成的环境,结合植物化石的分析结果,证明此时环境偏向于亚热带湿热气候(图3)。

    Figure 3.  Sedimentary facies in first member of Xujiahe Formation in Guangyuan, showing (a) worm track on surface; (b) worm track in vertical section; (c) bivalves; and (d) siderite concretion

  • 颜色和构造是沉积岩的最直观的沉积特征,也是重要的沉积相标志[36]

  • 沉积岩的颜色是沉积岩最醒目的标志,不同的沉积环境会形成不同颜色的沉积岩,有机质量含量的增加也会使岩石颜色变深。须家河剖面须一段的岩石主要以黄灰色、灰色、深灰色为主,表明岩石有机碳含量丰富,并且形成于还原环境中;Fe 3+ (主要是菱铁矿结核)则以褐色的结核状或条带状产出,第4层菱铁矿也呈褐色,多代表风化条件;灰黄色过渡颜色可能是由微细陆源碎屑混入,且与陆源碎屑的原生沉积状态密切相关[3536]

  • 沉积岩的构造根据形成时期可以分为原生构造和沉积后形成的构造,原生沉积构造及其组合可以反映当时的沉积环境及岩相地理条件。

  • 研究剖面须一段主要表现出平行层理、均质层理(块状层理)和交错层理。其中,平行层理反映了急流和高能环境,常与大型交错层理或冲洗层理共生,在河道、海岸、湖岸及海滩等沉积环境较为多见。

    均质层理形成于三种情况:1)在浅海及三角洲沉积环境中,常见由于高频的生物搅动使原生层理遭到破坏及混合形成的块状层理;2)沉积物密度高,没有分选性;3)悬浮物质快速沉积。在剖面须一段的16层泥岩与粉砂岩中发育具块状层理,含小型双壳类化石,且上下两层均含风化煤,判断为三角洲沉积;21层为巨厚层泥岩,具块状层理,且含菱铁矿结核和小型双壳类化石,判断为滞水湖泊(图3c,d)。

    交错层理代表当时的沉积介质是流动的,但水动力较弱,其沉积环境通常为三角洲平原和三角洲前缘。剖面于11、12层分别发育复合交错层理和小型交错层理,与波痕和潜穴遗迹共生,判断为河口砂坝(图4)。

    Figure 4.  Generalized column of lithological section and sedimentary facies of the first member of the Upper Triassic Xujiahe Formation, west bank of the Jialing River in Guangyuan city, Sichuan province

    (2) 层面构造,根据在成岩过程保存位置的不同,沙波迁移可以有两种表现形式,即波痕和交错层理,波痕保存于岩石层面,交错层理形成于底床。本剖面主要于6、7、10、12层呈现波痕(图4)。

    (3) 滑塌构造,常出现于一定层位中,一般出现在粉砂岩、粉砂质泥岩和细砂岩中。滑塌构造形成的同时常出现快速沉积,代表水下滑坡,在海底峡谷前缘、潮间滩地的水道内、河道中的点沙坝以及三角洲前缘等沉积环境中较常出现。在广元须家河一段剖面中的9层和22层呈现滑塌构造,分别判断为河口砂坝和决口扇(图4)。

    (4) 生物潜穴都是原地形成的,所以是判断环境的良好标志,它们能在水深、盐度、沉积速率与底层性质等方面提供环境解释的重要资料。较深的垂直潜穴显示水动力条件复杂多变,一般出现在浅水区(图3a,b)。

    (5) 包体类型及意义,本研究剖面主要的包体类型主要是菱铁矿结核,产出于细砂岩、粉砂岩和泥岩之中,证明了还原环境和一定的水深条件,且生物生产率较高,而碎屑沉积物不足[34]。4层菱铁矿呈褐色,代表一定的风化条件;7层、20层、21层可见菱铁矿结核(图3d、图4),分别判断为滞水环境。

  • 根据前人研究结果,并结合野外沉积记录、实地测量和对剖面的室内分析,广元嘉陵江西岸须家河组一段为海陆过渡相—陆相沉积,总体为一水退旋回的沉积环境。因晚三叠世早期马鞍塘—小塘子期海水逐渐向西退出[21],须家河早期自下而上沉积环境为潟湖—沼泽—三角洲平原—河流,具体划分情况如下(图4)。

  • 须一段下部(2~8层)主要发育潟湖—泥炭沼泽相沉积,在潟湖—沼泽的低能环境中,植物化石为原地埋藏,沉积粒度呈现下细上粗的逆粒序。2~4层为潟湖沉积,在亚热带湿润气候环境下,丰富的降水及河流的注入带来了大量的淡水补给,沉积物的淤积使潟湖演化处于晚期,并逐渐被沼泽化。剖面的5~8层为泥炭沼泽环境,具有以下特征:岩性主要为为深灰色—黑色粉砂岩为代表,碎屑的磨圆度和分选性都比较好,风化煤代表间接性暴露的环境。

  • 研究剖面中段为三角洲平原,是辫状河流与潟湖潮坪的过渡区,根据三角洲上流河流的性质将其判断为辫状河三角洲,发育河口沙坝、分流河道、分流间湾和间湾湖泊微相。

  • 须一段剖面 9~12层为河口沙坝,交错层理与植物茎干化石表示该时期较为强劲的水动力,沉积物分选性好,11层的薄层粉砂岩说明该时期水流速度放缓,河口砂坝随三角洲向海的方向推进,水流速度放缓致使沉积物堆积沉积速率变高。

  • 须一段剖面的18~19层为分流河道,以细砂质沉积为主,向上逐渐变细,与粉砂岩互层,动力条件比较复杂,碎屑的磨圆度和分选性都比较好,可见小型双壳类化石。

  • 剖面13~17、20~21层为分流间湾。由于沉积过程中河道频繁变化,当9~12层分流河道被泥岩或沙坝阻塞而废弃时,则发育分流间湾,13~17层沉积岩由深灰色细砂、粉砂岩、泥岩岩组成,沉积粒度向上变细,具块状层理,水动力环境较低。小型双壳类化石、较深的垂直潜穴一般出现在浅水区。15层和17层含有风化煤,推测曾生长植物或形成利于植物遗体堆积的环境。

    剖面的20~21层其沉积岩为深灰—黑色,表明有机质含量丰富。20、21层均可见菱铁矿结核,代表滞水环境,21层的巨厚层块状泥岩也表明低能的水动力环境,结合相邻分流河道微相,将其判断为三角洲平原上的分流间湾。

  • 研究剖面中上段,即22~24层为辫状河流亚相,受河流作用的影响,具有向上变粗的层序。22层以粉砂岩为主,与分流河道相邻,且具有滑塌构造,推测为分流河道决口扇。

  • 通过对沉积旋回的划分,可以看出,须一段时期由两个复合旋回和一个反旋回组成,总体呈现反旋回(图4)。根据众多研究者对该时期构造活动的分析[2,20,3031,37],结合沉积旋回分析结果,可以判断,由于局部构造活动,该时期总体上呈现水退现象。但在9~16层及19~21层沉积时期,该时间尺度的水平面波动则可能为气候变湿导致水平面上升。

  • 本研究区位于四川盆地西北部,晚三叠世早—中期盆地西部地区普遍为浅海相→海陆交互相沉积,通过对研究区须一段沉积相及沉积演化的分析,总结出该研究区在晚三叠世中—后期的陆相沉积模式,如图5所示。

    Figure 5.  Sedimentary model of Middle and late⁃Upper Triassic in Guangyuan area (modified from Xia et al.[38])

    受印支构造活动影响,广元须家河地区自中三叠拉丁时期起逐渐隆升并转入剥蚀阶段,结合前人对川盆西地这段时期构造及地层的研究[3942],本文总结出本区晚三叠世的沉积模式(图5):晚三叠世卡尼期,四川盆地西部受特提斯海域关闭的影响局部已成为海湾,但此时广元地区仍处于暴露剥蚀阶段,由研究剖面缺失马鞍塘组地层,雷口坡组残余地层与须家河组地层形成假整合可以识别;而后在卡尼末期,盆地西部在经历一次短暂的抬升暴露后快速沉降,使前陆盆地的箕型更加明显,海湾范围扩张,结合四川盆地宣汉七里峡剖面、开县温泉剖面、达县铁山剖面及合川炭坝剖面做出的四川盆地中晚三叠世沉积展布图可以看出,海水直到诺利期中后期(须一段早期)才影响到广元地区,使其成为障壁型河口海湾环境,发育潟湖—沼泽。诺利期末期(须一段中晚期),受华北古陆的挤压和秦岭造山带的影响,加之研究区气候炎热多雨,丰富的雨水与发育自盆地北部山区河流的陆源补给,使得沉积物迅速堆积,使该区发育辫状河流及三角洲平原,较早的改变了广元地区的海湾环境,进而逐渐被填充向陆相环境过渡,海水从广元地区退出,海岸线随之向盆地西南方向退缩,而此时四川东部及东北部仍是潟湖相[24,43]。进入瑞替期时期(须二段),受龙门山和秦岭造山带双重控制,海水完全退出广元地区,广元一带发育陆相河流沉积(图6)。

    Figure 6.  Sedimentary distribution sections and map of Middle to Upper Triassic episodes in Sichuan Basin (modified fromLai et al. [8])

  • 晚三叠世诺利期是四川盆地海陆转换的重要过渡期,在须一段沉积时期,川北、川西普遍发育海陆过渡相沉积,对于该时期龙门山前陆盆地早期的形成时间、川北地区物源方向仍存在较多争议[3031,37,4447]。广元地区位于龙门山前陆盆地、秦岭造山带与四川盆地结合的特殊位置,本研究剖面为一套潟湖沼泽—三角洲平原—辫状河流亚相沉积,为海陆过渡相—陆相沉积体系。该转换过程或与龙门山及秦岭造山带的快速隆升的复合作用有关,其中秦岭造山带影响应该更明显。此时龙门山前缘的构造背景是大陆岛弧,尚未形成物源区;而秦岭造山带在该时期已经成为物源并为研究区提供沉积。不过,证实这一点尚需更进一步地深入研究。

    植物群是气候、生态等自然环境的综合产物,植物对气候的冷暖干湿变化反应灵敏,所以植物化石具有良好的气候环境指示意义,对于揭示陆地生态系统的古生态状况和古气候演变等提供不可或缺的证据。古植物研究表明,我国晚三叠世的植物群所反映的气候类型可分为两类,即代表近海环境的热带—亚热带湿热气候的“南方型”植物组合,以及代表内陆性亚热带—温带较湿润气候的“北方型”植物组合[4849]。前者以华南晚三叠世的网叶蕨—格子蕨(Dictyophyllum⁃Clathropteris)植物组合为代表,后者则以北方晚三叠世的拟丹尼蕨—贝尔瑙蕨(Denaeopsis⁃Bernoullia)植物组合为代表。本次所发现的植物化石中以真蕨纲和苏铁纲占主导,通过对古生物化石组合的分析,可以反映该地区晚三叠早期的古植被和古气候面貌,其组合类型代表近海的热带—亚热带湿热气候的“南方型”植物群落,气候类型应为温暖湿润的热带、亚热带潮湿气候环境。

    在广元须家河须一段剖面的底部植物化石在第3层产出(图7),主要化石类型包括:新芦木属Neocalamites sp.,枝脉蕨属Cladophlebis sp.,网叶蕨属Dictyophyllum nathorsti Zeiller格子蕨属Clathropteris sp.,Scoresbya sp.,异脉蕨属Phlebopteris sp.,鳞羊齿Lepidopteris sp.,侧羽叶属Pterophyllum sp.P.sinense Li,异羽叶属Anomozamites sp.,中华篦羽叶Sinoctenis sp.等,分别代表楔叶纲、真蕨纲、种子蕨纲和本内苏铁纲等类型。楔叶纲的新芦木属生长于沼泽或河漫滩、河间地带等环境。中生代时期,由于真蕨纲对生长环境严格的限制性,因而是气候和生态的良好指示植物[4950]。其中,双扇蕨科化石以网叶蕨和格子蕨属为代表,其现生代表双扇蕨属(Dipteris)主要分布于热带和亚热带地区,代表温暖湿润的气候环境[5051],马通科化石以异脉蕨(Phlebopteris)为代表,也是热带—亚热带温暖湿润气候生态环境的指示分子[50]。种子蕨是已经灭绝的一类植物,其化石类型多生长于三角洲环境中,且为冲积平原与泥炭沼泽过渡区,指示了温暖且相当湿润的环境。苏铁纲的演化在中生代处于鼎盛阶段[49],本次发现的苏铁类植物主要是本内苏铁目,其生境广阔,在热带、亚热带和温带都有广泛分布[49]。由此我们可以看出,剖面所产植物化石,主要为南方型的化石组合,以真蕨纲和苏铁纲占主导,这种植物化石组合代表的气候特征以湿热为主,所以该时期的气候类型应为温暖湿润的热带和亚热带气候。从剖面沉积特征来看,这种湿润气候在须一段时期连续存在,为进一步探究晚三叠时期气候和生态环境变化提供了重要的依据。

    Figure 7.  Boundary between Xujiahe and Leikoupo Formations, and Upper Triassic plant fossils in Guangyuan, Sichuan

    另外,前人在广元地区的须家河剖面还发现有较多的双壳类化石,主要有Yunnanophorus boulei, Myophorioois nuculiformis, Heminajas forulota, Modilus frugi[52]。这些动物化石代表了半咸水环境,表明该时期水环境盐度较大,代表滨海环境,可能为瀉湖环境或者海漫湖[52]

    根据上述沉积相、沉积环境特征,并结合古植物和古动物化石的古生态环境分析,作出晚三叠世早期阶段川北地区的生境重建示意图(图8)。

    Figure 8.  Lagoon⁃marsh habitat reconstruction of deposition at T3 x 1, Guangyuan

  • (1) 通过对川北广元须一段地层实测及剖面详细的划分和研究,研究区在晚三叠世诺利期末这一时期主要为海陆过渡相—陆相沉积,经历了潟湖—沼泽→三角洲平原→辫状河流的转换过程。

    (2) 广元须一段沉积环境及演化的重建表明,诺利期中后时期,始自卡尼期的盆地西部海侵影响到广元地区,使其由剥蚀阶段转换为海陆过渡阶段,随后,来自盆地北部的物源快速沉积,加之其前陆盆地西部边缘造山带影响,加快推进本区由海陆过渡相向陆相转换;进入瑞替期,海水完全从广元地区退出,进入陆相河流沉积阶段。

    (3) 研究区须一段地层的植物化石及沉积旋回分析显示,广元地区晚三叠世须一段主要为滨海相亚热带湿润型气候,这种湿润的滨海气候在区内延续至诺利期末。

Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return