Advanced Search
Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents

FENG Xuan, WU YongHua, YANG BaoJu, SHAN Xin, LIU JiHua. Records of Hyperpycnal Flow Deposits in the Southwestern Okinawa Trough and Their Paleoclimatic Response since 1.3 ka[J]. Acta Sedimentologica Sinica, 2021, 39(3): 739-750. doi: 10.14027/j.issn.1000-0550.2020.018
Citation: FENG Xuan, WU YongHua, YANG BaoJu, SHAN Xin, LIU JiHua. Records of Hyperpycnal Flow Deposits in the Southwestern Okinawa Trough and Their Paleoclimatic Response since 1.3 ka[J]. Acta Sedimentologica Sinica, 2021, 39(3): 739-750. doi: 10.14027/j.issn.1000-0550.2020.018

Records of Hyperpycnal Flow Deposits in the Southwestern Okinawa Trough and Their Paleoclimatic Response since 1.3 ka

doi: 10.14027/j.issn.1000-0550.2020.018
Funds:

National Key Basic Research Program of China (973 Program) 2013CB429704

  • Received Date: 2020-01-11
  • Rev Recd Date: 2020-03-20
  • Publish Date: 2021-06-10
  • In a case study of core HOBAB4⁃S1 from the southwestern Okinawa Trough, the sedimentary characteristics and paleoclimatic significance of hyperpycnal flow deposits were examined using laser particle size analysis and AMS14C age dating. The results show that there are 17 segments of hyperpycnal flow deposits in the core, consisting mainly of sandy silt. The grain⁃size accumulation curve shows a 70⁃130 μm centered unimodal distribution. The sample point distribution on a C⁃M pattern is roughly parallel to the C = M baseline; below the PQ segment, they have the characteristics of gravity flow deposits, indicating that the sediment was transported as gravity⁃flow suspensions. Parallel bedding, climbing ripple bedding and graded bedding are present within the hyperpycnal flow deposits. Two types of hyperpycnal flow deposit were recognized: (i) thick hyperpycnal flow deposits with basal erosional contacts, with pairs of basal coarsening⁃up units and top fining⁃up units, indicating a proximal sedimentary environment; and (ii) thin hyperpycnal flow deposits with only one pair of basal coarsening⁃up units and top fining⁃up units, indicating a distal sedimentary environment. There was an increase of hyperpycnal flow deposits between 800 A.D. and 1 300 A.D., which indicates that the climate at that time was marked by high temperature and high humidity, typhoons, and frequent floods and heavy rainfall. This is evidence of the Medieval Warm Period in East Asia.
  • [1] 朱筱敏,谈明轩,董艳蕾,等. 当今沉积学研究热点讨论:第20届国际沉积学大会评述[J]. 沉积学报,2019,37(1):1-16.

    Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, et al. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress[J]. Acta Sedimentologica Sinica, 2019, 37(1): 1-16.
    [2] Bouma A H. Sedimentology of some flysch deposits graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962.
    [3] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
    [4] Mutti E, Bernoulli D, Lucchi F R, et al. Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins[J]. Sedimentology, 2009, 56(1): 267-318.
    [5] Migeon S, Mulder T, Savoye B, et al. Hydrodynamic processes, velocity structure and stratification in natural turbidity currents: Results inferred from field data in the Var Turbidite System[J]. Sedimentary Geology, 2012, 245-246: 48-62.
    [6] Khripounoff A, Crassous P, Lo Bue N, et al. Different types of sediment gravity flows detected in the Var submarine canyon (northwestern Mediterranean Sea)[J]. Progress in Oceanography, 2012, 106: 138-153.
    [7] Khripounoff A, Vangriesheim A, Crassous P, et al. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea)[J]. Marine Geology, 2009, 263(1/2/3/4): 1-6.
    [8] Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8): 675-678.
    [9] Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153: 274-300.
    [10] Carter L, Milliman J D, Talling P J, et al. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan[J]. Geophysical Research Letters, 2012, 39(12): L12603.
    [11] Chiang C S, Yu H S. Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan[J]. Geo-Marine Letters, 2008, 28(3): 161-169.
    [12] Liu J T, Lin H L, Hung J J. A submarine canyon conduit under typhoon conditions off southern Taiwan[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(2): 223-240.
    [13] Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the central Japan Sea[J]. Journal of Sedimentary Research, 2006, 76(1): 60-73.
    [14] Slater S M, McKie T, Vieira M, et al. Episodic river flooding events revealed by palynological assemblages in Jurassic deposits of the Brent Group, North Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 389-400.
    [15] Bourget J, Zaragosi S, Mulder T, et al. Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes: A case study from the Al Batha turbidite system, Oman margin[J]. Sedimentary Geology, 2010, 229(3): 144-159.
    [16] Pan S X, Liu H Q, Zavala C, et al. Sublacustrine hyperpycnal channel-fan system in a large Depression basin: A case study of Nen 1 member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration And Development, 2017, 44(6): 911-922.
    [17] 杨仁超,金之钧,孙冬胜,等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20.

    Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
    [18] 杨田,操应长,王艳忠,等. 深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例[J]. 石油学报,2015,36(9):1048-1059.

    Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submember in member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36(9): 1048-1059.
    [19] Zavala C, Ponce J J, Arcuri M, et al. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of West-Central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1-2): 41-59.
    [20] Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
    [21] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
    [22] Mulder T, Migeon S, Savoye B, et al. Reply to discussion by Shanmugam on Mulderet al. (2001, Geo-Marine Letters 21: 86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2002, 22(2): 112-120.
    [23] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water—Revisiting the delivery system. Tulsa, OK: AAPG Studies in Geology, 2011: 1-30.
    [24] Alexander J, Mulder T. Experimental quasi-steady density currents[J]. Marine Geology, 2002, 186(3/4): 195-210.
    [25] Zavala C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏,2018,30(1):1-18.

    Zavala C, Pan Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
    [26] Tombo S L, Dennielou B, Berné S, et al. Sea-level control on turbidite activity in the Rhone canyon and the upper fan during the Last Glacial Maximum and Early deglacial[J]. Sedimentary Geology, 2015, 323: 148-166.
    [27] 李巍然,管玉涛,杨作升,等. 冲绳海槽浊流灾害性研究[J]. 自然灾害学报,1999,8(3):98-102.

    Li Weiran, Guan Yutao, Yang Zuosheng, et al. Study on hazardous characteristics of turbid flow in Okinawa Trough[J]. Journal of Natural Disasters, 1999, 8(3): 98-102.
    [28] 袁迎如. 冲绳海槽的浊流沉积物[J]. 地质评论,1987,33(6):499-505.

    Yuan Yingru. Turbidites in the Okinawa Trough[J] Geological Review, 1987, 33(6): 499-505.
    [29] Qin Y S, Zheng T M, Xu S M. A study on the turbidity sediments from the south area of the okinawa trough[J]. Acta Oceanologica Sinica, 1987, 6(Suppl 2): 243-251.
    [30] 郑旭峰,李安春,万世明,等. 冲绳海槽中全新世的浊流沉积及其控制因素[J]. 第四纪研究,2014,34(3):579-589.

    Zheng Xufeng, Li Anchun, Wan Shiming, et al. The turbidity events in Okinawa Trough during Middle Holocene and its potential dominating mechanisms[J]. Quaternary Sciences, 2014, 34(3): 579-589.
    [31] Huh C A, Su C C, Wang C H, et al. Sedimentation in the southern Okinawa Trough—Rates, turbidites and a sediment budget[J]. Marine Geology, 2006, 231(1/2/3/4): 129-139.
    [32] 李军,高抒,孙有斌. 冲绳海槽南部A23孔浊流沉积层的粒度特征[J]. 海洋地质与第四纪地质,2005,25(2):11-16.

    Li Jun, Gao Shu, Sun Youbin. Grain-size characteristics of turbidite sediments in core A23 from the southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2005, 25(2): 11-16.
    [33] 秦蕴珊,赵一阳,陈丽蓉,等. 东海地质[M]. 北京:科学出版社,1987.

    Qin Yunshan, Zhao Yiyang, Chen Lirong, et al. East China Sea geology[M]. Beijing: Science Press, 1987.
    [34] 李军. 冲绳海槽西南部新发现“通道—天然堤”系统的成因[J]. 海洋地质动态,2004,20(2):5-7.

    Li Jun. Preliminary analysis on the formation mechanism of the newly discovered “channel-levee” systems, southwestern Okinawa Trough[J]. Marine Geology Letters, 2004, 20(2): 5-7.
    [35] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B13): 14041-14063.
    [36] 郑铁民,徐善民,徐志明. 冲绳海槽表层沉积物沉积特征的初步研究[J]. 海洋与湖沼,1989,20(2):113-121.

    Zheng Tiemin, Xu Shanmin, Xu Zhiming. Characteristics of the surface sediments in Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 1989, 20(2): 113-121.
    [37] 李传顺,江波,李安春,等. 冲绳海槽西南端中全新世以来的沉积速率与物源分析[J]. 科学通报,2009,54(9):1303-1310.

    Li Chuanshun, Jiang Bo, Li Anchun, et al. Sedimentation rates and provenance analysis in the southwestern Okinawa Trough since the mid-Holocene[J]. Chinese Science Bulletin, 2009, 54(9): 1303-1310.
    [38] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
    [39] Dadson S, Hovius N, Pegg S, et al. Hyperpycnal river flows from an active mountain belt[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F4): F04016.
    [40] 陈洪滨,范学花. 2010年极端天气和气候事件及其他相关事件的概要回顾[J]. 气候与环境研究,2011,16(6):789-804.

    Chen Hongbin, Fan Xuehua. Some extreme events of weather, climate and related phenomena in 2010[J] Climatic and Environmental Research, 2011, 16(6): 789-804.
    [41] Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-27.
    [42] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008.

    Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008.
    [43] Mulder T, Migeon S, Savoye B, et al. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2001, 21(2): 86-93.
    [44] Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
    [45] Sumner E J, Amy L A, Talling P J. Deposit structure and processes of sand deposition from decelerating sediment suspensions[J]. Journal of Sedimentary Research, 2008, 78(8): 529-547.
    [46] 潘伟. 台湾“八八水灾”灾情统计[J]. 两岸关系,2009(9):14.

    Pan Wei. Statistics of "August 8 Flood" in Taiwan[J]. Relations Across Taiwan Straits, 2009(9): 14.
    [47] 刘敬圃,林晶. 末次冰期西北太平洋台风的变化及其对陆架环境的影响[J]. 海洋科学,1995(5):26-28.

    Liu Jingpu, Lin Jing. The variation of typhoon of the north-west Pacific during the Last Glacial Period and its influence on the shelf environment[J]. Marine Sciences, 1995(5): 26-28.
    [48] Tan M, Liu T, Hou J Z, et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003, 30(12): 1617.
    [49] Lan J H, Xu H, Lang Y C, et al. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age[J]. Geology, 2020, doi: 10.1130/G46811.1.
    [50] 罗建育,陈镇东. 台湾高山湖泊沉积记录指示的近4000年气候与环境变化[J]. 中国科学(D辑):地球科学,1997,27(4):366-372.

    Luo Jianyu, Chen Zhendong. Climatic and environmental changes over the last 4000 years recorded in the Mountain Lake sedimentary from Taiwan[J] Science China (Seri. D): Earth Sciences, 1997, 27(4): 366-372.
    [51] 高建惠,刘建,王苏民. 中国中世纪暖期气候研究综述[J]. 地理科学,2006,26(3):376-383.

    Gao Jianhui, Liu Jian, Wang Sumin. Overview on studies of Medieval Warm Period in China[J]. Scientia Geographica Sinica, 2006, 26(3): 376-383.
    [52] 陈金霞. 末次冰消期以来东亚季风演化:来自东海和北黄海沉积孢粉记录[D]. 青岛:中国科学院海洋研究所,2008.

    Chen Jinxia. Evolution of the East Asian monsoon since the last deglaciation: Sporopollen records in the East China Sea and the North Yellow Sea[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(2)

Article Metrics

Article views(533) PDF downloads(106) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-01-11
  • Revised:  2020-03-20
  • Published:  2021-06-10

Records of Hyperpycnal Flow Deposits in the Southwestern Okinawa Trough and Their Paleoclimatic Response since 1.3 ka

doi: 10.14027/j.issn.1000-0550.2020.018
Funds:

National Key Basic Research Program of China (973 Program) 2013CB429704

Abstract: In a case study of core HOBAB4⁃S1 from the southwestern Okinawa Trough, the sedimentary characteristics and paleoclimatic significance of hyperpycnal flow deposits were examined using laser particle size analysis and AMS14C age dating. The results show that there are 17 segments of hyperpycnal flow deposits in the core, consisting mainly of sandy silt. The grain⁃size accumulation curve shows a 70⁃130 μm centered unimodal distribution. The sample point distribution on a C⁃M pattern is roughly parallel to the C = M baseline; below the PQ segment, they have the characteristics of gravity flow deposits, indicating that the sediment was transported as gravity⁃flow suspensions. Parallel bedding, climbing ripple bedding and graded bedding are present within the hyperpycnal flow deposits. Two types of hyperpycnal flow deposit were recognized: (i) thick hyperpycnal flow deposits with basal erosional contacts, with pairs of basal coarsening⁃up units and top fining⁃up units, indicating a proximal sedimentary environment; and (ii) thin hyperpycnal flow deposits with only one pair of basal coarsening⁃up units and top fining⁃up units, indicating a distal sedimentary environment. There was an increase of hyperpycnal flow deposits between 800 A.D. and 1 300 A.D., which indicates that the climate at that time was marked by high temperature and high humidity, typhoons, and frequent floods and heavy rainfall. This is evidence of the Medieval Warm Period in East Asia.

FENG Xuan, WU YongHua, YANG BaoJu, SHAN Xin, LIU JiHua. Records of Hyperpycnal Flow Deposits in the Southwestern Okinawa Trough and Their Paleoclimatic Response since 1.3 ka[J]. Acta Sedimentologica Sinica, 2021, 39(3): 739-750. doi: 10.14027/j.issn.1000-0550.2020.018
Citation: FENG Xuan, WU YongHua, YANG BaoJu, SHAN Xin, LIU JiHua. Records of Hyperpycnal Flow Deposits in the Southwestern Okinawa Trough and Their Paleoclimatic Response since 1.3 ka[J]. Acta Sedimentologica Sinica, 2021, 39(3): 739-750. doi: 10.14027/j.issn.1000-0550.2020.018
  • 深水重力流的搬运、沉积过程是海洋沉积学研究的热点问题[1]。自学者们将粒序层理及其相关序列解释为浊流沉积以来[23],地震、风暴等事件触发的浊流被认为是深水砂质沉积的主要成因。然而,近三十年来的研究表明,由洪水携带的大量悬浮沉积物引起的异重流(Hyperpycnal Flow)可能是自然界中更为普遍的一种深水重力流类型[4],其沉积特征和输运机制吸引了国内外学者的广泛研究。目前对现代海底异重流研究较为详细的地区有地中海的Var河峡谷[57]和台湾西南部的高屏溪峡谷[812],在对其沉积物特征进行研究的同时,还对现代异重流沉积过程进行了监测;日本海[13]、北海[14]、阿拉伯海[15]等海区的现代异重流沉积也有报道;松辽盆地[16]、鄂尔多斯盆地[17]、渤海湾盆地[18]和阿根廷内乌肯盆地[19]等地的古代沉积物中也发现了异重流沉积。总体上看,异重流的研究尚处于起步阶段。

    异重流这一概念最早是由Bates[20]于1953年研究河口三角洲时提出,当时主要强调了河水和蓄水体之间的密度差异。若河水密度大于蓄水体的密度,则产生沿盆地向下流动的异重流,而密度小于蓄水体密度和等于蓄水体密度的流体分别称为异轻流(Hypopycnal Flow)和等重流(Homopycnal Flow)。2003年Mulder et al.[21]对这一概念重新给出了定义,认为异重流是由河流持续供源的携带大量悬移载荷而沿盆底流动的高密度流体。Mulder et al.[22]强调了异重流搬运距离远,从而将异重流的概念从河口拓展至深水环境。异重流与“触发型”浊流的流体性质相似,流态为紊流,流变学上为牛顿流体,沉积物支撑方式为紊流支撑,但具有持续时间较长[23]、低流速[24]、低盐度[25]等特点。由于异重流发源于河口洪泛,受气候因素影响很大,故异重流沉积对源区古环境古气候有一定指示意义[26]

    冲绳海槽内深水重力流频发,自上世纪八十年代以来前人已对海槽内的重力流沉积做了大量的研究[2732]。结果表明,冲绳海槽重力流沉积主要分布在海槽中部和南部的西坡和槽底,沉积物粒度组成主要为细砂和粉砂,单层厚度大多介于2~7 cm,鲍马序列不完整[2729]。关于冲绳海槽内重力流的触发机制,前人普遍认为是由于火山、地震、内波、内潮汐等因素触发的边坡失稳而引起的“触发型”浊流[3032],而没有考虑河流洪水引发的异重流,迄今在冲绳海槽尚没有异重流的报道。本文对采自距台湾兰阳溪河口仅约80 km的冲绳海槽西南端的沉积物岩芯HOBAB4⁃S1进行了研究,发现其在1.3 ka以来发育有异重流沉积,并对其发育的古气候背景进行了探讨。

  • 冲绳海槽位于东海陆架和琉球岛弧之间,长约840 km,宽约70 km,面积为2.2×105 km2,地形特征表现为南深北浅,大部分深度逾1 000 m,最大深度2 719 m[33]。本文所研究的岩芯取自冲绳海槽西南端,临近台湾东北部,该海域主要的地形区有东海陆架、东海陆坡、棉花峡谷、北棉花峡谷、南冲绳海槽、宜兰陆架、宜兰海脊等(图1a)。从兰阳溪河口到海槽槽底的岩芯站位处的平均坡度为1.06°,其中宜兰陆架和槽底的地形较为平坦,陆坡处的坡度较陡。陆坡上发育多条海底峡谷,为沉积物向海槽内运输提供了良好的通道(图1b)[34]

    Figure 1.  (a) Location of core HOBAB4⁃S1 and (b) submarine topography (submarine water depth data from National Marine Scientific Data center)

    冲绳海槽南部槽底沉积了巨厚的沉积层,沉积记录包含中新世、上新世、更新世到全新世,沉积物厚度最大可达2 km[35]。沉积物类型主要为粉砂与黏土,仅有零星砂质沉积物散布于泥质沉积物中。沉积物组成按来源可分为陆源组分和海源组分[36]。陆源组分主要为河流作用和风成作用输入的陆源碎屑等;海源组分包括生物碎屑、自生矿物以及火山和海底热液物质。陆源碎屑的来源以台湾兰阳溪的输入为主,其次为东海陆架的输入[37]。由于兰阳溪向海槽内的沉积物输入量很大,海槽南部的沉积速率很高,约为0.10~0.95 cm/a,且越靠近台湾岛的位置沉积速率越高[31]

  • 兰阳溪发源于中央山脉南湖大山北麓,源头海拔为3 535 m,在牛斗附近进入兰阳平原,与宜兰河和冬山河汇合后进入太平洋,全长约73 km,流域面积约为979 km2,平均比降约为4.8%(图1a)。兰阳溪水流量大且含沙量高,且受季节性的台风降水影响很大。其年平均径流量为90 m3/s,年均悬浮颗粒物浓度为2.8 kg/m3;在洪水期,径流量可达11 100 m3/s,悬浮颗粒物浓度可达350 kg/m3[38]。现场观测也显示,兰阳溪平均每年有22天能达到形成异重流的临界条件[39](悬浮颗粒物浓度在40 g/L以上[38])。

    兰阳溪流域降水丰沛、气候湿润,中国年降水量最大的地区火烧寮就位于此,年均降水量可达5 000~6 000 mm,被称为中国“雨极”。受台风和季风影响,兰阳溪流域的降水多集中在夏秋季节,且常出现严重的洪灾事件。例如2010年10月超强台风“鲇鱼”过境期间,台湾宜兰县山区总雨量超过1 300 mm,多地发生严重的淹水灾情[40]。多发的大规模洪水为异重流的产生提供了有利的条件。

  • HOBAB4⁃S1岩芯是由中国科学院海洋研究所“科学号”考察船于2016年在冲绳海槽西南端应用重力采样器采取的沉积柱样,坐标24°56′37.239″ N,122°37′45.498″ E(图1),水深1 476 m,岩芯长5.70 m。

    岩芯剖开后先进行了拍照和沉积构造描述,之后对全岩芯沉积物样品进行了粒度测试。取样间距以2 cm为主,粒度突变的粗颗粒层取样间距为0.5 cm,共取得465个粒度样品。沉积物粒度测试在自然资源部第一海洋研究所海洋沉积与环境地质重点实验室完成,所用仪器为英国Malvern公司产Mastersizer3000激光粒度分析仪。前处理方法如下:取少量沉积物样品,加入15 mL 15%的H2O2溶液,反应12 h后在70 ℃水浴中加热2 h以去除有机质,然后加入5 mL稀盐酸反应12 h以去除生物碳酸盐。上机测试后,对测量数据采用Folk和Ward提出的公式计算了平均粒径(Mz)、分选系数(σ)、偏度(Sk)和峰度(Kg)等粒度参数[41]

    在该岩芯9个层位挑取了浮游有孔虫混合种壳体4 mg以上进行AMS14C测年,所选层位避开了粒度突变的事件沉积层,以避免异地壳的混入。AMS14C测年在德国魏格纳极地与海洋研究所(AWI)完成。测试得到的14C年龄使用CALIB7.10软件校正到日历年龄,考虑到冲绳海槽一直与太平洋连通,选择了标准的海洋校正数据库进行校正,大气与海水间的全球碳储库差异由程序自动减去。

  • HOBAB4⁃S1岩芯沉积物以青灰色粉砂为主,夹多层灰黑色砂质粉砂层(图2)。青灰色粉砂层发育块状层理和微细的水平层理,体现了静水悬浮沉积的特征,解释为正常半深海沉积。灰黑色的砂质粉砂层发育粒序层理、平行层理和爬升沙纹层理,且与上下界面多呈突变或侵蚀接触,体现了较强的水动力条件,解释为重力流沉积(图3)。为便于描述,将其中较为明显的砂质粉砂层编号为A1⁃A17,其沉积特征见表1

    Figure 2.  Images of core HOBAB4⁃S1

    Figure 3.  Sedimentary structural features of core HOBAB4⁃S1

    编号 深度/cm 厚度/cm 沉积构造特征 水动力条件解释
    A1 15~18 3 发育逆粒序层理和生物扰动构造,顶底界面清晰 水动力逐渐增强
    A2 87~92 5 发育一组逆—正粒序组合,顶底层界面为渐变接触 水动力先增强后衰弱
    A3 103~106 3 发育块状层理,顶底界面清晰 水动力较弱
    A4 131~134 3 发育平行层理和爬升沙纹层理,顶底界面清晰 流体流速较快,持续时间较短
    A5 165~172 7 发育平行层理,顶底界面清晰 流体流速较快
    A6 183~185 2 发育平行层理和生物扰动构造,顶底界面为渐变接触 流体流速较快,持续时间较短
    A7 227~229.5 2.5 发育平行层理,顶底界面清晰 流体流速较快,持续时间较短
    A8 241~255 14 发育平行层理和多组逆—正粒序组合,顶底界面清晰 持续时间较长,水动力强度多次变化
    A9 259~262 2.5 发育平行层理和生物扰动构造,顶底界面为渐变接触 流体流速较快,持续时间较短
    A10 310.5~313 2.5 发育平行层理,顶底界面清晰 流体流速较快,持续时间较短
    A11 332~340 8 发育平行层理和一组逆—正粒序组合,顶底界面均为渐变接触 水动力先增强后衰弱
    A12 353~356.5 3.5 发育平行层理和爬升沙纹层理,顶底界面清晰 流体流速较快,持续时间较短
    A13 364~369 5 发育平行层理和爬升沙纹层理,顶底均为渐变接触 流体流速较快,持续时间较短
    A14 394~412 18 发育平行层理和多组逆—正粒序组合,底部侵蚀接触,顶部界面清晰 持续时间较长,水动力强度多次变化
    A15 425~446 21 发育块状层理和多组逆—正粒序组合,底部侵蚀接触,顶部界面清晰 持续时间较长,水动力强度多次变化
    A16 509~514 5 发育一组逆—正粒序组合,顶底层界面均为渐变接触 水动力先增强后衰弱
    A17 542~553 11 发育多组逆—正粒序组合,底部侵蚀接触,顶部为渐变接触 持续时间较长,水动力强度多次变化

    Table 1.  Characteristics of gravity flow deposition in core HOBAB4⁃S1 from Okinawa Trough

    重力流沉积中的各类沉积构造详述如下:

  • 平行层理是由平行而又几乎水平的纹层状砂和粉砂组成的,它是在较强水动力条件下,在平坦床砂上沉积而成的。水槽实验研究表明,平行层理形成的弗劳德数接近于1[42]。在HOBAB4⁃S1岩芯中平行层理在多数重力流沉积层中都有发育(A1、A4、A5、A7、A8、A9、A10、A11、A12、A13、A14、A15、A16,图3a~c,e),纹层厚度为毫米级,层系厚2~10 cm,指示了高能的水动力环境。

  • 爬升沙纹层理是砂波迁移的产物。在砂波向前迁移的同时,有大量沉积物特别是悬浮物充分供给,砂波依顺流方向沿其迎水面向上爬升增长,使后一层系爬叠在前一层系之上,形成具有爬升或上攀特点的交错层理。水槽实验研究表明,爬升沙纹形成于低流速(0.1~0.4 m/s),且下伏为具有稳定的底形的砂质层[42]。在HOBAB4⁃S1岩芯中,爬升沙纹层理层系厚度约1 cm,往往与平行层理共生(A4、A12、A13,图3a,b),从平行层理转换为爬升沙纹层理的过程指示了水动力强度在逐渐降低。

  • 粒序层理分正粒序(粒度向上变细)和逆粒序(粒度向上变粗)两种。正粒序有两类成因类型,一类是水动力强度逐渐降低而沉积物逐层加积的结果,颗粒组成向上变细,但下部不含细粒物质;另一类是由于悬浮体中含有各种大小不同的颗粒,在流速突然降低时因重力分异而整体堆积的结果,颗粒组成是以细粒物质作为基质,粗粒物质向上逐渐减少的均匀递变。逆粒序是在沉积过程中水动力逐渐增强的结果[42]。HOBAB4⁃S1岩芯中的正粒序的成因类型为第一类,粗颗粒层粒度相对均匀,粒度频率分布曲线并非细粒物质为基质的双峰型(详见下文岩芯粒度特征),故正粒序和逆粒序均为水动力强度变化的结果。岩芯中的粒序层理的组合样式有两类,第一类是自下而上一个逆粒序接一个正粒序的组合,粒度由细变粗再由粗变细(A2、A11,图3c,d)。第二类是底部发育侵蚀面,自下而上为一个正粒序接多组逆—正粒序组合,发育这一类组合样式的重力流层段一般较厚(A8、A14、A15、A17,图3e)。

  • 平均粒径(Mz)、分选系数(σ)、偏度(Sk)和峰度(Kg)的计算结果见图4。在正常的半深海沉积物中,平均粒径在7~10 μm间变化,沉积物组分以粉砂为主,含量约为75%,黏土组分含量平均为22%,砂含量平均为3%。在重力流沉积层中,平均粒径为20~70 μm,砂组分含量占比上升至20%~60%,黏土和粉砂组分含量相应降低。全岩芯分选系数变化范围为0.96~2.16,体现了沉积物粒度分选较差。值得注意的是,分选系数在重力流沉积层中常呈中间低两头高的分布,即重力流沉积层与正常半深海沉积层的交界处分选较差,而重力流沉积层内部沉积物分选相对较好,这与我们通常所认为的“重力流沉积的沉积物分选较差”这一概念相反,这可能体现了该重力流沉积层并非整体堆积的结果,其流体有较为稳定的流态。全岩芯偏度范围为0~0.46,均为正偏态,重力流沉积层的正偏程度更为明显。峰度范围为0.75~1.46,正常半深海沉积的峰度多为1左右,而重力流沉积层的峰度则更高一些。

    Figure 4.  Composition and grain size parameters of core HOBAB4⁃S1

  • 粒度频率分布曲线如图5所示。正常半深海沉积的粒度频率分布曲线呈单峰分布,峰值大多出现在10~14 μm的位置。重力流沉积层呈峰形更高耸的单峰分布,峰值出现的位置在70~130 μm之间不等。重力流沉积层的粒度分布曲线的特征与其粒度参数中的低分选系数、高偏度和高峰度的特征相对应。正常半深海沉积层和重力流沉积的过渡层段,出现了两组分混合形成的双峰分布,对应着粒度参数中分选系数升高的位置。

    Figure 5.  Grain size distribution of core HOBAB4⁃S1

  • 在岩芯沉积物的C⁃M图中(图6)(C值为粒度累计曲线上颗粒含量1%处对应的粒径,代表水动力搬运沉积物的最大能量;M值为粒度累计曲线上颗粒含量50%处对应的粒径,代表水动力的平均能量)正常半深海沉积样品集中在左下角,靠近静水悬浮沉积的①区域。重力流沉积样品的分布与C=M基线平行,表现出重力流沉积的典型特征。部分重力流沉积样品靠近牵引流沉积模型的QR段和SR段,但不到PQ段,指示流体以悬浮搬运为主,沉积物中缺少底载搬运成分。

    Figure 6.  C⁃M pattern of core HOBAB4⁃S1

  • 岩芯的测年及校正结果如表2所示。深度73~79 cm处AMS14C年龄低于448 a,不能用软件校正,也视为现代沉积物。年龄测试数据没有出现倒转现象,根据沉积层厚度推测该岩芯各层重力流沉积时间很短暂,没有造成大的沉积间断,所以采用逐次线性内插法建立了岩芯基本年代框架(表2),并计算出沉积速率。该孔沉积速率非常高,在0.29~1.5 cm/a之间变动,平均值为0.45 cm/a,与附近相距约20 km的MD05⁃2908孔(0.5 cm/a)和ODP1202孔(0.6 cm/a)结果相近[37]

    深度/cm 种属 AMS14C年龄/a 校正年龄/a B.P. σ/a 公元纪年(A.D.)/a 沉积速率/(cm/a)
    3~8 浮游混合种 现代
    73~79 浮游混合种 153±70
    135~140 浮游混合种 810±73 406 72 1 544 0.37
    188~194 浮游混合种 850±71 440 68.5 1 510 1.5
    262~265 浮游混合种 938±70 517 54.5 1 433 0.94
    315~322 浮游混合种 1 156±72 681 69 1 269 0.34
    415~419 浮游混合种 1 503±70 1 023 83.5 927 0.29
    463~467 浮游混合种 1 596±71 1 117 95 833 0.51
    566~569 浮游混合种 1 757±74 1 276 75.5 674 0.65

    Table 2.  AMS14C ages of core HOBAB4⁃S1 from Okinawa Trough

  • Mulder et al.[43]根据地中海Var河峡谷中异重岩的岩相特征建立了异重岩的沉积模式:自下而上由一个指示洪水增强期的逆粒序层(Ha)和一个指示洪水衰退期的正粒序层(Hb)组成。Ha段和Hb段的沉积厚度从几厘米到几米不等,层内常发育由洪峰形成的微侵蚀面,Ha段依次发育爬升沙纹层理、交错层理、平行层理,Hb段与经典浊流垂向序列相似。当洪峰期洪水足够大、持续时间足够长时,下部逆粒序层可被侵蚀殆尽,仅保留上部正粒序。在单次洪水事件中洪水强度可以发生多次增强和减弱,产生多组逆粒序—正粒序组合。

    如上所述,HOBAB4⁃S1岩芯的重力流沉积层段中粒序层理广泛发育。粒序组合分为两类:一类是底部不发育侵蚀面,自下而上为一个逆粒序—正粒序的组合,如A2(图7a),指示相对较弱的水动力强度;另一类是底部发育侵蚀面,向上发育正粒序和一至多组逆—正粒序组合,这指示了在一次洪水事件中洪水强度的多次增强和减弱现象,同时最下部的逆粒序层受侵蚀而未能保存。以A14(图7b)和A15(图7c)为例,结合粒度测试结果发现,在A14层的底部侵蚀面之上发育一个正粒序叠加两个逆—正粒序的组合,在A15层中发育一个正粒序叠加一个逆—正粒序的组合。这两类粒序层理组合均表现为典型的异重流沉积特征。

    Figure 7.  Two combinations of graded bedding of hyperpycnites

  • Zavala et al.[44]认为异重流由于受盆地内外多种因素的制约,可以产生复杂多样的沉积体。他根据异重流的搬运方式的不同将异重岩相分为三类,分别为底载成因的B类岩相、悬载成因的S类岩相和漂浮物成因的L类岩相。B类岩相由底部反映底载组分的粗颗粒的砂、砾和悬载组分的细粒粉砂、泥共同组成,其中粗颗粒沉积物呈叠瓦状分布。S类岩相主要为异重流中悬载的细砂和粉砂重力沉降形成,有厚层块状砂岩(S1)、纹层状砂岩(S2)、发育爬升波纹层理的板状砂岩(S3)和块状粉砂岩或泥岩(S4)等亚岩相,其中Mulder et al.[43]所提出的“一个逆粒序层加一个正粒序层”的异重岩沉积序列就出现在这一类岩相中。L类岩相由细粉砂和极细砂岩组成,是在异重流的运输过程中,密度较低的淡水、植物碎片及其携带的细粒沉积物漂浮形成的上浮羽流发生沉降形成,特征是出现单层厚度较薄(几毫米到1厘米)的韵律沉积,一般与S类岩相相伴生,呈过渡接触关系。B类岩相产生的位置更接近河口,处于异重流发生和增强的阶段;S类岩相在远离物源区的位置产生;L类岩相常出现在异重流主体的边部。

    本岩芯可见两类异重流沉积类型(图8)。一类为较厚层的异重流层(图8a),包括A8、A14、A15、A17(图3e、图7b,c),层厚较厚一般大于10 cm,底部发育侵蚀面,向上为一个正粒序叠加一个或多个逆—正粒序组合,发育平行层理或块状层理,异重流的侵蚀作用和沉积作用都较为明显,对应着Zavala et al.[44]异重岩相分类中的S1、S2类岩相。水槽实验表明,在紊流的沉降速率大于0.44 mm/s时会形成发育块状层理的S1类岩相,如果流速不变,沉降速率小于0.44 mm/s,则会形成发育平行层理的S2类岩相[45]。这一类沉积类型指示了相对较强的水动力条件,发育的位置在相对近端位置。另一类为较薄层的异重流层(图3b~d、图7a、图8b),层厚相对较薄约2~8 cm,底部侵蚀面不发育,大多不发育粒序层理,部分自下而上发育而上发育一个逆—正粒序组合,发育平行层理和爬升沙纹层理,对应Zavala异重岩相分类中的S3、S4类岩相。水槽实验表明,爬升沙纹的形成于低流速(0.1~0.4 m/s),且下伏为具有稳定的底形的砂质层[45]。这一类沉积类型指示了较弱的水动力条件,发育的位置在异重流沉积的远端或边界。岩芯中沉积物没有粗颗粒的砂、砾等底载搬运组分,在C⁃M图(图6)中表现为没有样品点落在PQ段,故Zavala分类中的B类岩相在岩芯中不发育。同时,岩芯中未发现漂浮物成因的L类岩相,这可能是由于缺少指示陆源的碎屑如炭屑等,且沉积物颜色较深,L类岩相不易与正常深水细粒沉积区别。

    Figure 8.  Two combinations of sedimentary sequences of hyperpycnites

  • 台湾附近海域的异重流沉积事件通常与台风直接相关。2009年8月在莫拉克台风过境时,洪水产生的异重流冲断了屏东和台东外海的六条国际电缆[46]。Zhang et al.[8]于2013—2016年对台湾西南部高屏溪峡谷海底进行了长期现场观测,发现在台风期间会产生高沉积物浓度、高温、低盐的异重流。因此可以推断,在岩芯中异重流发育较多的层段,指示了当时较为频繁的台风活动。台风容易在高温、高湿的气候条件下形成[47],故异重流沉积频率高也指示了暖湿的气候条件。

    在HOBAB4⁃S1岩芯中,异重流沉积事件在800~1 300 A.D.之间出现的较为频繁,与“中世纪暖期”相对应(图9)。“中世纪暖期”又称“小气候适宜期”,指900~1 300 A.D.之间出现在欧洲及北大西洋邻近地区的相对温暖的气候阶段,但其是否具有全球性尚未有定论[51]。然而,Tan et al. [48]通过对北京石花洞石笋进行古气温恢复,发现“中世纪暖期”在东亚地区是存在的(图9b)。Lan et al. [49]利用位于季风边缘区的甘肃民勤中泉子湖泊沉积记录,结合烧矢量、碳酸盐含量、粒度和磁化率等多种指标进行综合研究,认为在“中世纪暖期”东亚夏季风的强度较大(图9c)。罗建育等[50]利用台湾嘉明湖岩芯的TOC、C/N的进行研究证实,台湾地区在820~1 320 A.D.之间为较为暖湿的时期(图9e,f)。陈金霞[52]对冲绳海槽西南端MD05⁃2908岩芯中孢粉组合的研究结果显示,在960~1 470 A.D.之间存在着一个相对暖湿的时期。HOBAB4⁃S1岩芯中异重流沉积频繁发育的层段与上述指标在时间上耦合较好,记录了东亚中世纪暖期的存在。结合本文异重流沉积记录,有理由相信台湾地区在中世纪暖期台风频发,降雨量相对较大,易形成洪水。

    Figure 9.  Comparison of hyperpycnites in core HOBAB4⁃S1 with other paleoclimate indicators

  • (1) 冲绳海槽西南端HOBAB4⁃S1岩芯中发育多段重力流沉积,根据其岩相特征结合地质背景判断这些重力流沉积为异重流成因。

    (2) 该区异重流沉积物以砂质粉砂为主,粒度频率分布曲线多呈以70~130 μm为中心高耸的单峰,C⁃M图上样品点集中分布区间大致平行于C=M基线,且位于PQ段以下,表明沉积物搬运方式为重力流悬浮搬运。异重流内部发育平行层理,爬升沙纹层理和粒序层理等沉积构造。

    (3) 该区异重流沉积类型主要有两类。一类是厚层异重流沉积,底部侵蚀面发育,内部发育多组逆—正粒序组合,指示了水动力较强,侵蚀作用和沉积作用均较明显的近端异重流沉积;另一类是薄层异重流沉积,底部侵蚀面不发育,内部不发育或仅发育一组逆—正粒序组合,指示了水动力较弱的远端异重流沉积。

    (4) 异重流层段在800~1 300 A.D.之间的发育较为集中,指示了当时气候条件为高温高湿、台风频发,也验证了“中世纪暖期”在东亚地区的存在。

Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return