Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

LI Ting, LI PingPing, ZHU DanCheng, YANG MingLei, LI HaiPing, LI Tao, ZOU HuaYao. Mechanism of Shoal Reservoir in the Jialingjiang Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 470-481. doi: 10.14027/j.issn.1000-0550.2020.015
Citation: LI Ting, LI PingPing, ZHU DanCheng, YANG MingLei, LI HaiPing, LI Tao, ZOU HuaYao. Mechanism of Shoal Reservoir in the Jialingjiang Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 470-481. doi: 10.14027/j.issn.1000-0550.2020.015

Mechanism of Shoal Reservoir in the Jialingjiang Formation, Southern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2020.015
Funds:

National Science and Technology Major Project 2017ZX05005⁃003⁃003

Strategic Priority Research Program of the Chinese Academy of Science XDA14010306

  • Received Date: 2019-10-22
  • Publish Date: 2021-04-23
  • The shoal reservoir in the Jialingjiang Formation is a potential site for natural gas exploration. Drill core observations, thin section identification, cathode luminescence, scanning electron microscopy and physical property analysis were employed in this study to analyze the petrological characteristics, pore types, diagenesis and pore permeability relationships of the reservoir. The main factors controlling the development of the reservoir were also analyzed. The results indicate that the shoal reservoir occurs vertically in T1 j1⁃T1 j21, T1 j22, T1 j41 and T1 j51, and comprises several rock types. These include grainy limestone, grainy dolostone and powder⁃size dolomite crystals which retain the original structure. The main types of reservoir space are inter⁃ and intragranular dissolved pores, intercrystalline pores and intercrystalline dissolution pores. The material basis of the shoal reservoir was controlled by its sequential and sedimentary paleotopography, being mainly developed vertically in the middle and lower parts of a highstand system tract, and horizontally on the Luzhou paleo⁃uplift. The diagenetic history of the shoals is the key to their evolution into a hydrocarbon reservoir. The main destructive diagenesis was compaction, pressure dissolution and cementation; the main constructive diagenesis was dissolution and dolomitization. Fractures generated by tectonic movement further improve the physical properties of the reservoir.
  • [1] 赵宗举. 海相碳酸盐岩储集层类型、成藏模式及勘探思路[J]. 石油勘探与开发,2008,35(6):692-703.

    Zhao Zongju. Types, accumulation models and exploration concepts of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2008, 35(6): 692-703.
    [2] 罗平,张静,刘伟,等. 中国海相碳酸盐岩油气储层基本特征[J]. 地学前缘,2008,15(1):36-50.

    Luo Ping, Zhang Jing, Liu Wei, et al. Characteristics of marine carbonate hydrocarbon reservoirs in China[J]. Earth Science Frontiers, 2008, 15(1): 36-50.
    [3] 白国平. 世界碳酸盐岩大油气田分布特征[J]. 古地理学报,2006,8(2):241-250.

    Bai Guoping. Distribution patterns of giant carbonate fields in the world[J]. Journal of Palaeogeography, 2006, 8(2): 241-250.
    [4] 范嘉松. 世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J]. 地学前缘,2005, 12(3): 23-30.

    Fan Jiasong. Characteristics of carbonate reservoirs for oil and gas fields in the world and essential controlling factors for their formation[J]. Earth Science Frontiers, 2005, 12(3): 23-30.
    [5] 邹才能,翟光明,张光亚,等. 全球常规―非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13-25.

    Zou Caineng, Zhai Guangming, Zhang Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
    [6] 王铁冠,宋到福,李美俊,等. 塔里木盆地顺南―古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质,2014,35(6):753-762.

    Wang Tieguan, Song Daofu, Li Meijun, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762.
    [7] Amel H, Jafarian A, Husinec A, et al. Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin[J]. Marine and Petroleum Geology, 2015, 67: 57-71.
    [8] 胡明毅,魏国齐,李思田,等. 四川盆地嘉陵江组层序—岩相古地理特征和储层预测[J]. 沉积学报,2010,28(6):1145-1152.

    Hu Mingyi, Wei Guoqi, Li Sitian, et al. Characteristics of sequence-based lithofacies and paleogeography, and reservoir prediction of the Jialingjiang Formation in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(6): 1145-1152.
    [9] 孟昱璋. 四川盆地嘉陵江组岩相古地理与天然气成藏研究[D]. 成都:成都理工大学,2011.

    Meng Yuzhang. The lithofacies-paleogeographic and the natural gas accumulation of Jialingjiang Formation in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2011.
    [10] 王文之,田景春,张翔,等. 川南丹凤—塘河地区嘉陵江组储层特征及储层主控因素[J]. 中国地质,2012,39(1):127-134.

    Wang Wenzhi, Tian Jingchun, Zhang Xiang, et al. Characteristics and major controlling factors of Jialingjiang Formation reservoirs in Danfeng-Tanghe area, southern Sichuan province[J]. Geology in China, 2012, 39(1): 127-134.
    [11] 乔占峰,李国蓉,李弢,等. 泸州古隆起地区嘉陵江组层序特征及其对碳酸盐岩储层的控制[J]. 沉积学报,2008,26(1):92-99.

    Qiao Zhanfeng, Li Guorong, Li Tao, et al. Sequence-stratigraphic features and their controls on carbonate reservoirs for the Triassic Jialingjiang Formation of the Luzhou Paleohigh in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2008, 26(1): 92-99.
    [12] 左景勋,童金南,赵来时. 中国南方早三叠世岩相古地理分异演化与板块运动的关系[J]. 地质科技情报,2003,22(2):29-34.

    Zuo Jingxun, Tong Jinnan, Zhao Laishi. Relationship between the differentiation of litho-paleogeography and the movement of blocks in the Early Triassic in South China[J]. Geological Science and Technology Information, 2003, 22(2): 29-34.
    [13] 王鸿祯,楚旭春,刘本培. 中国古地理图集[M]. 北京:地图出版社,1985.

    Wang Hongzhen, Chu Xuchun, Liu Benpei. Atlas of the palaeogeography of China[M]. Beijing: Map Press, 1985.
    [14] 四川油气区石油地质志编写组. 中国石油地质志:卷十:四川油气区[M]. 北京:石油工业出版社,1989.

    Petroleum Geology Compilation Group of Sichuan Basin. Petroleum geology of China (Vol: 10)[M]. Beijing: Petroleum Industry Press, 1989.
    [15] 谭秀成,刘晓光,陈景山,等. 磨溪气田嘉二段陆表海碳酸盐岩台地内滩体发育规律[J]. 沉积学报,2009,27(5):995-1001.

    Tan Xiucheng, Liu Xiaoguang, Chen Jingshan, et al. Shoal development within the epicontinental carbonate platform, Jia 2 member, Lower Triassic, Moxi Gas Field, Central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2009, 27(5): 995-1001.
    [16] 刘宏,谭秀成,李凌,等. 孔隙型碳酸盐岩储集层特征及主控因素:以川西南嘉陵江组嘉5段为例[J]. 石油勘探与开发,2011,38(3):275-281.

    Liu Hong, Tan Xiucheng, Li Ling, et al. Characteristics and main controlling factors of porous carbonate reservoirs: A case from the Jia 5 member of the Jialingjiang Formation, southwest Sichuan Basin[J]. Petroleum Exploration and Development, 2011, 38(3): 275-281.
    [17] 曹剑,谭秀成,陈景山. 川西南犍为地区下三叠统嘉陵江组沉积相及其演化特征[J]. 高校地质学报,2004,10(3):429-439.

    Cao Jian, Tan Xiucheng, Chen Jingshan. Sedimentary facies and their evolution characteristics in Jialingjiang Formation of Qianwei area, southwest Sichuan Basin[J]. Geological Journal of China Universities, 2004, 10(3): 429-439.
    [18] 昌燕,谭秀成,杜本强,等. 岩相古地理对自贡地区嘉陵江组储层的控制[J]. 西南石油大学学报,2007,29(增刊):12-15.

    Chang Yan, Tan Xiucheng, Du Benqiang, et al. The control of lithofacies paleogeography to Jialingjiang Formation reservoir in Zigong area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2007, 29(Suppl.1): 12-15.
    [19] 刘宏,王高峰,刘南,等. 自贡地区嘉陵江组台内滩储层特征与主控因素[J]. 西南石油大学学报(自然科学版),2017,39(5):1-9.

    Liu Hong, Wang Gaofeng, Liu Nan, et al. Characteristics and main controlling factor of shoal reservoir developed in Jialingjiang Formation of Zigong area, southwestern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(5): 1-9.
    [20] 罗鹏. 川东南赤水—綦江地区嘉陵江组层序地层、沉积相与储层特征研究[D]. 成都:成都理工大学,2010.

    Luo Peng. The sequence stratigraphy, Sedimentary Facies and reservoir research in Jialingjiang Formation in Chishui-Qijiang region, Southeast of Sichuan[D]. Chengdu: Chengdu University of Technology, 2010.
    [21] 朱其. 川南合江地区三叠系嘉陵江组层序地层与储层精细研究[D]. 成都:成都理工大学,2008.

    Zhu Qi. The detailed study of sequence stratigraphy and reservoir of Triassic Jialingjiang Formation in Hejiang area of south Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008.
    [22] 刘宏,孙振,李卓沛,等. 三叠纪嘉陵江期华蓥山同沉积断层的沉积、储层响应[J]. 地层学杂志,2010,34(3):312-320.

    Liu Hong, Sun Zhen, Li Zhuopei, et al. Syndepositional tectonic activities in the Huayingshan fracture belt during the Triassic Jialing River Phase and its impact on sedimentation and reservoir development[J]. Journal of Stratigraphy, 2010, 34(3): 312-320.
    [23] 林雄. 四川盆地三叠系嘉陵江组沉积—成岩特征与孔隙演化关系研究[D]. 成都:成都理工大学,2011.

    Lin Xiong. Study on the relationship between reservoirs rocks characteristics and sedimentary-diagenesis evolution of Triassic Jialingjiang Formation in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2011.
    [24] 杨喆,钟大康,杜本强,等.四川盆地蜀南地区嘉二段低孔低渗储层特征及控制因素[J].岩性油气藏,2014,26(4):81-87.

    Yang Zhe, Zhong Dakang, Du Benqiang,et al. Characteristics and controlling factors of low porosity and low permeabilityreservoir of the second member of Jialingjiang Formation in southern Sichuan Basin [J]. 2014,26(4):81-87.
    [25] Watney W L, Anderson J E, Wong J C. Porosity advisor-an expert system used as an aid in interpreting the origin of porosity in carbonate rocks[M]//Thomas Hanley J, Merriam D F. Microcomputer applications in geology 2: A volume in computers and geology. Oxford: Pergamon Press, 1990: 275-288.
    [26] Esrafili-Dizaji B, Rahimpour-Bonab H. Generation and evolution of oolitic shoal reservoirs in the Permo-Triassic carbonates, the South Pars Field, Iran[J]. Facies, 2014, 60(4): 921-940.
    [27] 田雨,徐洪,张兴阳,等. 碳酸盐岩台内滩储层沉积特征、分布规律及主控因素研究:以阿姆河盆地台内滩气田为例[J]. 地学前缘,2017,24(6):312-321.

    Tian Yu, Xu Hong, Zhang Xingyang, et al. Sedimentary characteristics, distribution regularities and main controlling factors of carbonate intra-platform shoal reservoirs: A case study of intra-platform shoal gas fields in the Amu Darya Basin[J]. Earth Science Frontiers, 2017, 24(6): 312-321.
    [28] 丁熊,陈景山,谭秀成,等. 川中—川南过渡带雷口坡组台内滩组合特征[J]. 石油勘探与开发,2012,39(4):444-451.

    Ding Xiong, Chen Jingshan, Tan Xiucheng, et al. Structural characteristics of intra-platform shoal in the Leikoupo Formation (T2) in the transitional zone of the central and southern Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(4): 444-451.
    [29] 田雨,张兴阳,朱国维,等. 古地貌对台内滩储层分布及气藏特征的控制作用:以阿姆河盆地台内滩气田为例[J]. 天然气地球科学,2016,27(2):320-329.

    Tian Yu, Zhang Xingyang, Zhu Guowei, et al. Controlling effects of paleogeomorphology on intraplatform shoal reservoirs distribution and gas reservoirs characteristics: Taking intraplatform shoal gasfields of the Amu Darya Basin as examples[J]. Natural Gas Geoscience, 2016, 27(2): 320-329.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(546) PDF downloads(104) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-10-22
  • Published:  2021-04-23

Mechanism of Shoal Reservoir in the Jialingjiang Formation, Southern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2020.015
Funds:

National Science and Technology Major Project 2017ZX05005⁃003⁃003

Strategic Priority Research Program of the Chinese Academy of Science XDA14010306

Abstract: The shoal reservoir in the Jialingjiang Formation is a potential site for natural gas exploration. Drill core observations, thin section identification, cathode luminescence, scanning electron microscopy and physical property analysis were employed in this study to analyze the petrological characteristics, pore types, diagenesis and pore permeability relationships of the reservoir. The main factors controlling the development of the reservoir were also analyzed. The results indicate that the shoal reservoir occurs vertically in T1 j1⁃T1 j21, T1 j22, T1 j41 and T1 j51, and comprises several rock types. These include grainy limestone, grainy dolostone and powder⁃size dolomite crystals which retain the original structure. The main types of reservoir space are inter⁃ and intragranular dissolved pores, intercrystalline pores and intercrystalline dissolution pores. The material basis of the shoal reservoir was controlled by its sequential and sedimentary paleotopography, being mainly developed vertically in the middle and lower parts of a highstand system tract, and horizontally on the Luzhou paleo⁃uplift. The diagenetic history of the shoals is the key to their evolution into a hydrocarbon reservoir. The main destructive diagenesis was compaction, pressure dissolution and cementation; the main constructive diagenesis was dissolution and dolomitization. Fractures generated by tectonic movement further improve the physical properties of the reservoir.

LI Ting, LI PingPing, ZHU DanCheng, YANG MingLei, LI HaiPing, LI Tao, ZOU HuaYao. Mechanism of Shoal Reservoir in the Jialingjiang Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 470-481. doi: 10.14027/j.issn.1000-0550.2020.015
Citation: LI Ting, LI PingPing, ZHU DanCheng, YANG MingLei, LI HaiPing, LI Tao, ZOU HuaYao. Mechanism of Shoal Reservoir in the Jialingjiang Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 470-481. doi: 10.14027/j.issn.1000-0550.2020.015
  • 颗粒滩储层是碳酸盐岩储层的一种重要类型[14]。近几年的勘探表明,颗粒滩储层储集了大量的油气资源,是许多大、中型碳酸盐岩气田主要的储层类型,如四川盆地安岳气田[5],塔里木盆地顺南气田[6],扎格罗斯盆地基什气田[7]等,均显示出颗粒滩储层巨大的勘探潜力。因此,查明颗粒滩储层形成的机理,认识颗粒滩储层的发育分布规律,有利于提高油气勘探生产效果。

    嘉陵江组是蜀南地区主要天然气产层之一,颗粒滩储层是其主要的储层类型。目前,蜀南地区累计已有1 435口井钻达嘉陵江组,获气井181口,累计天然气探明储量436.8×108 m3,显示出嘉陵江组有较大的勘探潜力。前人对嘉陵江组的层序特征和沉积相展布做了大量的研究[814],确定了嘉陵江组的沉积格局,这为研究嘉陵江组储层发育规律打下了坚实的基础。部分学者对嘉陵江组储层做了相关研究,揭示了嘉陵江组储层规模小、厚度薄、非均质性强等地质特征,并指出颗粒滩是嘉陵江组储层发育的物质基础[1519]。但并非所有的颗粒滩最终都能演化成为储层,储层的形成进一步受控于成岩作用。基于此,本文以蜀南嘉陵江组颗滩储层为研究对象,结合前人研究成果,通过岩芯观察、岩石薄片鉴定、阴极发光、扫描电镜和物性分析等地质方法,明确了嘉陵江组颗粒滩发育分布的主控因素,总结了颗粒滩储层基本特征,在此研究基础之上重点分析了成岩作用对嘉陵江组颗粒滩储层演化的影响,建立了嘉陵江组颗粒滩储层发育模式。

  • 研究区位于四川盆地南部,构造位置上处于川南低陡褶皱带(图1a)。嘉陵江组可以划分为两个三级层序[2021],下部三级层序底界为飞仙关组和嘉陵江组的分界线,界面之下是飞仙关组滨岸潮坪相泥岩,界面之上是嘉陵江组开阔潮台地相泥晶灰岩,为一岩性岩相转换面;下部三级层序顶界为嘉二段和嘉三段的分界面,界面之下是嘉二段局限台坪环境的膏岩和白云岩,界面之上是嘉三段开阔潮下环境的泥晶灰岩,为一岩性岩相转换面;上部三级层序顶界为嘉陵江组与雷口坡组的分界面,界面之下是嘉陵江组局限台坪环境的膏岩和白云岩,界面之上是由火山灰蚀变形成的绿豆岩,为一暴露不整合面,每个三级层序又可以分为海侵体系域和高位体系域(图1b)。嘉陵江组沉积之前,泸州古隆起以水下古隆起的形式存在[19],受到华蓥山同沉积断裂的影响,自贡地区在嘉陵江期为一水下高地[22]。在此背景之下,嘉陵江组表现为开阔—局限—蒸发台地沉积[8],可划分为五个岩性段,其中嘉一段和嘉三段对应海侵期,主要发育开阔台地相泥质灰岩、泥晶灰岩和颗粒灰岩;嘉二段、嘉四段和嘉五段对应海退期,主要发育局限台地—蒸发台地相泥—粉晶白云岩,颗粒白云岩和膏岩。

    Figure 1.  (a) Location and (b) stratigraphic divisions of Jialingjiang Formation in the study area

  • 构成嘉陵江组颗粒滩储层的主要岩性是颗粒灰岩和颗粒白云岩,优质储层主要发育在颗粒白云岩中,颗粒灰岩储层物性比较差。

    颗粒灰岩主要发育在嘉一段和嘉三段的顶部以及嘉五1亚段,颗粒类型有鲕粒、砂屑和少量生屑。颗粒由泥晶方解石组成,直径0.2~1.5 mm,含量60%~85%,磨圆中等,分选较差,多为点—线接触,粒间被亮晶方解石和灰泥基质充填(图2a~c)。

    Figure 2.  Rock type of tight shoal in Jialingjiang Formation

    颗粒白云岩是由颗粒灰岩经白云岩化作用而形成,主要发育在嘉二段和嘉四1亚段,主要的颗粒类型有鲕粒和砂屑。颗粒由泥晶白云石和粉晶白云石组成,白云石的粒径越大,颗粒结构越模糊,颗粒的磨圆中等,分选较差,直径0.2~1 mm,含量70%~90%,多为点接触或不接触,粒间的胶结物类型多样,有白云石胶结,方解石胶结和石膏胶结,但总的来说是以方解石胶结为主(图2d~f)。

  • 通过对研究区内7口井的岩芯和100余件铸体薄片的观察,认为嘉陵江组颗粒滩储层储集空间类型多样,有残余粒间孔、粒间溶孔、粒内孔、铸模孔、晶间孔、晶间溶孔和裂缝。

  • 颗粒在堆积过程中会形成粒间孔,粒间孔在成岩演化中未被充填的部分即为残余粒间孔,该类孔隙主要见于研究区嘉二段鲕粒白云岩和砂屑白云岩中,发育较少,约占总孔隙体积的3.7%(图3a),大部分被胶结充填(图2d~f)。粒间溶孔指颗粒间胶结物和基质或颗粒边缘被溶蚀所产生的孔隙,这类孔隙在颗粒白云岩中最为发育,在岩芯尺度上清晰可见(图4a),表现为对颗粒间胶结物和颗粒的溶蚀,可见港湾状状溶蚀边,孔径大小0.1~0.5 mm,孔隙连通性好(图4b),约占总孔隙体积的46.9%(图3a),为研究区嘉陵江组主要的孔隙类型之一。残余粒间孔虽然不是主要的储集空间类型,但它影响了粒间溶孔的发育程度,是粒间溶孔的先驱,残余粒间孔占比与粒间溶孔占比呈正相关关系(图3c)也表明了这一点。

    Figure 3.  (a) Proportion and (b)(c) facial porosity of different pores

    Figure 4.  Space type of shoal reservoir in Jialingjiang Formation

  • 粒内溶孔指颗粒内部被溶解形成的孔隙,一般发生在文石质颗粒中,由准同生期大气淡水选择性溶蚀作用形成,当颗粒被完全溶解,则形成铸模孔。该类孔隙是颗粒灰岩储层主要的储集空间类型,颗粒白云岩中也可见,孔径大小不均匀,约占总孔隙体积的32.9%(图3a),面孔率最大可达20%,但均为孤立孔隙,连通性差。粒内溶孔和铸模孔为嘉陵江组颗粒滩储层中重要的储集空间类型(图4a~e)。

  • 晶间孔和晶间溶孔一般伴生发育,主要见于嘉二段和嘉四1亚段的残余颗粒粉晶白云岩中,孔隙连通性好,分布均匀,约占总孔隙体积的16.6%(图3a)。该类孔隙的成因机制有三种,第一种是由于镁离子交代钙离子造成的固相体积的减少,第二种是白云石晶体之间方解石的溶蚀;第三种是白云岩化作用对先前孔隙的再分配。在这几种机制的共同作用下,形成了本区嘉陵江组晶间孔与晶间溶孔(图4f,g)。

  • 裂缝对增大储集空间和形成运移通道有着非常大的作用。本区嘉陵江组主要发育构造裂缝,且多为微裂缝,缝壁较平直,缝宽0.2 mm~3 cm,在后期的成岩作用中经常发生充填和扩溶现象(图4h,i)。微裂缝能有效改善孔隙之间的连通性,增加储层的有效孔隙,在本区嘉陵江组颗粒滩储层中具有重要地位。

  • 本次共收集到了2 152个物性数据。数据表明:达到储层孔隙度下限2%的样品占了40.4%,分布范围为2.0%~19.4%,集中分布在2%~10%,平均值为5.31%(图5a);达到储层孔隙度下限的样品的渗透率分布范围小于(0.01~38.98)×10-3 μm2,其中大于0.01×10-3 μm2的样品占了63.6%,平均值0.57×10-3 μm2,集中分布在(0.01~1)×10-3 μm2,(图5b)。表明嘉陵江组储层总体为低孔低渗储层,但也存在部分高孔渗层段。对孔隙度大于2%,渗透率大于0.01×10-3 μm2的有效储层样品物性数据的分析表明,本区嘉陵江组颗粒滩储层可分为孔隙型储层和裂缝—孔隙型储层(图5c)。裂缝孔隙型储层均表现出低孔高渗的特征,表明裂缝的存在改善了储层的渗透性,是影响影响颗粒滩储层质量的一个重要因素。孔隙型储层主要的岩性是颗粒白云岩,其孔隙度和渗透率有良好的正相关性,但少量的颗粒灰岩储层则表现出高孔低渗的特征(图5c),即使孔隙度达到将近20%,其渗透率也小于0.1×10-3 μm2,表明这类颗粒灰岩储层中孔隙比较孤立,互不连通,以粒内溶孔和铸模孔为主,这与前文薄片观察的结果也是一致的。

    Figure 5.  Physical properties of shoal reservoirs in the Jialingjiang Formation

  • 蜀南地区嘉陵江组颗粒滩储层单层厚度较小,一般为2~5 m,累计厚度多小于25 m。纵向上,颗粒滩储层受层序控制明显,主要发育在高位体系域的中下部,对应嘉一段上部、嘉二段下部和嘉四段下部,高位体系域上部则发育膏岩沉积,与颗粒滩储层形成良好的储盖组合(图6)。平面上,颗粒滩储层的分布受沉积古地貌的控制,主要发育在泸州水下古隆起的范围内,74口钻井的颗粒滩储层累计厚度显示:在泸州水下古隆起的核部地区,颗粒滩储层累计厚度为12~25 m,在古隆起的外围和水下高地,颗粒滩储层累计厚度为5~15 m,在沉积低洼地区则以低能环境的泥晶灰岩、泥晶白云岩和膏岩为主,颗粒滩储层的厚度大多小于5 m,如綦江—赤水地区(图7)。

    Figure 6.  Profile of connected wells in shoal, Jialingjiang Formatiom, southern Sichuan Basin

    Figure 7.  Thickness of shoal reservoir in T1 j 1⁃T1 j 2, southern Sichuan Basin

  • 本区嘉陵江组颗粒滩储层经历了多种成岩作用的改造,主要有压实作用、压溶作用、胶结作用、溶蚀作用、白云岩化作用、破裂作用和晚期充填作用。

  • 压实作用在成岩早期最为明显,表现为孔隙水排除,颗粒重新排列,孔隙空间大幅度减小。随着埋深增大(>500 m),压溶作用开始发生,表现为颗粒的变形破碎、颗粒之间的缝合接触和产生缝合线构造。岩芯和薄片观察表明,嘉陵江组颗粒灰岩中缝合线发育的频率和缝合线的幅度远远高于颗粒白云岩(图8a),颗粒灰岩中常见鲕粒破碎(图8b)和颗粒呈缝合接触(图8c),造成了孔隙空间的进一步减少,此外,压溶作用会导致孔隙水中方解石和白云石的溶解量增加,为浅埋藏胶结提供物质基础。

    Figure 8.  Diagenesis of shoal reservoir in the Jialingjiang Formation

  • 胶结作用是嘉陵江组颗粒滩储层最主要的破坏性成岩作用,胶结物的类型主要是方解石,颗粒白云岩中还有白云石和石膏胶结。经历了胶结作用之后,岩石孔隙度降低明显,甚至变得致密无孔(图2a)。结合阴极发光和薄片观察,认为嘉陵江组颗粒滩中发育两期方解石胶结,第一期为海水纤状胶结,胶结物围绕颗粒生长(图8d,e),无阴极发光(图8e')或弱阴极发光(图8d');第二期为粒状方解石胶结,主要发育在单套滩体的下部,这期胶结作用发生时,颗粒之间为点接触(图8d)或不接触(图8e),表明其发育时间较早,还未发生较强的压实,此外粒状方解石胶结物发暗红色阴极发光(图8e')或无阴极发光(图8d')也说明它是早期胶结作用的产物,其来源可能是大气淡水或者是邻层发生了压溶作用的孔隙水。虽然胶结作用降低了孔隙度,但它同时也减弱了压实作用,且方解石胶结物相对于白云石易溶,因此胶结作用保护了原始孔隙,为之后溶蚀产生粒间溶孔奠定了基础。

  • 嘉陵江组颗粒滩储层中的溶蚀作用多与高频海平面变化有关,为准同生大气淡水溶蚀,发生在近地表环境,在高位期相对海平面下降的背景下,沉积古地貌高地高建造率的颗粒滩快速生长至海平面附近,随着次一级海平面频繁的波动,颗粒滩上部会频繁暴露,发生大气淡水溶蚀作用,形成各种溶蚀孔隙(图4a~e)。颗粒滩溶蚀作用与向上变浅的沉积序列有关,如研究区五通场构造五10井1 779.58~1 786.38 m 井段发育的颗粒白云岩,该段颗粒白云岩发育在整个向上变浅沉积序列的上部,其下部是局限潟湖环境的泥粉晶白云岩,岩芯及薄片观察表明,储层段主要发育在滩体的上部,滩体下部则以胶结作用为主,孔隙不发育(图9)。

    Figure 9.  Lithological column of well core in T1 j 1⁃T1 j 2 1, well Wu10

  • 嘉陵江组沉积时期,气候干旱,蒸发作用强。因此在海退背景之下,嘉陵江组极易发生准同生白云岩化[2324],形成大规模连片分布的白云岩。大量的勘探实例均表明,准同生白云岩化作用对储层的形成和保存有促进作用[2526]:一方面,白云石的摩尔体积比方解石要小,白云石交代方解石后会导致晶体体积缩小,从而产生新的孔隙;另一方面,白云岩抗压性较灰岩要好,脆性高,在埋藏过程中能够很好的将孔隙保存下来。统计也表明,研究区嘉陵江组颗粒白云岩的物性要好于颗粒灰岩的物性(图5c),这也说明白云岩化作用有利于储层的形成。

  • 嘉陵江组沉积之后受到了多期构造运动,形成多期次的裂缝。通过岩芯及薄片的观察,总结为:产状上,水平缝、低角度缝、高角度缝均有发育;成因上,主要是张裂缝和少量不规则成岩缝;充填情况上,完全充填缝、部分充填缝和未充填缝都有见到,充填物为方解石、白云石、石膏和少量石英等(图8f~h),这些充填物具有较强的阴极发光(图8f')。物性分析表明,蜀南嘉陵江组颗粒滩储层存在部分低孔高渗段(图5c),说明裂缝的存在改善了储层的基质渗透率,对储层的形成有建设意义。沈4井初期产量7.8×104 m3/d,生产仅4年时间产量降至4.9×104 m3/d,此时已产气0.741 7×108 m3,占该井累产气量的52%,剩余48%的气用了20年的生产时间,且气产量已逐步降为0.78×104 m3/d,可见裂缝性储层特征明显。

  • 颗粒滩储层是一种相控型储层,颗粒滩是其形成的物质基础,但并非颗粒滩最终都能成为良好的储层,还取决于后期的压实、胶结、溶蚀和白云岩化等成岩作用。

  • 沉积相带决定了岩石原生孔隙的发育程度,而原始孔隙是各种成岩作用所需流体的主要通道,也是各种次生孔隙的前身,一定程度上影响了次生孔隙的发育程度,统计结果也表明了这一点(图4c)。高能环境下形成的颗粒灰岩,基质含量低,在压实过程中原始孔隙容易被保留,形成残余粒间孔隙,为后续储层形成所要经历的各种成岩作用提供了物质基础。

    颗粒滩的发育受控于层序和古地貌,主要发育在海退背景之下的沉积古地貌高地[2729]。研究区嘉陵江组沉积期间,泸州古隆起以水下古隆起的形式存在,其上存在次级隆起和凹陷,这些地貌单元所形成的沉积地貌差异,导致了碳酸盐岩台地内部发生了明显的沉积分异。嘉一段沉积晚期海平面开始下降,在此背景之下古隆起之上的次级隆起和局部的水下高地最先达到浪基面,并处在浅滩化环境,优先发育台内滩,随着海平面的不断下降,滩体向隆起斜坡迁移,古地貌高地的滩体发生暴露,形成一系列溶蚀孔隙。研究区T1 j 1⁃T1 j 2 1亚段沉积相平面展布表明,颗粒滩基本上发育在泸州古隆起范围内,且古隆起核部滩体规模明显大于古隆起外围滩体规模(图10),自贡地区在嘉陵江期受到华蓥山断裂的影响,为一水下高地,也发育较大规模滩体,而水下高地之间的洼地及沉积古地貌低地水体较深,海水能量弱,沉积物以细粒的泥晶灰岩和泥质灰岩为主,基本不发育颗粒滩,如研究区内綦江赤水地区。

    Figure 10.  Sedimentary facies map of T1 j 1⁃T1 j 2 1, southern Sichuan Basin (modified from Yang et al. [24])

  • 颗粒滩形成之后,其能否进一步演化为储层,还取决于它所经历的成岩作用

  • 统计表明颗粒滩储层的总面孔率与次生孔隙(粒间溶孔、粒内溶孔、晶间溶孔)面孔率呈正相关,而与原生孔隙(残余粒间孔)面孔率无明显关系(图3b),说明成岩作用是颗粒滩演化为储层的关键。对比致密颗粒滩和颗粒滩储层不难发现,颗粒滩致密化的根本原因是胶结(图2)和压实压溶(图8a~c),颗粒滩演化为储层的关键是溶蚀。颗粒滩储层中溶蚀孔隙约占整个孔隙空间的90%,这种溶蚀孔隙绝大部分都是准同生溶蚀作用产生,受控于沉积古地貌和高频层序,主要发育在海退背景之下,与向上变浅的高频旋回有关(图9),平面上从古隆起核部→古隆起外围→非古隆起,颗粒滩储层累计厚度逐渐减小(图7),说明从古隆起向外其溶蚀作用逐渐减弱,胶结作用逐渐加强。

  • 溶蚀孔隙形成的时间较早,此时还未发生较强的压实压溶。经历了准同生白云岩化作用之后,颗粒滩储层有了更坚硬的岩石骨架,极大了提高了抗压实压溶能力,并且白云岩化过程中由于晶体体积的缩小,会产生晶间微孔,改善了储层的渗透率,物性分析也表明,颗粒白云岩储层物性要优于颗粒灰岩储层(图5c),特别是渗透率。颗粒灰岩储层中的孔隙想要保存下来,则需要早期胶结作用来提高自身抗压实压溶能力,镜下观察也表明,颗粒灰岩储层中颗粒之间往往有大量的胶结物(图4d),颗粒白云岩储层则不需要这一条件(图4e),而不发育早期胶结物的颗粒灰岩中,孔隙往往在压实压溶中被破坏(图8b)。

  • 在颗粒滩储层基本特征和形成机理研究基础之上,结合实际井资料,对颗粒滩储层的发育模式进行了总结(图11)。海退背景之下,在沉积古地貌高部位滩体优先发育,而古地貌低洼部位,滩体欠发育,在海平面下降的初期,滩体轻微暴露,在颗粒滩顶部发育溶蚀孔隙,底部以大气淡水胶结为主(图11a),随着海平面不断下降,颗粒滩暴露规模逐渐增大,形成大量溶蚀孔隙,与此同时,蒸发作用加强,有利于大规模白云岩化作用的发生(图11b),增加了岩石的抗压实压溶能力。进入埋藏期后,岩石受到压实压溶作用,孔隙进一步减少,压实压溶作用导致地层流体进入物性较好的颗粒滩中,形成一定量的胶结,导致颗粒滩储层空间减少,同时也使残余的孔隙得以保存。燕山期和喜山期的构造运动有利于嘉陵江组裂缝发育,进一步改善储层物性(图11c)。

    Figure 11.  Developmental model of shoal reservoir in the Jialingjiang Formation

  • (1) 颗粒滩是嘉陵江组颗粒滩储层发育的物质基础。垂向上,颗粒滩的发育受控于三级层序,主要发育在高位体系域的中下部,对应嘉一段顶部、嘉二段下部和嘉四段下部,嘉陵江期频繁的海平面升降变化决定了单套滩体厚度薄(<10 m)和垂向上多期叠置的分布样式;平面上,颗粒滩的发育受控于沉积古地貌,泸州水下古隆起和水下高地之上易于形成连片分布的规模性颗粒滩,而沉积古地貌洼地则不发育颗粒滩。

    (2) 成岩作用是颗粒滩能否进一步演化为储层的关键。压实、压溶和胶结作用是主要的破坏性成岩作用,但胶结作用同时也减弱了压实压溶作用,为之后的溶蚀产生粒间溶孔奠定了基础;溶蚀作用和白云岩化作用是主要的建设性成岩作用,溶蚀作用与向上变浅的沉积序列有关,主要发生在滩体的上部,滩体下部则以胶结作用为主,白云岩化作用增强了岩石的抗压实压溶能力并产生了新的储集空间,极大改善了储层的储渗能力;构造运动产生的裂缝提高了颗粒滩储层的储集性能。

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return