Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

SUN Hui, LIU ShaoZhi, SHAO DaLi, LÜ FuLiang, XÜ XiaoYong, ZUO GuoPing, LIU YanHong, WANG XueFeng. Sedimentary Evolution and Control Factors of Submarine Cyclic Steps in the Rovuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2021, 39(2): 446-455. doi: 10.14027/j.issn.1000-0550.2020.014
Citation: SUN Hui, LIU ShaoZhi, SHAO DaLi, LÜ FuLiang, XÜ XiaoYong, ZUO GuoPing, LIU YanHong, WANG XueFeng. Sedimentary Evolution and Control Factors of Submarine Cyclic Steps in the Rovuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2021, 39(2): 446-455. doi: 10.14027/j.issn.1000-0550.2020.014

Sedimentary Evolution and Control Factors of Submarine Cyclic Steps in the Rovuma Basin, East Africa

doi: 10.14027/j.issn.1000-0550.2020.014
Funds:

Scientific Research and Technology Development Project of China National Petroleum Corporation 2019D⁃4309

  • Received Date: 2019-12-05
  • Publish Date: 2021-04-23
  • The submarine channel⁃lobe transition zone in the Rovuma Basin (located on the border between Tanzania and Mozambique, east Africa) is characterized by a bed profile with high ridges and deep scours. High⁃resolution 3D seismic data and various seismic interpretation techniques were used in this study. The morphology, scale and movement of cyclic steps at different stages in the transition zone are described in detail, and analysis of the cyclic pattern showed that the cyclic steps occurred mainly in three stages. Seismic reflections had poor continuity at identical stages of the cycles, tending towards imbricate reflections of the up⁃flow surfaces. There is angular contact between the reflections of different stages in the channel⁃lobe transitional zones. Unlike the early cyclic steps, the up⁃current middle cyclic steps migrated from basin to land in the north, and the late cyclic steps were deposited only in the south. The multi⁃stage migration and overlap of cyclic steps has resulted in the evolution of different northern and southern geomorphological forms, with lower average wavelength and much larger average amplitude in the north. The later deposits cover the upstream surface of the previous deposits, with eroded backstream surfaces being seen on each deposit. The wave heights of the deposits at different stages were significantly increased by overlapping. The location of the backflow and upflow zones of the waves also changes. Affected by the southward migration of the channel, the geomorphological form of the mid⁃stage cyclic steps and the southward dip of the underlying strata resulted in a new, unchanged cyclic step in the south of the channel⁃lobe transitional zone, and the form of the antidune bed is well preserved.
  • [1] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bulletin, 1970, 54(11): 2170-2195.
    [2] Normark W R. Fan valleys, channels, and depositional lobes on modern submarine fans: characters for recognition of sandy turbidite environments[J]. AAPG Bulletin, 1978, 62(6): 912-931.
    [3] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966.
    [4] Piper D J W, Normark W R. Turbidite depositional Patterns and flow characteristics, Navy submarine fan, California borderland[J]. Sedimentology, 1983, 30(5): 681-694.
    [5] Mutti E. Turbidite systems and their relations to depositional sequences[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 65-93.
    [6] Mutti E, Normark W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[C]//Leggett J K, Zuffa G G. Marine clastic sedimentology: Concepts and case studies. Dordrecht: Springer, 1987: 1-38.
    [7] Mutti E, Normark W R. An integrated approach to the study of turbidite systems[C]//Weimer P, Link M H. Seismic facies and sedimentary processes of submarine fans and turbidite systems. New York: Springer, 1991: 75-106.
    [8] Covault J A, Kostic S, Paull C K, et al. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2016,393:4-2
    [9] 谈明轩,朱筱敏,刘伟,等. 旋回阶梯底形的动力地貌及其相关沉积物发育特征[J]. 地质论评,2017,63(6):1512-1522.

    Tan Mingxuan, Zhu Xiaomin, Liu Wei, et al. The morphodynamics of cyclic steps and sedimentary characteristics of associated deposits[J]. Geological Review, 2017, 63(6): 1512-1522.
    [10] Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56.
    [11] 徐景平. 科学与技术并进:近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展,2013,28(5):552-558.

    Xu Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552-558.
    [12] 孙辉,唐鹏程,陈宇航,等. 东非鲁武马盆地陆坡深水沉积特征及主控因素[J]. 海洋地质与第四纪地质,2016,36(3):59-68.

    Sun Hui, Tang Pengcheng, Chen Yuhang, et al. Characteristics and controlling factors of deepwater deposits on the continental slope of the Rovuma Basin, East Africa[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 59-68.
    [13] 操应长,杨田,王艳忠,等. 超临界沉积物重力流形成演化及特征[J]. 石油学报,2017,38(6):607-621.

    Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow[J]. Acta Petrolei Sinica, 2017, 38(6): 607-621.
    [14] 王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52-65.

    Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
    [15] Parker G. Some speculations on the relation between channel morphology and channel-scale flow structures[M]//Ashworth P, Bennett S J, Best J L, et al. Coherent flow structures in open channels. Chichester: John Wiley & Sons, Ltd., 1996: 429-432.
    [16] Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity Currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 2009, 79(8): 608-628.
    [17] Kostic S, Sequeiros O, Spinewine B, et al. Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-environment Research, 2010, 3(4): 167-172.
    [18] Normandeau A, Lajeunesse P, Poiré A G, et al. Morphological expression of bedforms formed by supercritical sediment density flows on four fjord-lake deltas of the south-eastern Canadian Shield (Eastern Canada)[J]. Sedimentology, 2016, 63(7): 2106-2129.
    [19] Turmel D, Locat J, Parker G. Morphological evolution of a well-constrained, subaerial⁃subaqueous source to sink system: Wabush Lake[J]. Sedimentology, 2015, 62(6): 1636-1664.
    [20] Ventra D, Cartigny M J B, Bijkerk J F, et al. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance[J]. Geology, 2015, 43(8): 731-734.
    [21] Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2019, 201: 102949.
    [22] Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
    [23] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits-A synthesis[J]. Geology, 2014, 42(11): 987-990.
    [24] Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
    [25] Wynn R B, Kenyon N H, Masson D G, et al. Characterization and recognition of deep-water channel-lobe transition zones[J]. AAPG Bulletin, 2002, 86(8): 1441-1462.
    [26] Coffin M F, Rabinowitz P D. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and western Somali Basin[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B9): 9385-9406.
    [27] Mahanjane E S, Franke D. The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique[J]. Tectonophysics, 2014, 614: 91-99.
    [28] Salazar M U, Baker D, Francis M, et al. Frontier exploration offshore the Zambezi Delta, Mozambique[J]. First Break, 2013, 31(6): 135-144.
    [29] 孙辉,吕福亮,范国章,等. 三级层序内受底流影响的富砂深水沉积演化规律:以东非鲁武马盆地中中新统为例[J]. 天然气地球科学,2017,28(1):106-115.

    Sun Hui, Fuliang Lü, Fan Guozhang, et al. Evolution of deepwater sand-rich sediments affected by bottom currents in the 3rd order sequences: A case study of Middle Miocene in the Ruvuma Basin[J]. Natural Gas Geoscience, 2017, 28(1): 106-115.
    [30] 孙辉,刘少治,马宏霞,等. 东非鲁武马盆地海底水道—朵体体系粗粒浊流沉积物波特征及主控因素[J]. 沉积学报,2017,35(4):763-771.

    Sun Hui, Liu Shaozhi, Ma Hongxia, et al. Characteristics and controlling factors of coarse-grained turbidite sediment waves in submarine channel-lobe system of the Ruvuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2017, 35(4): 763-771.
    [31] 张光亚,刘小兵,温志新,等. 东非被动大陆边缘盆地构造—沉积特征及其对大气田富集的控制作用[J]. 中国石油勘探,2015,20(4):71-80.

    Zhang Guangya, Liu Xiaobing, Wen Zhixin, et al. Structural and sedimentary characteristics of passive continental margin basins in East Africa and their effect on the formation of giant gas fields[J]. China Petroleum Exploration, 2015, 20(4): 71-80.
    [32] Energy IHS. Basin monitors: Ruvuma basin [M]. Houston: IHS Inc, 2009.
    [33] Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111: 179-201.
    [34] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1/2/3): 7-22.
    [35] Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287.
    [36] Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304.
    [37] Kenyon N H, Millington J. Contrasting deep-sea depositional systems in the Bering Sea[C]//Pickering K T, Hiscott R N, Kenyon N H, et al. Atlas of deep water environments: Architectural style in turbidite systems. Dordrecht: Springer, 1995: 196-202.
    [38] Morris S A, Kenyon N H, Limonov A F, et al. Downstream changes of Large-scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean: Implications for palaeoflow reconstruction[J]. Sedimentology, 1998, 45(2): 365-377.
    [39] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748.
    [40] Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41(1): 48-61.
    [41] Hamilton P B, Strom K B, Hoyal D C J D. Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1369-1389.
    [42] Postma G, Hoyal D C, Abreu V, et al. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone[M]//Lamarche G, Mountjoy J, Bull S, et al. Submarine mass movements and their consequences. Cham: Springer, 2016: 469-478.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(318) PDF downloads(87) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-12-05
  • Published:  2021-04-23

Sedimentary Evolution and Control Factors of Submarine Cyclic Steps in the Rovuma Basin, East Africa

doi: 10.14027/j.issn.1000-0550.2020.014
Funds:

Scientific Research and Technology Development Project of China National Petroleum Corporation 2019D⁃4309

Abstract: The submarine channel⁃lobe transition zone in the Rovuma Basin (located on the border between Tanzania and Mozambique, east Africa) is characterized by a bed profile with high ridges and deep scours. High⁃resolution 3D seismic data and various seismic interpretation techniques were used in this study. The morphology, scale and movement of cyclic steps at different stages in the transition zone are described in detail, and analysis of the cyclic pattern showed that the cyclic steps occurred mainly in three stages. Seismic reflections had poor continuity at identical stages of the cycles, tending towards imbricate reflections of the up⁃flow surfaces. There is angular contact between the reflections of different stages in the channel⁃lobe transitional zones. Unlike the early cyclic steps, the up⁃current middle cyclic steps migrated from basin to land in the north, and the late cyclic steps were deposited only in the south. The multi⁃stage migration and overlap of cyclic steps has resulted in the evolution of different northern and southern geomorphological forms, with lower average wavelength and much larger average amplitude in the north. The later deposits cover the upstream surface of the previous deposits, with eroded backstream surfaces being seen on each deposit. The wave heights of the deposits at different stages were significantly increased by overlapping. The location of the backflow and upflow zones of the waves also changes. Affected by the southward migration of the channel, the geomorphological form of the mid⁃stage cyclic steps and the southward dip of the underlying strata resulted in a new, unchanged cyclic step in the south of the channel⁃lobe transitional zone, and the form of the antidune bed is well preserved.

SUN Hui, LIU ShaoZhi, SHAO DaLi, LÜ FuLiang, XÜ XiaoYong, ZUO GuoPing, LIU YanHong, WANG XueFeng. Sedimentary Evolution and Control Factors of Submarine Cyclic Steps in the Rovuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2021, 39(2): 446-455. doi: 10.14027/j.issn.1000-0550.2020.014
Citation: SUN Hui, LIU ShaoZhi, SHAO DaLi, LÜ FuLiang, XÜ XiaoYong, ZUO GuoPing, LIU YanHong, WANG XueFeng. Sedimentary Evolution and Control Factors of Submarine Cyclic Steps in the Rovuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2021, 39(2): 446-455. doi: 10.14027/j.issn.1000-0550.2020.014
  • 已知的许多早期海底扇模型都显示出朵体直接与水道相连[15],但不断增加的证据显示实际沉积并非总是如此。广泛的侵蚀通常发生于水道与朵体沉积之间的过渡区域,这一区域就是水道—朵体过渡带[68]。水道—朵体过渡带内的特征地貌通常由超临界流的水跃作用产生。传统沉积研究认为超临界沉积底形在地层记录中很难保存下来,因而对这种底形基本没有进行系统介绍,与超临界流所形成底形(如逆行沙丘、冲槽与冲坑)相关的研究一直都很匮乏[9]。伴随着近年来包括数值模拟[10]、海底观测[11]、地形地貌[12]等多个领域研究的不断发展,超临界重力流沉积作用的研究也取得了长足的进步,理论认识不断提高[13]。特别是随着海上油气勘探的不断发展,全球海上勘探范围不断扩大,不断发现各种海底底形,深水底形成为了目前深海科学领域的一个研究热点[14]。超临界流旋回坎(Cyclic steps)[15]就是其中的一种重要底形,它由沿水下斜坡向盆地中心搬运、在水力跳跃作用下发生超临界流与亚临界流频繁转化而形成的具有大型波状旋回坎的高密度浊流[13]形成。近年来多位学者分别通过物理模拟和数值模拟方法进一步论证了旋回坎的存在[1618],认识到旋回坎的研究对于完善“源—汇”系统的研究[19]及弥补高流态条件下底形演化及沉积物特征的研究具有重要意义[20]。当前对旋回坎的研究工作及实例很多[21], 相关研究主要集中于地貌动力学模拟、底形识别两方面[9],与旋回坎有关的沉积物的岩相发育特征被系统地总结[2123],但是关于“过程—产物”研究仍需在未来几年内不断验证[24]。当前许多工作只是对于海底单期次的旋回坎开展研究[25],而对于同一部位多期次旋回坎的沉积演化特征研究较少。鲁武马盆海底水道末端发育一处面积近60 km2的水道—朵体过渡带,水道—朵体过渡带内发育粗粒旋回坎。目前该盆地公开发表的文章中[2629],海底水道—朵体过渡带底形曾以粗粒浊流沉积物波的方式进行过论述[30],当时仅根据其具有向上游迁移的逆行砂丘底形加以分析,并没有深入解释地貌形成的原因,不利于分析水道—朵体过渡带内旋回坎的演化过程。本文通过深化水道—朵体过渡带内的沉积底形分析,采用最新行业内基本认同沉积底形的命名——旋回坎,进而探讨水道—朵体过渡带内大规模旋回坎形成的过程及原因,希望研究结果可以对海洋沉积动力学的研究及该地区的油气勘探发挥一定的借鉴作用。

  • 鲁武马盆地位于非洲大陆东部,横跨坦桑尼亚东南沿岸和莫桑比克的东北部,是中生代以来随着东冈瓦纳大陆裂解、印度洋形成而产生的系列盆地之一[31],也是东非被动大陆边缘最主要的含油气盆地。盆地东部为凯端巴斯盆地(Kerimbas Basin),西部为莫桑比克褶皱带,北部以鲁武马转换带为界,与坦桑尼亚的曼达瓦次盆(Mandawa Sub⁃Basin)分隔[32]图1a)。盆地以中—新生界沉积为主,深水区主要沉积了中侏罗世到新生代地层,发育丰富的重力流与底流交互作用形成的深水沉积体系[29,33]。油气勘探中完钻井区的地震反射特征可以反映未钻井区域相似地震反射特征可能对应的岩性,为进一步开展浅层地震资料信息的深入挖掘和分析提供了类比借鉴。地震剖面反射特征(图1b)、地震振幅属性图(图1c)、沿层相干切片等信息用以开展沉积体的剖面结构和平面形态分析,奠定了深水旋回坎研究的基础。研究区从水道到朵体区面积约600 km2图1a),主要研究的水道—朵体过渡带发育的矩形框的面积约210 km2图1c)。水深约2 000~2 700 m。全区3D地震资料全覆盖,研究工作用叠前时间偏移资料开展振幅属性及相干切片提取分析。

    Figure 1.  Rovuma Basin, East Africa: (a) structural location map (modified from reference[32]); (b) seismic section crossing channel⁃lobe transition zone; and (c) submarine geomorphological map of channel⁃lobe transition zone

  • Wynn et al.[34]在开展不同深水体系的水道—朵体过渡带特征的研究时,根据水道口处沉积物的地貌形态推测了浊流沉积时供给系统的效率,认为当水道口处无水道—朵体过渡带发育时,浊流为低效率体系;而在坡折之下发育一些大型复合陡崖、大型孤立陡崖以及一些侵蚀线理特征时,浊流处于高效率体系,发育水道—朵体过渡带,可以形成沉积物波和发生复合砂体的再沉积作用。因此,从水道朵体过渡带的存在与否以及过渡带内沉积底形的形态特征,可以初步推测供给系统的效率、沉积物的粒度。鲁武马盆地海底水道口与朵体之间、陡陆坡向相对缓陆坡过渡区域,存在一些大型孤立陡崖,形成多个冲刷槽,平面呈新月形—近圆形,形态近似于三角形(图2),可能是海底浊流形成的侵蚀型旋回坎[3536]。由于海底浊流经历了从限制型向开阔型的水体跃迁,致使流体迅速扩散和紊流程度增加,众多侵蚀刻槽和线形构造底形在该区域形成。水道—朵体过渡带内存在的侵蚀冲刷和线理,可能以粗粒沉积为主[7],由分布不均匀的粗粒砂和砾石分隔[3738]。地震剖面上,该区域与周边地层相比,整体显示出强振幅反射特征,也间接暗示了水道—朵体过渡带沉积的粒度特征。

    Figure 2.  Morphology of deep⁃water cyclic steps in the submarine channel⁃lobe transition zone, Rovuma Basin, East Africa

  • 根据地震反射特征和地震反射同相轴产状的差异,在鲁武马盆地海底水道—朵体过渡带的不同区域,至少可以识别三个期次迁移和叠置的旋回坎沉积(图3)。北部旋回坎为较强振幅、连续—弱连续的地震反射特征,地层南倾;南部旋回坎呈强振幅—弱连续地震反射,披覆于早期倾斜地层之上,底部对下伏沉积具有明显的侵蚀,具有受早期地貌控制的补偿性充填沉积特征。北部以孤立/复合陡崖底形为主(图3图4a,b),形成时期较早,与蒙特雷峡谷的侵蚀型旋回坎的形态接近[39],但规模上要大得多,可以识别出两期——早期及中期沉积(图3)。同一期次旋回坎内部地震反射同相轴彼此平行,向迎流面倾斜。背流面的反射同相轴显示出明显的侵蚀削截特征,同一列波不同期次的背流面连续受到侵蚀,局部的迎流面靠近陡崖底部的部位也会被侵蚀。早期沉积的迎流面与中期沉积之间存在明显的不整合接触面,推测是被中期浊流侵蚀后形成(图4a,b)。晚期沉积主要分布于南部,以相对小型的波状沉积为主(图3图4c,d),形态似稳定/不稳定的逆行砂丘[40]。沿着浊流运动方向,南部沉积具有逆行特征,单一沉积内部地震反射同相轴彼此平行,复合沉积显示出产状上的差异性,多组反射同相轴彼此呈角度接触。晚期复合沉积的局部旋回坎的迎流面存在较深的冲刷槽(图4c,d)。

    Figure 3.  Different topographic forms by cyclic steps in channel⁃lobe transition zone, Rovuma Basin (location shown in Fig.2)

    Figure 4.  Sedimentary stages of cyclic steps in submarine channel⁃lobe transition zone in Rovuma Basin, East Africa

  • 旋回坎的南、北分区图中(图4e),北部大型复合/孤立陡崖之间的旋回坎波长约为0.9~1.6 km,波高约为42~131 m。波的走向长度约为1~2.5 km,近盆波的波长及波高均低于近陆区域对应的参数,波长与波高沿陆坡向源方向逐渐增加。6组波的走向上局部等时线可以闭合,为被冲刷槽分割而成的孤立的丘。南部为小型波状沉积分布区,6组波由陆向盆波长及波高均逐渐增加,波长约0.9~2.2 km,波高约18~75 m,近陆一端延伸至水道内部。不同位置的波具有不同的波长及波高(表1),北部平均波长低于南部,而平均波高北部比南部大得多,波高和波长具有较好的正相关性(图5)。北部区域通常由两期或三期彼此在迎流一侧叠置的波组成,多期波高垂向增加,波长大于单期波长,多期旋回坎的迁移叠加最终形成了一些独立的微隆起(图2)。南部区域为单期的逆行砂丘底形,近陆向近盆的波形参数逐渐增加。无论北部还是南部的波,波长/波高比都远大于1,波长为几百至几千米,波呈列状分布且向上游迁移,符合超临界流形成的旋回坎特征。

    沉积区域 位置 波号 波长/km 波高/m 面积/km2 沉积期次 主要特征 波长/波高
    水道—朵体过渡带 北部 N1 0.93 42 27 多期 大型孤立微隆起及深冲蚀坑 22
    N2 1.52 114.75 13
    N3 1.38 123 11
    N4 1 54 19
    N5 1.6 131.25 12
    N6 0.96 55.5 17
    南部 S1 0.9 18 31 单期 逆行砂丘及浅冲蚀坑 50
    S2 0.8 27.75 29
    S3 1.1 46.5 24
    S4 1.4 51 27
    S5 2.18 72 30
    S6 2.07 75 28

    Table 1.  Measured parameters of cyclic steps in the submarine channel-lobe transition zone, Rovuma Basin

    Figure 5.  Analysis of correlation between wave length and wave height in different parts of the submarine channel⁃lobe transition zone, Rovuma Basin

  • 鲁武马盆地海底水道—朵体过渡带内的旋回坎演化经历了沿陆坡走向由北向南方向迁移的过程(图3),早、中期沉积主要分布于过渡带的北部,晚期分布于南部区域,迁移的结果导致了现今海底喇叭形大型旋回坎地貌的形成。从早到晚旋回坎区域先向陆扩张、再由北向南迁移。北部靠近现今水道口的位置,可以识别出除早、中期旋回坎以外局部发育的晚期旋回坎(图6),只在水道口附近小范围存在。此外在水道北侧也可以识别出受底流影响形成的漂积堤,以及在水道内部发育的小型旋回坎(图26)。漂积堤平行于陆坡走向发育,从西往东呈类似堤坝的正向地形延伸(图2)。E-E'剖面中显示,早、中期旋回坎从陆坡向洋盆方向的波高明显降低,叠置后由陆向盆的波高具有降低的趋势。每一期旋回坎与陆坡沉积地震反射特征存在明显的差异,推测从早期向中期演化时,水道—朵体过渡带向陆方向扩张,沉积范围增加,同期陆坡沉积范围收缩。下伏的局部早期沉积可能被其后的浊流改造,使靠近旋回坎的沉积表面被侵蚀(图6)。

    Figure 6.  Sectional interpretation of cyclic steps at different stages in channel⁃lobe transitional zone, Rovuma Basin

    由于中期旋回坎在形成过程中对早期沉积进一步侵蚀,现今只能在剖面上根据上、下地层接触关系判断沉积期次,很难恢复早期旋回坎沉积时的位置和形态,因此演化分析时将早、中期作为一个整体开展研究。图7a中的强振幅分布反映了旋回坎迎流面的沉积形态,而背流面受浊流侵蚀影响以弱振幅反射为主;晚期旋回坎位于水道前端向盆伸展区域,具有朵叶状外部形态,周缘呈现不规则羽状。靠近水道口处,由多个“人”字型陡崖线状排列,随着远离水道口,“人”字间夹角逐渐增大,之后演变为复合沉积陡崖(图7b)。由于晚期的旋回坎没有被进一步破坏,晚期沉积的外部形态基本可以代表单期旋回坎的分布。最晚期的强底流作用在水道北侧形成的条带状分布的漂积堤披覆于中期沉积之上,形成水道—朵体过渡带西部的沉积边界。

    Figure 7.  Distribution of cyclic steps in different stages

  • 鲁武马盆地海底水道—朵体过渡带内旋回坎早—中期由盆向陆、晚期由北向南迁移,这种演化方式受多种因素控制。北部区域旋回坎沉积期次多,除了两个期次各自沉积时浊流呈现出的超临界状态,两个期次之间浊流仍然会在早期形成的各个陡崖处发生内水跃作用。研究人员通过物理模拟实验证明[4142],超临界流在水道口发生内水跃并产生沉积,水道口的沉积进一步促使内水跃的发生,沉积物在水道内向上游沉积充填,最终导致水流改道,与水道相连的水道—朵体过渡带分布区发生迁移。早期旋回坎向中期旋回坎演化时,除垂向的叠置以外,中期旋回坎沉积区有向陆坡方向迁移的趋势(图6)。超临界浊流活动时,不仅侵蚀本期沉积的背流面,而且也会侵蚀前一期旋回坎的背流面并在迎流面上沉积。随着沉积的不断加高,背流面不断侵蚀,旋回坎不断向迎流面一侧移动,当迎流面上不断向前迁移的沉积延伸到它近源一端相邻波的背流陡崖水跃作用侵蚀区时,在迎流面的前端沉积部分被侵蚀,这种双侧的侵蚀(图4b)导致整体波长一定程度上减小,而同时波高增加,最终波长/波高比值相对于单期旋回坎的对应参数而降低(表1)。

    水道向单侧迁移可能是促使不同期次旋回坎由北向南单侧迁移的影响因素之一。底流对水道内浊流作用导致非对称天然堤和单侧迁移水道的形成,水道从早期向晚期逐渐向南侧迁移,在水道北侧形成单侧漂积堤沉积(图8[29]。随着北侧堤的不断加高,早期地貌对浊流形成限制,流体流动受单侧限制,水道不断向与底流流动方向相反的一侧迁移,新一期非对称堤沉积于水道侧翼,该过程不断重复。此外,早期在北部形成的叠置的旋回坎也构成了晚期浊流波及范围的限制,伴随着水道的南向迁移,晚期旋回坎补偿沉积于水道—朵体过渡带的南部,在水道口处受超临界流水跃作用,在F1断层的下盘区域,形成晚期超临界流旋回坎底形。

    Figure 8.  Sedimentary analysis of slope waterway, Rovuma Basin

    莫辛布瓦冲断带内的长期活动可能也是导致旋回坎延伸方向和迁移变化的原因。渐新世开始,随着全球海平面的持续下降,陆架环境表现为进积型河流—三角洲沉积体系,随着沉积厚度越来越大,以前缘亚相为沉积主体受重力均衡作用不断向海倾斜,形成了凸面朝向海洋、走向大致平行于海岸线的弧形生长断裂[31]。弧形生长断裂在向海前缘形成的弧形复合体,在向海方向主滑脱层中分离出的一系列向上凸起、表面有轻微倾角的撇裂断层(Splay fault),并形成逐渐消失在东部的断层传导褶皱[32]。在地震剖面上可以观察到冲断带内的地层分布于现今海底(图1b、图6a),反映了构造活动一直持续到现今,并且影响到海底的沉积作用。构造活动导致不同沉积时期处于断层传导褶皱上部及其周边不同部位的旋回坎的下伏地层倾角存在差异。北部地层倾角约为1.9°~2.3°,南部地层倾角2.6°~3.1°,北部较南部更平缓。北部不同时期沉积的地层倾角普遍低于南部。从早到晚,北部地层倾角逐渐增加之后降低,早期地层倾角为1.9°,中期倾角最陡,约为2.3°,晚期倾角为2.0°。南部从早到晚地层倾角逐渐变陡。早期下倾地层沿陆坡倾向倾角约为1.2°,中期及晚期下倾地层沿陆坡倾向倾角均约为1.6°。无论哪一时期,陆坡倾向上的倾角均比走向上的倾角更陡,倾角之间差值为0.4°~1.5°(表2)。走向与倾向陆坡倾角的共同作用,致使最晚期的旋回坎近于北西—南东走向延伸;由早到晚倾向与走向的倾角不断增加,也促使了旋回坎平面上的迁移。

    沿陆坡倾向地层倾角/(°) 沿陆坡走向地层倾角/(°) 走向与倾向地层倾角差值/(°)
    北部 南部
    晚期 2.0 3.1 1.6 0.4~1.5
    中期 2.3 2.7 1.6 0.7~1.1
    早期 1.9 2.6 1.2 0.7~1.4

    Table 2.  Variation of dip angles in different directions of cyclic steps at different stages

    水道—朵体过渡带内旋回坎早—中期由盆向陆、晚期再由北向南迁移,不同期次旋回坎之间的侵蚀—沉积作用改变了单期旋回坎的波形参数和地貌形态,旋回坎的迁移变化控制了水道—朵体过渡带的平面分布形态。水道口处的超临界流内水跃作用是旋回坎逆向迁移的主要原因;旋回坎沿陆坡走向的迁移及分布主要受三个因素控制:1)底流影响的水道向南侧迁移;2)早、中期北部形成的旋回坎地貌形成了北部屏障,控制了晚期旋回坎的分布位置;3)莫辛布瓦冲断带内构造的长期活动可能也是导致旋回坎延伸方向和迁移变化的另一原因。该认识对补充“源—汇”系统中高流态条件下旋回坎演化及控制因素的研究具有重要意义。

  • (1) 鲁武马盆地海底浊流存在高效率体系,发育由多期次深水粗粒旋回坎组成的水道—朵体过渡带。受波长及波高差异的影响,水道—朵体过渡带南、北分区,北部为大型孤立/复合陡崖、冲刷槽分布区,单一微隆起规模大,多个微隆起成群发育,由多期叠置旋回坎组成;南部为小型波状沉积分布区,由单期旋回坎构成。

    (2) 鲁武马盆地海底旋回坎从早期到中期由盆向陆迁移,从中期到晚期由北向南迁移。超临界流内水跃作用、底流作用、地形地貌和长期的构造活动是旋回坎迁移演化的主要影响因素,分析结果进一步完善了“源—汇”系统中高流态条件下旋回坎形成过程及成因认识。

    (3) 地震资料可以用于海底大型旋回坎沉积特征的解释,地震反射同相轴倾角、倾向等变化反映了沉积时地层的沉积方式,同相轴的连续性反映了沉积期次或侵蚀特征,地震反射能量可以初步定性指示沉积物粒度,深入挖掘地震响应代表的地质信息对开展深水沉积研究具有重要意义。

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return