Advanced Search
Volume 38 Issue 6
Dec.  2020
Turn off MathJax
Article Contents

LEI LinLin, ZHAO HongGe, SHAO XiaoZhou, XU Zhi, GUO Hui, LI YaNan, FU XingHui, LI Meng. Provenance Composition of the Early Late Triassic, Northwestern Ordos Basin: Indications from Detrital Zircon U⁃Pb Ages[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1258-1271. doi: 10.14027/j.issn.1000-0550.2019.105
Citation: LEI LinLin, ZHAO HongGe, SHAO XiaoZhou, XU Zhi, GUO Hui, LI YaNan, FU XingHui, LI Meng. Provenance Composition of the Early Late Triassic, Northwestern Ordos Basin: Indications from Detrital Zircon U⁃Pb Ages[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1258-1271. doi: 10.14027/j.issn.1000-0550.2019.105

Provenance Composition of the Early Late Triassic, Northwestern Ordos Basin: Indications from Detrital Zircon U⁃Pb Ages

doi: 10.14027/j.issn.1000-0550.2019.105
Funds:

National Natural Science Foundation of China 41330315, 40902032

Project of State Key Laboratory of Continental Dynamics 201210132

50 Million Tons Major Special Projectof Changqing Oilfield 2016E⁃0514

Changqing Oilfield Science and Technology Project No.2019⁃77

  • Received Date: 2019-06-30
  • Publish Date: 2020-12-25
  • Laser ablation inductively coupled plasma⁃mass spectrometry (LA⁃ICP⁃MS) U⁃Pb was used on detrital zircons to analyze the provenance of the early Upper Triassic in the Tanjinggou, Chaqigou and Ciyaobao areas of the Helan Mountain in the northwestern Ordos Basin. It was found that Cathodoluminescence (CL) images of some zircons from the study area have annular structure. The Th/U ratio of most of the zircons was above 0.4, with very few below 0.1; these indicated that most of the zircons were from magma, with a small number from metamorphic rock. Three age peaks were evident in the age distributions of the zircons, one in each region: late Neoarchean⁃early Paleoproterozoic (2 204.3⁃2 610.1 Ma, corresponding to the completion of North China cratonization); Paleoproterozoic (1 667⁃2 171.8 Ma, corresponding to collision and assemblage of the Yinshan, Ordos and Eastern Continental Blocks); and late Paleozoic (245.1⁃322.6 Ma, corresponding to tectonomagmatic events related to subduction of the Paleo-Asian Ocean beneath the North China Plate). Comparison of zircon ages and palaeogeographic lithofacies analysis showed that early Upper Triassic provenances in the northwestern Ordos Basin were from the northern and northwestern regions, and were mainly derived from magmatic and metamorphic rocks of the Paleoproterozoic Alashan Block and Khondalite Belt. Secondary sources were the western basement of the North China Plate and the Hercynian magmatic rocks of the Alashan Block.
  • [1] 刘池洋,赵红格,王锋,等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报,2005,79(6):737-747.

    Liu Chiyang, Zhao Hongge, Wang Feng, et al. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 737-747.
    [2] 赵文智,王新民,郭彦如,等. 鄂尔多斯盆地西部晚三叠世原型盆地恢复及其改造演化[J]. 石油勘探与开发,2006,33(1):6-13.

    Zhao Wenzhi, Wang Xinmin, Guo Yanru, et al. Restoration and tectonic reworking of the Late Triassic basin in western Ordos Basin[J]. Petroleum Exploration and Development, 2006, 33(1): 6-13.
    [3] 赵红格,刘池洋,王峰,等. 鄂尔多斯盆地西缘构造分区及其特征[J]. 石油与天然气地质,2006,27(2):173-179.

    Zhao Hongge, Liu Chiyang, Wang Feng, et al. Structural division and characteristics in western edge of Ordos Basin[J]. Oil & Gas Geology, 2006, 27(2): 173-179.
    [4] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638.

    Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.
    [5] 赵振宇,郭彦如,王艳,等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏,2012,19(5):15-20.

    Zhao Zhenyu, Guo Yanru, Wang Yan, et al. Study progress in tectonic evolution and paleogeography of Ordos Basin[J]. Special Oil and Gas Reservoirs, 2012, 19(5): 15-20.
    [6] 赵红格. 鄂尔多斯盆地西部构造特征及演化[D]. 西安:西北大学,2003.

    Zhao Hongge. Structural characteristics and the evolution in western Ordos Basin[D]. Xi’an: Northwest University, 2003.
    [7] 张进,马宗晋,任文军. 鄂尔多斯盆地西缘逆冲带南北差异的形成机制[J]. 大地构造与成矿学,2000,24(2):124-133.

    Zhang Jin, Ma Zongjin, Ren Wenjun, et al. The mechanism of the difference between the northern part and the southern part of the fold and thrust belt on the western edge of the Ordos Basin, China[J]. Geotectonica et Metallogenia, 2000, 24(2): 124-133.
    [8] 白云来,王新民,刘化清,等. 鄂尔多斯盆地西部边界的确定及其地球动力学背景[J]. 地质学报,2006,80(6):792-813.

    Bai Yunlai, Wang Xinmin, Liu Huaqing, et al. Determination of the borderline of the western Ordos Basin and its geodynamics background[J]. Acta Geologica Sinica, 2006, 80(6): 792-813.
    [9] 张维. 鄂尔多斯西缘晚三叠世盆地构造—沉积格局恢复与烃源岩评价[D]. 西安:西北大学,2007.

    Zhang Wei. The restoration of tectonic-deposition pattern and evaluation of the hydrocarbon source rock in the Triassic western Ordos region[D]. Xi’an: Northwest University, 2007.
    [10] 王世虎,焦养泉,吴立群,等. 鄂尔多斯盆地西北部延长组中下部古物源与沉积体空间配置[J]. 地球科学——中国地质大学学报,2007,32(2):201-208.

    Wang Shihu, Jiao Yangquan, Wu Liqun, et al. Spatial combination of paleoprovenance and depositional lobe of Mid-Lower Yanchang Formation in the northwest of Ordos Basin[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(2): 201-208.
    [11] 赵红格,刘池洋,王海然,等. 贺兰山北段晚三叠世沉积物源分析[J]. 沉积学报,2012,30(4):654-660.

    Zhao Hongge, Liu Chiyang, Wang Hairan, et al. Analysis of Late Triassic sedimentary provenance in the north of Helan Mountain[J]. Acta Sedimentologica Sinica, 2012, 30(4): 654-660.
    [12] 杨华. 鄂尔多斯盆地西缘晚三叠世构造—沉积环境分析[J]. 沉积学报,2011,29(3):427-439.

    Yang Hua. Analysis of tectonic-sedimentory setting in middle and Upper Triassic in the west margin of the Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 427-439.
    [13] 魏红红,李文厚,邵磊,等. 汝箕沟盆地上三叠统延长组沉积环境[J]. 西北大学学报(自然科学版),2001,31(2):171-174.

    Wei Honghong, Li Wenhou, Shao Lei, et al. Sedimentary environment of Yanchang Formation of the Upper Triassic in Ruqigou Basin[J]. Journal of Northwest University (Natural Science Edition), 2001, 31(2): 171-174.
    [14] 汤锡元,郭忠铭,陈荷立,等. 陕甘宁盆地西缘逆冲推覆构造及油气勘探[M]. 西安:西北大学出版社,1992:1-39.

    Tang Xiyuan, Guo Zhongming, Chen Heli, et al. The study and petroleum prospect of thrust nappe in the west margin of Shanxi-Gansu-Ningxia Basin[M]. Xi’an: Northwest University Press, 1992: 1-39.
    [15] 邓秀芹,蔺昉晓,刘显阳,等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报,2008,10(2):159-166.

    Deng Xiuqin, Lin Fangxiao, Liu Xianyang, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166.
    [16] 宁夏回族自治区地质矿产局. 宁夏回族自治区区域地质志[M]. 北京:地质出版社,1990:260-339.

    Bureau of Geology and Mineral Resources of Ningxia. Regional geology of Ningxia Hui[M]. Beijing: Geological Publishing House, 1990: 260-339.
    [17] 郭佩,刘池洋,韩鹏,等. 鄂尔多斯盆地西南缘下—中侏罗统碎屑锆石U-Pb年代学及其地质意义[J]. 大地构造与成矿学,2017,41(5):892-907.

    Guo Pei, Liu Chiyang, Han Peng, et al. Geochronology of detrital zircon from the Lower-Middle Jurassic strata in the southwestern Ordos Basin, China, and its geological significance[J]. Geotectonica et Metallogenia, 2017, 41(5): 892-907.
    [18] 袁洪林,吴福元,高山,等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报,2003,48(4):1511-1520.

    Yuan Honglin, Wu Fuyuan, Gao Shan, et al. U-Pb isotope age determination and REE composition analysis of laser zircon probes in Cenozoic intrusive rocks in Northeast China[J]. Chinese Science Bulletin, 2003, 48(4): 1511-1520.
    [19] 付星辉,赵红格,周义军,等. 内蒙古狼山地区侏罗系LA-ICP-MS碎屑锆石U-Pb定年及其物源意义[J]. 地质通报,2016,35(12):2063-2075.

    Fu Xinghui, Zhao Hongge, Zhou Yijun, et al. Jurassic detrital zircon U-Pb dating of Langshan area, Inner Mongolia, and its provenance significance[J]. Geological Bulletin of China, 2016, 35(12): 2063-2075.
    [20] Ludwig K R. Isoplot a plotting and regression program for radiogenic isotope data[R]. US Geological Survey Open file Report,1991, 39: 91-445.
    [21] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by Ion Microprobe: Some examples from the western Alps[M]//Pagel M, Barbin V, Blanc P, et al. Cathodoluminescence in geosciences. Berlin Heidelberg: Springer-Verlag, 2000: 373-400.
    [22] Möller A, O’Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway) [J]. Geological Society, London, Special Publications, 2003, 220: 65-82.
    [23] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604.

    Wu Yuanbao, Zheng Yongfei. Study on the mineralogy of zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.
    [24] 雷开宇,刘池洋,张龙,等. 鄂尔多斯盆地北部中生代中晚期地层碎屑锆石U-Pb定年与物源示踪[J]. 地质学报,2017,91(7):1522-1541.

    Lei Kaiyu, Liu Chiyang, Zhang Long, et al. Detrital zircon U-Pb dating of Middle-Late Mesozoic strata in the northern Ordos Basin: Implications for tracing sediment sources[J]. Acta Geologica Sinica, 2017, 91(7): 1522-1541.
    [25] 闫义,林舸,李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学,2003,27(2):184-190.

    Yan Yi, Lin Ge, Li Zian. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190.
    [26] 吴素娟. 阿拉善地块东北缘变质变形研究及其大地构造意义[D]. 北京:中国地质科学院,2014.

    Wu Sujuan. Metamorphism and deformation history of the basement rocks from the northeastern Alxa Block and their tectonic implications[D]. Beijing: Chinese Academy of Geological Sciences, 2014.
    [27] 仵康林. 阿拉善地区华力西晚期花岗岩类岩石地球化学特征及其构造意义[D]. 西安:长安大学,2011.

    Wu Kanglin. Geochemical characteristics and tectonic setting of Late Varisian period in Alashan block[D]. Xi’an: Chang’an University, 2011.
    [28] 李可,张志诚,冯志硕,等. 内蒙古中部巴彦乌拉地区晚石炭世—早二叠世火山岩锆石SHRIMPU-Pb定年及其地质意义[J]. 岩石学报,2014,30(7):2041-2054.

    Li Ke, Zhang Zhicheng, Feng Zhishuo, et al. Zircon SHRIMP U-Pb dating and its geological significance of the Late-Carboniferous to Early-Permian volcanic rocks in Bayanwula area, the central of Inner Mongolia[J]. Acta Petrologica Sinica, 2014, 30(7): 2041-2054.
    [29] 杨奇荻,张磊,王涛,等. 内蒙古阿拉善地块北缘沙拉扎山晚石炭世岩体地球化学特征与LA-ICP-MS锆石U-Pb年龄[J]. 地质通报,2014,33(6):776-787.

    Yang Qidi, Zhang Lei, Wang Tao, et al. Geochemistry and LA-ICP-MS zircon U-Pb age of Late Carboniferous Shalazhashan pluton on the northern margin of the Alxa Block, Inner Mongolia and their implications[J]. Geological Bulletin of China, 2014, 33(6): 776-787.
    [30] 史兴俊. 阿拉善北部庆格勒地区花岗岩年代学、地球化学及岩石成因[D]. 北京:中国地质大学(北京),2012.

    Shi Xingjun. The geochronology, geochemistry and petrogenesis of granitoid in Qinggele area, northern Alaxp[D]. Beijing: China University of Geoscience (Beijing), 2012.
    [31] 包创,陈岳龙,李大鹏. 阿拉善地块北缘朱拉扎嘎毛道晚二叠世火山岩的发现[J]. 地学前缘,2012,19(5):156-163.

    Bao Chuang, Chen Yuelong, Li Dapeng. Discovery of the Late Permian volcanics in the Zhulazhagamaodao, northern margin of the Alxa Block[J]. Earth Science Frontiers, 2012, 19(5): 156-163.
    [32] 李俊建. 内蒙古阿拉善地块区域成矿系统[D]. 北京:中国地质大学(北京),2006.

    Li Junjian. Regional metallogenic system of Alashan Block in Inner Monolia Autonomous Region[D]. Beijing: China University of Geoscience (Beijing), 2006.
    [33] 徐琳. 内蒙古诺尔公地区加里东期—印支期侵入岩地球化学特征及其构造意义[D]. 成都:成都理工大学,2015.

    Xu Lin. Geochemical characteristics and tectonic significance of Caledonian--Indosinian intrusive rock in Nuoergong, Inner Mongolia[D]. Chengdu: Chengdu University of Technology, 2015.
    [34] 耿元生,沈其韩,任留东. 华北克拉通晚太古代末—古元古代初的岩浆事件及构造热体制[J]. 岩石学报,2010,26(7):1945-1966.

    Geng Yuansheng, Shen Qihan, Ren Liudong. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7): 1945-1966.
    [35] 周红英,莫宣学,李俊建,等. 内蒙古阿拉善庆格勒图黑云斜长片麻岩的单颗粒锆石U-Pb法年龄[J]. 矿物岩石地球化学通报,2007,26(3):221-223.

    Zhou Hongying, Mo Xuanxue, Li Junjian, et al. The U-Pb isotopic dating age of single zircon from biotite plagioclase gneiss in the Qinggele area, Alashan, western Inner Mongolia[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(3): 221-223.
    [36] 宫江华,张建新,于胜尧. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属:来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志,2011,30(5):795-818.

    Gong Jianghua, Zhang Jianxin, Yu Shengyao. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa Block: Constraint from LA-ICP-MS U-Pb zircon dating[J]. Acta Petrologica et Mineralogica, 2011, 30(5): 795-818.
    [37] Tung K A, Yang H Y, Liu D Y, et al. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Chinese Science Bulletin, 2007, 52(10): 1414-1425.
    [38] 陈登超,赵省民,邓坚. 阿拉善地块北缘乌兰敖包上三叠统地层的厘定:来自激光ICP-MS碎屑锆石U-Pb年龄的制约[J]. 岩石矿物学杂志,2010,29(3):258-270.

    Chen Dengchao, Zhao Xingmin, Deng Jian. Redefinition of Upper Triassic strata on the northern margin of Alxa block: Constraints from Laser ICP-MS detrital zircon U-Pb ages[J]. Acta Petrologica et Mineralogica, 2010, 29(3): 258-270.
    [39] 宫江华,张建新,于胜尧. 阿拉善地块南缘龙首山东段 “龙首山岩群”的再厘定:来自碎屑锆石U-Pb定年的证据[J]. 岩石矿物学杂志,2013,32(1):1-22.

    Gong Jianghua, Zhang Jianxin, Yu Shengyao. Redefinition of the" Longshoushan Group" outcropped in the eastern segment of Longshoushan on the southern margin of Alxa Block: Evidence from detrital zircon U-Pb dating results[J]. Acta Petrologica et Mineralogica, 2013, 32(1): 1-22.
    [40] 宫江华,张建新,王宗起,等. 东阿拉善地块诺尔公群石英岩的碎屑锆石年龄特征:物源区制约及其地质意义[J]. 岩石矿物学杂志,2017,36(1):1-19.

    Gong Jianghua, Zhang Jianxin, Wang Zongqi, et al. Detrital zircon age characteristics of quartzites from Nuoergong Group in eastern Alxa Block: Provenance and geological significance[J]. Acta Petrologica et Mineralogica, 2017, 36(1): 1-19.
    [41] 张进,李锦轶,刘建峰,等. 早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息[J]. 岩石学报,2012,28(9):2912-2934.

    Zhang Jin, Li Jinyi, Liu Jianfeng, et al. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block[J]. Acta Petrologica Sinica, 2012, 28(9): 2912-2934.
    [42] 肖志斌,康健丽,王惠初,等. 内蒙古阿拉善地区阿拉善群(狭义)的形成时代[J]. 地质调查与研究,2015,38(3):182-191.

    Xiao Zhibin, Kang Jianli, Wang Huichu, et al. Formation age of Alxa Group-complex (Special) in Alxa area, Inner Mongolia[J]. Geological Survey and Research, 2015, 38(3): 182-191.
    [43] Yuan W, Yang Z Y. The Alashan Terrane was not part of North China by the Late Devonian: Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Gondwana Research, 2015, 27(3): 1270-1282.
    [44] Xia X P, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance[J]. Precambrian Research, 2006, 144(3/4): 199-212.
    [45] Santosh M, Wilde S A, Li J H. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology[J]. Precambrian Research, 2007, 159(3/4): 178-196.
    [46] Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21): 2984-2994.
    [47] 校培喜,由伟丰,谢从瑞,等. 贺兰山北段贺兰山岩群富铝片麻岩碎屑锆石LA-ICP-MS U-Pb定年及区域对比[J]. 地质通报,2011,30(1):26-36.

    Xiao Peixi, You Weifeng, Xie Congrui, et al. LA-ICP-MS U-Pb detrital zircon geochronology of alumina-rich gneiss of the Helanshan complex-group in the northern segment of Helanshan Mountains and regional comparison[J]. Geological Bulletin of China, 2011, 30(1): 26-36.
    [48] Dan W, Li X H, Guo J H, et al. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? [J]. Precambrian Research, 2012, 222-223: 143-158.
    [49] 李黎明,曾佐勋,陆彦俊,等. 孔兹岩系——贺兰山中段赵池沟岩组碎屑锆石LA-ICP-MS锆石U-Pb年代学、Hf同位素组成及其地质意义[J]. 科学通报,2014,59(7):593-604.

    Li Liming, Zeng Zuoxun, Lu Yanjun, et al. LA-ICP-MS U-Pb geochronology of detrital zircons from the Zhaochigou Formation-complex in the Helan Mountain and its tectonic significance[J]. Chinese Science Bulletin, 2014, 59(7): 593-604.
    [50] 陈义兵,张国伟,鲁如魁,等. 北秦岭—祁连结合区大草滩群碎屑锆石U-Pb年代学研究[J]. 地质学报,2010,84(7):947-962.

    Chen Yibing, Zhang Guowei, Lu Rukui, et al. Detrital zircon U-Pb geochronology of Dacaotan Group in the conjunction area of North Qinling and Qilian[J]. Acta Geologica Sinica, 2010, 84(7): 947-962.
    [51] 裴先治,李佐臣,李瑞保,等. 祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MSU-Pb年龄:源区特征和沉积时代的限定[J]. 地学前缘,2012,19(5):205-224.

    Pei Xianzhi, Li Zuochen, Li Ruibao, et al. LA-ICP-MS U-Pb ages of detrital zircons from the meta-detrital rocks of the Early Palaeozoic Huluhe Group in eastern part of Qilian orogenic belt: Constraints of material source and sedimentary age[J]. Earth Science Frontiers, 2012, 19(5): 205-224.
    [52] 李猛,王超,李荣社,等. 北祁连肃南地区阴沟群形成时代及沉积源区讨论:碎屑锆石U-Pb年龄证据[J]. 中国地质,2015,42(3):601-615.

    Li Meng, Wang Chao, Li Rongshe, et al. Age and provenance of the Yingou Group in Sunan area of North Qilian Mountain: Evidence from detrital zircon U-Pb dating[J]. Geology in China, 2015, 42(3): 601-615.
    [53] Zhang Y, Wang D Y, Yang H, et al. Provenance analysis of Nanyinger Group in the North Qilian Belt: Constraints from zircon U–Pb geochronology[J]. Arabian Journal of Geosciences, 2015, 8(6): 3403-3416.
    [54] 孟勇,唐淑兰,李向民,等. 北祁连造山带嘉峪关北大草滩地区早志留世碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质通报,2018,37(4):734-746.

    Meng Yong, Tang Shulan, Li Xiangmin, et al. LA-ICP-MS zircon U-Pb dating of the Early Silurian clastic rocks in Dacaotan of Jiayuguan, North Qilian orogenic belt[J]. Geological Bulletin of China, 2018, 37(4): 734-746.
    [55] Zhao G C, Cawood P A, Wilde S A, et al. High-pressure granulites (Retrograded eclogites) from the hengshan complex, North China Craton: Petrology and tectonic implications[J]. Journal of Petrology, 2001, 42(6): 1141-1170.
    [56] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
    [57] Zhao G C, Zhai M G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
    [58] 张成立,苟龙龙,第五春荣,等. 华北克拉通西部基底早前寒武纪地质事件、性质及其地质意义[J]. 岩石学报,2018,34(4):981-998.

    Zhang Chengli, Gou Longlong, Chunrong Diwu, et al. Early Precambrian geological events of the basement in western block of North China Craton and their properties and geological significance[J]. Acta Petrologica Sinica, 2018, 34(4): 981-998.
    [59] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报,2009,25(8):1772-1792.

    Zhao Guochun. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion[J]. Acta Petrologica Sinica, 2009, 25(8): 1772-1792.
    [60] 马铭株. 华北克拉通西部典型地区早前寒武纪地质演化[D]. 北京:中国地质科学院,2015.

    Ma Mingzhu. Early Precambrian geological evolution of several typical areas in western North China Craton: Geology, SHRIMP zircon dating and geochemistry [D]. Beijing: Chinese Academy of Geological Sciences, 2015.
    [61] 徐仲元,范志伟,刘正宏,等. 内蒙集宁地区孔兹岩系中大理岩的形成时代:长英质片麻岩中LA-ICP-MS锆石U-Pb测年的证据[J]. 吉林大学学报(地球科学版),2013,43(3):809-819.

    Xu Zhongyuan, Fan Zhiwei, Liu Zhenghong, et al. Formation age of the marble in the Khondalite Series in Jining, Inner Mongolia: Evidence of the LA-ICP-MS zircon U-Pb dating of felsic gneiss[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 809-819.
    [62] 陈佩嘉,戴朝成,黄成,等. 乌拉山地区古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义[J]. 中国地质,2017,44(5):959-973.

    Chen Peijia, Dai Chaocheng, Huang Cheng, et al. Geochemical characteristics and zircon U-Pb age of the Paleoproterozic S-type granite in Wulashan region and its geological significance[J]. Geology in China, 2017, 44(5): 959-973.
    [63] 刘金科,张道涵,魏俊浩,等. 贺兰山北段古元古代S型花岗岩岩石地球化学、锆石U-Pb年代学及其地质意义[J]. 中南大学学报(自然科学版),2016,47(1):187-197.

    Liu Jinke, Zhang Daohan, Wei Junhao, et al. Zircon U-Pb age and geochemical characteristics of the Paleoproterozoic S-type granite in the northern part of Helanshan and its geological significance[J]. Journal of Central South University (Science and Technology), 2016, 47(1): 187-197.
    [64] 宋新华,李红宇,郭合伟,等. 贺兰山北段牛头沟金矿区围岩的原岩恢复、时代及其地质意义[J]. 岩石学报,2010,26(5):1625-1632.

    Song Xinhua, Li Hongyu, Guo Hewei, et al. Original rocks, ages, and its significance for the wall rock of Niutougou gold deposit in northern Helan Mountains[J]. Acta Petrologica Sinica, 2010, 26(5): 1625-1632.
    [65] 李正辉,柳小明,董云鹏,等. 贺兰山古元古代同碰撞花岗岩地球化学、锆石 U-Pb年代及其地质意义[J]. 岩石学报,2013,29(7):2405-2415.

    Li Zhenghui, Liu Xiaoming, Dong Yunpeng, et al. Geochemistry and zircon U-Pb age of the Paleoproterozoic syn-collisional granites in Helanshan region and its geological significance[J]. Acta Petrologica Sinica, 2013, 29(7): 2405-2415.
    [66] 董春艳,刘敦一,李俊建,等. 华北克拉通西部孔兹岩带形成时代新证据:巴彦乌拉—贺兰山地区锆石SHRIMP定年和Hf同位素组成[J]. 科学通报,2007,52(16):1913-1922.

    Dong Chunyan, Liu Dunyi, Li Junjian, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(16): 1913-1922.
    [67] 周喜文,耿元生. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约[J]. 岩石学报,2009,25(8):1843-1852.

    Zhou Xiwen, Geng Yuansheng. Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton[J]. Acta Petrologica Sinica, 2009, 25(8): 1843-1852.
    [68] 蔡佳,刘福来,刘平华,等. 内蒙古孔兹岩带乌拉山—大青山地区古元古代孔兹岩系年代学研究[J]. 岩石学报,2015,31(10):3081-3106.

    Cai Jia, Liu Fulai, Liu Pinghua, et al. Geochronology of the Paleoproterozoic khondalite rocks from the Wulashan-Daqingshan area, the Khondalite Belt[J]. Acta Petrologica Sinica, 2015, 31(10): 3081-3106.
    [69] 杜远生,朱杰,徐亚军,等. 北祁连造山带加里东—早海西期沉积地质学研究[M]. 武汉:中国地质大学武汉出版社,2009.

    Du Yuansheng, Zhu Jie, Xu Yajun, et al. Sedimentary geology of the Caledonian-Early Herzoic period in the northern Qilian Orogenic belt[M]. Wuhan: China University of Geosciences Press, 2009.
    [70] 何艳红,孙勇,陈亮,等. 陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 岩石学报,2005,21(1):125-134.

    He Yanhong, Sun Yong, Chen Liang, et al. Zircon U-Pb chronology of Longshan complex by LA-ICP-MS and its geological significance[J]. Acta Petrologica Sinica, 2005, 21(1): 125-134.
    [71] 万渝生,董春艳,颉颃强,等. 华北克拉通早前寒武纪条带状铁建造形成时代:SHRIMP锆石U-Pb定年[J]. 地质学报,2012,86(9)1447-1478.

    Wan Yusheng, Dong Chunyan, Xie Hangqiang, et al. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica, 2012, 86(9): 1447-1478.
    [72] 第五春荣,孙勇,王倩. 华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示[J]. 岩石学报,2012,28(11):3520-3530.

    Chunrong Diwu, Sun Yong, Wang Qian. The crustal growth and evolution of North China Craton: Revealed by Hf isotopes in detrital zircons from modern rivers[J]. Acta Petrologica Sinica, 2012, 28(11): 3520-3530.
    [73] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
    [74] 耿元生,沈其韩,任留东. 华北克拉通晚太古代末—古元古代初的岩浆事件及构造热体制[J]. 岩石学报,2010,26(7):1945-1966.

    Geng Yuansheng, Shen Qihan, Ren Liudong. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7): 1945-1966.
    [75] 耿元生,万渝生,沈其韩,等. 吕梁地区早前寒武纪主要地质事件的年代框架[J]. 地质学报,2000,74(3):216-223.

    Geng Yuansheng, Wan Yusheng, Shen Qihan, et al. Chronological framework of the Early Precambrian important events in the Lüliang area, Shanxi province[J]. Acta Geologica Sinica, 2000, 74(3): 216-223.
    [76] 万渝生,苗培森,刘敦一,等. 华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源:碎屑锆石SHRIMP U-Pb同位素年代学制约[J]. 科学通报,2010,55(7):572-582.

    Wan Yusheng, Miao Peisen, Liu Dunyi, et al. Formation ages and source regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons: Resolution of debates over their stratigraphic relationships[J]. Chinese Science Bulletin, 2010, 55(7): 572-582.
    [77] 宫江华,张建新,于胜尧,等. 西阿拉善地块~2.5Ga TTG岩石及地质意义[J]. 科学通报,2012,57(增刊2):2715-2730.

    Gong Jianghua, Zhang Jianxin, Yu Shengyao, et al. Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications[J]. Chinese Science Bulletin, 2012, 57(Suppl.2): 2715-2730.
    [78] 张拴宏,赵越,刘建民,等. 华北地块北缘晚古生代—早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志,2010,29(6):824-842.

    Zhang Shuanhong, Zhao Yue, Liu Jianmin, et al. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-EarlyMesozoic magmatism in the northern margin of the North China Block: A preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842.
    [79] 刘化清,李相博,陈启林,等. 鄂尔多斯盆地延长组若干石油地质问题分析[M]. 北京:科学出版社,2013:69-71.

    Liu Huaqing, Li Xiangbo, Chen Qilin, et al. Analysis of some petroleum geology problems in the Yanchang Formation of the Ordos Basin[M]. Beijing: Science Press, 2013: 69-71.
    [80] 胡波,翟明国,彭澎,等. 华北克拉通古元古代末—新元古代地质事件:来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据[J]. 岩石学报,2013,29(7):2508-2536.

    Hu Bo, Zhai Mingguo, Peng Peng, et al. Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton: Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing[J]. Acta Petrologica Sinica, 2013, 29(7): 2508-2536.
    [81] 李献华,苏犁,宋彪,等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报,2004,49(4):401-402.

    Li Xianhua, Su Li, Song Biao, et al. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 2004, 49(4): 401-402.
    [82] 耿元生,王新社,沈其韩,等. 阿拉善地区新元古代晋宁期变形花岗岩的发现及其地质意义[J]. 岩石矿物学杂志,2002,21(4):412-420.

    Geng Yuansheng, Wang Xinshe, Shen Qihan, et al. The discovery of Neoproterozoic Jinningian deformed granites in Alax area and its significance[J]. Acta Petrologica et Mineralogica, 2002, 21(4): 412-420.
    [83] 耿元生,周喜文. 阿拉善地区新元古代岩浆事件及其地质意义[J]. 岩石矿物学杂志,2010,29(6):779-795.

    Geng Yuansheng, Zhou Xiwen. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance: Evidence from geochronology[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 779-795.
    [84] 张进,李锦轶,李彦峰,等. 阿拉善地块新生代构造作用:兼论阿尔金断裂新生代东向延伸问题[J]. 地质学报,2007,81(11):1481-1497.

    Zhang Jin, Li Jinyi, Li Yanfeng, et al. The Cenozoic deformation of the Alxa block in central Asia-Question on the northeastern extension of the Altyn Tagh fault in Cenozoic time[J]. Acta Geologica Sinica, 2007, 81(11): 1481-1497.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(710) PDF downloads(162) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-06-30
  • Published:  2020-12-25

Provenance Composition of the Early Late Triassic, Northwestern Ordos Basin: Indications from Detrital Zircon U⁃Pb Ages

doi: 10.14027/j.issn.1000-0550.2019.105
Funds:

National Natural Science Foundation of China 41330315, 40902032

Project of State Key Laboratory of Continental Dynamics 201210132

50 Million Tons Major Special Projectof Changqing Oilfield 2016E⁃0514

Changqing Oilfield Science and Technology Project No.2019⁃77

Abstract: Laser ablation inductively coupled plasma⁃mass spectrometry (LA⁃ICP⁃MS) U⁃Pb was used on detrital zircons to analyze the provenance of the early Upper Triassic in the Tanjinggou, Chaqigou and Ciyaobao areas of the Helan Mountain in the northwestern Ordos Basin. It was found that Cathodoluminescence (CL) images of some zircons from the study area have annular structure. The Th/U ratio of most of the zircons was above 0.4, with very few below 0.1; these indicated that most of the zircons were from magma, with a small number from metamorphic rock. Three age peaks were evident in the age distributions of the zircons, one in each region: late Neoarchean⁃early Paleoproterozoic (2 204.3⁃2 610.1 Ma, corresponding to the completion of North China cratonization); Paleoproterozoic (1 667⁃2 171.8 Ma, corresponding to collision and assemblage of the Yinshan, Ordos and Eastern Continental Blocks); and late Paleozoic (245.1⁃322.6 Ma, corresponding to tectonomagmatic events related to subduction of the Paleo-Asian Ocean beneath the North China Plate). Comparison of zircon ages and palaeogeographic lithofacies analysis showed that early Upper Triassic provenances in the northwestern Ordos Basin were from the northern and northwestern regions, and were mainly derived from magmatic and metamorphic rocks of the Paleoproterozoic Alashan Block and Khondalite Belt. Secondary sources were the western basement of the North China Plate and the Hercynian magmatic rocks of the Alashan Block.

LEI LinLin, ZHAO HongGe, SHAO XiaoZhou, XU Zhi, GUO Hui, LI YaNan, FU XingHui, LI Meng. Provenance Composition of the Early Late Triassic, Northwestern Ordos Basin: Indications from Detrital Zircon U⁃Pb Ages[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1258-1271. doi: 10.14027/j.issn.1000-0550.2019.105
Citation: LEI LinLin, ZHAO HongGe, SHAO XiaoZhou, XU Zhi, GUO Hui, LI YaNan, FU XingHui, LI Meng. Provenance Composition of the Early Late Triassic, Northwestern Ordos Basin: Indications from Detrital Zircon U⁃Pb Ages[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1258-1271. doi: 10.14027/j.issn.1000-0550.2019.105
  • 鄂尔多斯盆地西北缘位于我国东、西两大构造域的衔接地带,处于鄂尔多斯地块、阿拉善地块、走廊过渡带与秦—祁造山带等不同构造单元结合部位,是探讨华北克拉通、阿拉善地块、秦祁造山带等构造单元的地质构造特征和构造属性的天然窗口。近年来,众多学者对盆地西缘构造及其演化进行了大量研究并取得了较好的成果[17]。但是,在盆地的西北缘晚三叠世沉积物源研究方面,依旧存在较大争议。白云来等[8]、张维[9]、王世虎等[10]、赵红格等[11]运用常规矿物成分分析、重矿物特征研究、古水流测量等方法对鄂尔多斯盆地西北部物源研究后认为其主要来自西北方向的阿拉善古陆;杨华[12]则认为晚三叠世研究区北部贺兰山地区主要由巴彦浩特地区提供物源,阿拉善地块为次要物源区;魏红红等[13]则持相反观点,其根据贺兰山汝箕沟地区存在自东向西的古水流而认为研究区存在东部的物源。因此,长期以来鄂尔多斯盆地西北缘物源存在争议,一直限制着对鄂尔多斯盆地的原盆恢复、沉积边界和岩相古地理等问题的深入刻画。本文在前人研究的基础上,选择西北缘不同地区上三叠统延长组下部地层中的砂岩样品作为研究对象,通过碎屑锆石U⁃Pb年代学测试,进行沉积物源在空间上的对比分析,进而为盆地西北缘晚三叠世早期盆山耦合关系研究提供年代学依据。

  • 鄂尔多斯盆地西北缘整体上呈南北向展布,北隔河套地堑与天山兴蒙褶皱带相望,西北部与阿拉善地块相邻,东连鄂尔多斯盆地,西南部则与祁连—秦岭造山带相接,处于不同性质构造单元的结合部位,构造环境比较复杂(图1)。鄂尔多斯地块西缘的构造型式是以逆冲推覆构造为主。以青铜峡—固原断裂为界,其东为向东逆冲的南北向构造带,其西为向东北逆冲的六盘山构造带。本区北部位于华北克拉通内,西南部则位于秦祁地槽的边缘。中元古代至早古生代时,本区为三叉裂谷发育阶段,北部是贺兰拗拉槽,南部为被动大陆边缘。晚期加里东和早期海西运动时,秦祁海槽开始俯冲和碰撞,在其北侧形成了晚古生代的前渊和碰撞裂谷。到了中、新生代,由于受挤压和右旋剪切作用的影响,西缘地区形成了南北向逆冲构造带及其雁列构造。至第三纪末,受喜山运动的影响,印度和欧亚板块强烈碰撞,青藏高原隆起,并产生许多逆冲带,六盘山弧形逆冲构造带就是其中之一[14]

    Figure 1.  Geological sketch of the northwestern Ordos Basin

    研究区主要出露古生界(Pz)、中上三叠统(T2⁃T3)、中侏罗统(J2)、上白垩统(K1)和第三系—第四系(R⁃Q),地层发育较全。鄂尔多斯盆地上三叠统延长组地层自下而上划分为五段,将铜川组(T2 t)做为延长组下部[15]。盆地西北缘上三叠统延长组残留厚度较大,在贺兰山地区厚度接近3 km[16]。晚三叠世地层在鄂尔多斯盆地西北缘贺兰山汝箕沟、插旗沟、炭井沟以及西缘中部磁窑堡等地区均有出露(图1)。

  • 本次主要针对晚三叠世早期的物源展开研究,共采集不同地区的3件样品(图12),分别为:西北缘贺兰山北部插旗沟上三叠统下部延长组黄灰绿色细粒长石石英砂岩(15CQK08);贺兰山南部炭井沟延长组下部黄绿色中粒长石石英砂岩(16TJG01)和西缘中部磁窑堡地区中三叠统铜川组(相当于延长组下部)灰白色长石石英砂岩(17CYB04),每件样品重约5 kg。

    Figure 2.  Lithology and sampling position of (a) Chaqigou, (b) Tanjinggou, and (c) Ciyaobaoin areas in the northwestern Ordos Basin

    测试方法:首先是碎样和锆石的分选,利用常规浮选和磁选方法选出锆石单矿物,然后在双目镜下随机地挑选锆石并整齐粘于双面胶上,再用环氧树脂灌注成激光样品靶;将其抛光处理后进行锆石样品的反射光、透射光、阴极发光(CL)照相,以选定最合适的锆石颗粒和激光剥蚀位置[17]。锆石的制靶、反射光、透射光、阴极发光(CL)照相以及锆石激光剥蚀—等离子质谱(LA⁃ICP⁃MS)U⁃Pb定年测试分析均在西北大学大陆动力学国家重点实验室进行,详细测试分析步骤详见参考文献[18]。

    使用Glitter软件对数据进行处理。关于年龄选取,若206Pb/238U年龄>1 000 Ma,谐和度计算公式为:100×(207Pb/206Pb年龄)/(206Pb/238U年龄),并以207Pb/206Pb年龄作为锆石表面年龄;若206Pb/238U年龄<1 000 Ma,谐和度计算公式为:100×(207Pb/235U年龄)/(206Pb/238U年龄),并以206Pb/238U年龄作为锆石表面年龄[19]。使用Isoplot(ver3.0)程序[20]绘制锆石U⁃Pb年龄谐和图、频率分布直方图,其中锆石的峰值年龄采用加权平均方法计算。

  • 锆石阴极发光(CL)图像显示(图3),3件样品碎屑锆石颗粒以棱角状和次棱角状为主,粒径变化范围较大,集中在40~270 μm,磨圆和分选均较差。部分锆石具有较窄的震荡环带,显示岩浆锆石的特征;部分锆石具有明显的核幔结构,且边部具有宽窄不一的浅色增生边,显示为变质锆石;部分锆石发光性较弱,且内部结构较为均一,无震荡环带或核幔结构。

    Figure 3.  Cathodoluminescence (CL) images with U⁃Pb ages and test positions of Upper Triassic detrital zircons in the northwestern Ordos Basin:(a)15CQK08;(b)16TJG01;(c)17CYB04

  • 锆石的Th/U值可以判别锆石的成因类型,一般来说,若锆石中Th/U>0.4,则为岩浆锆石,若Th/U<0.1,则为变质锆石[2123]。15CQK08样品(图4a)中碎屑锆石Th/U介于0.03~1.74,其中57颗锆石Th/U>0.4,约占67.9%,仅有4颗锆石的Th/U<0.1;16TJG01样品(图4b)锆石的Th/U分布在0.02~1.92,其中61颗锆石Th/U>0.4,约占71%,仅有3颗锆石的Th/U<0.1;17CYB04样品(图4c)锆石的Th/U>0.4的有67颗,约占78%,仅2颗锆石的Th/U<0.1。因此,从Th/U值判断,3件样品中的碎屑锆石主要为岩浆成因,极少部分为变质成因。

    Figure 4.  U⁃Pb ages and Th/U values for Upper Triassic detrital zircons in the northwestern Ordos Basin

  • 15CQK08样品共获得84颗锆石年龄,其中谐和度处于90%~110%的有80颗(图5a)。对于谐和度符合要求的锆石年龄进行统计,15颗锆石分布在新太古代—古元古代早期(2 590.9~2 269.6 Ma),占18.8%,锆石峰值年龄为2 434 Ma;53颗锆石分布于古元古代中晚期(2 121.2~1 776 Ma),占66.3%,峰值年龄为1 919 Ma;3颗锆石位于早古生代(479.4~440.9 Ma);9颗锆石年龄分布在395.9~245.1 Ma,峰值年龄为282 Ma,属晚古生代,占11.3%(图5b)。

    Figure 5.  U⁃Pb age concordia diagrams and histograms for Upper Triassic detrital zircons in the northwestern Ordos Basin

    16TJG01样品获得86颗锆石年龄,其中谐和度处于90%~110%的有79颗(图5c)。其中,20颗锆石年龄分布于新太古代—古元古代早期(2 610.1~2 207 Ma),占25.3%,峰值年龄为2 407 Ma;42颗锆石分布于古元古代中晚期(2 144.9~1 667 Ma),占53.2%,该期锆石峰值年龄为1 946 Ma;1颗锆石位于中元古代,锆石的207Pb/206Pb年龄为1 599±29 Ma;16颗锆石分布于古生代(457.5~272.4 Ma),占20.3%,其中以石炭纪和二叠纪为主,峰值年龄为317 Ma(图5d)。

    17CYB04样品获得86颗锆石年龄,其中谐和度处于90%~110%的有83颗(图5e)。样品中碎屑锆石年龄分布与前两件样品具有相似的峰值,只是在各个时期分布的频率有所差异。其中,21颗锆石分布于新太古代—古元古代早期(2 564.4~2 204.3 Ma),峰值年龄为2 432 Ma,占25.3%;57颗锆石分布于古元古代中晚期(2 171.8~1 731.5 Ma),占68.7%,该期峰值年龄为1 886 Ma;5颗锆石分布于晚古生代,占6%:其中,1颗早泥盆世410±36 Ma;2颗分布于石炭纪,年龄分别为316.3±18.5 Ma和322.6±67.47 Ma;2颗分布于二叠纪,年龄分别为293±10.5 Ma和286.8±35.2 Ma,该期年龄峰值较弱,为305 Ma(图5f)。

  • 沉积盆地中地层的沉积物,可能来源于同一物源区,也可能来自不同物源区。若源区相同,碎屑锆石年龄的分布具相似性;若源区不同,则在年龄谱上存在明显的差异[24]。通过对沉积物中锆石年龄研究来获取物源区锆石年代学信息,结合周缘岩体出露情况及构造演化特征,进而有助于判定研究区某一时期的沉积物源区[25]

  • 为了确定鄂尔多斯盆地西北缘晚三叠世早期沉积物源,笔者统计了近年来前人对盆地周缘不同地区已经发表的共计5 077个同位素测年数据。在空间分布上,数据主要来自于阿拉善地块、华北板块西部基底、孔兹岩带和祁连造山带(图1),基本上反映了研究区周缘不同地区物源的时空分布特征。

  • 在地质构造位置上,阿拉善地块位于华北板块、塔里木板块和兴蒙造山带的接壤部位,涉及地区主要为祁连山以北,贺兰山以西和中国北方造山区以南的地区,其大致呈三角形,断块东界为贺兰山西麓断裂带,南缘以龙首山断裂带与河西走廊过渡带相邻,由于所处位置的特殊性,因而伴随有大量的构造运动而引起的岩浆活动,既有大规模的岩浆侵入,亦有强烈的火山喷发、溢流,岩浆岩的分布极为广泛[26]。阿拉善地块的岩浆岩不仅分布广泛而且各个时代均有出露,但以晚古生代的侵入岩为主:阿拉善北部宗乃山—沙拉扎山带大面积发育的中酸性和酸性侵入岩年龄主要集中在250.8±3.3~273.5±4.2 Ma[27],在内蒙古巴彦乌拉地区获得流纹岩中锆石年龄分别为307.1±6.3 Ma和308.9±1.8 Ma[28],内蒙古阿拉善北缘沙拉扎山温都尔毛道黑云母花岗闪长岩锆石U⁃Pb年龄为301±2 Ma[29];阿拉善北部庆格勒地区布的花岗岩类的年龄集中在275±1~321±1 Ma[30],阿拉善地块北部的朱拉扎嘎毛道地区发现的球粒流纹岩中锆石U⁃Pb年龄为240~325 Ma[31],内蒙古阿拉善地块的诺尔公花岗岩、毕级尔太山花岗岩、哈布达哈拉山石英斑岩、牙马图花岗岩体、迭布斯格花岗岩体和呼伦西白花岗岩形成年龄集中在273.3~304.7 Ma[32],内蒙古阿拉善北部诺尔公地区的辉长岩、闪长岩和花岗岩的年龄主要集中在(274.4±2.2~288.71±0.94)Ma[33]。此外,近年来,在阿拉善地块也发现了许多古元古代中晚期的岩浆变质事件,如阿拉善地区东部的迭布斯格岩群中透辉二长片麻岩和黑云斜长片麻岩的锆石年龄分别为1 939±16 Ma和1 970±8 Ma[34];阿拉善庆格勒图地区的黑云斜长片麻岩锆石年龄为1 826±13 Ma[35];阿拉善地块西南缘龙首山岩群原岩沉积时限为1 890~2 010 Ma[36]。笔者对前人在阿拉善地区进行的锆石测年数据进行统计分析后显示,该地区主要存在280~300 Ma和1 800~2 000 Ma这两个较强的峰值年龄事件(图6)。

    Figure 6.  Age comparisons for detrital zircons in the study area and surrounding areas

  • Zhao et al. [5557]综合各种研究成果,将华北克拉通分为东西两大陆块以及中部碰撞构造带。前人研究表明,在华北克拉通西部不同地质单元基底岩石中均存在2 450~2 550 Ma的岩浆活动,同时伴随大量的变质岩类,此后在1 850~1 950 Ma期间,沿鄂尔多斯地块北部的孔兹岩带和东部的中部构造带均发生顺时针P⁃T演化轨迹的变质作用[58],证明~1 950 Ma鄂尔多斯地块相继与北部阴山地块和东部陆块碰撞拼合为一体。因此,华北克拉通西部基底具有清晰的~2 500 Ma和~1 900 Ma锆石峰值年龄记录(图6)。

  • 孔兹岩带位于鄂尔多斯地块与阴山地块之间,由东向西沿集宁—大青山—乌拉山—千里山—贺兰山一带展布,长度约为1 000 km[59]。按照其出露情况,可大致分为东段的集宁地区,中段的大青山—乌拉山地区和西段的贺兰山—千里山地区[60],大部分地区的岩石组合主要为基性麻粒岩、少量TTG片麻岩、紫苏花岗岩和S型花岗岩等[39]。近年来,在孔兹岩带获得了大量的锆石年代学数据:集宁地区大理岩形成于(1 852±15~2 091±20) Ma[61];乌拉山地区诺尔音S型花岗岩的结晶年龄为(1 863±17~1 891±14) Ma[62];贺兰山北段牛头沟地区似斑状花岗岩中锆石U⁃Pb年龄为1 922±31 Ma[63],花岗闪长岩形成于1 950±8.9 Ma[64],S型花岗岩年龄为1 958±30 Ma[65],石榴云母二长片麻岩的锆石年龄为1 978±17 Ma[66],同区西北侧赵池沟组变质沉积岩成岩时间为1 960~1 990 Ma[49],宗别立岩组含石榴矽线黑云二长片 麻岩锆石年龄分布于1 800~2 150 Ma[47]。此外,前人的研究成果显示孔兹岩带存在~2 500 Ma的峰值年龄事件[58,6768]图6)。

  • 祁连造山带是早古生代末期受加里东运动影响,柴达木微板块、中祁连地块和阿拉善地块碰撞形成的冲断褶皱造山带,其主要分为河西走廊带、北祁连带、中祁连带和南祁连带四个二级构造单元[69]。目前,研究结果表明,祁连地区的构造岩浆事件主要集中在加里东期:走廊地区的侵入岩同位素年龄集中在395~464 Ma;北祁连侵入岩同位素年龄为443~488 Ma;中祁连侵入岩年龄为397~443 Ma;南祁连侵入岩同位素年龄为427 Ma左右[69]。此外,祁连地区还存在少量新元古代、中元古代以及古元古代—新太古代的构造岩浆峰值年龄事件(图6[51,70]

  • 3件样品该时期U⁃Pb年龄主要分布范围为2 204.3~2 610.1 Ma,在样品谐和年龄中分别占18.8%、25.3%和25.3%,且主峰值年龄为~2 500 Ma(图5)。前人研究发现,华北克拉通早前寒武纪基底广泛发育~2 500 Ma构造热事件[71],且~2 500 Ma的岩石占太古代出露基底的85%[72]。前人报道,华北克拉通地区广泛分布~2 500 Ma的TTG岩石[73],且其变质基底中广泛出露的正片麻岩的形成年龄主要集中在2 490~2 540 Ma[74];华北克拉通中部吕梁地区的吕梁群和界河口群的发育时限分别为2 520~2 690 Ma和2 400~2 600 Ma[75],五台山地区的高凡群、滹沱群和东焦群中的锆石均具有~2 500 Ma的年龄峰值[76];华北克拉通西北部阿拉善地块北大山岩群中的花岗闪长质片麻岩的形成年龄为2 522±30 Ma[77]。因此,研究区古元古代早期—新太古代这期的锆石年龄与新太古代末华北克拉通化基本完成而伴生的构造岩浆事件密切相关,华北板块西部基底中的岩浆岩和变质岩是研究区古元古代早期—新太古代锆石的主要碎屑来源。

  • 此时期研究区样品的锆石年龄主要在1 667~2 171.8 Ma,在总谐和年龄中分别占到66.3%、53.2%和68.7%的较大比例,且共同存在1 886~1 946 Ma的峰值年龄(图5)。据前人研究,华北克拉通的阴山陆块和鄂尔多斯陆块在~1 950 Ma发生碰撞并形成了西部陆块,其后在~1 850 Ma西部陆块与东部陆块发生碰撞拼合形成了华北克拉通结晶基底[59],且这两期事件正好与孔兹岩带古元古代晚期的两期构造热事件相吻合[34]。研究区古元古代锆石年龄与华北克拉通基底三大陆块之间相互碰撞拼合的时间相吻合,因此,该组锆石年龄与鄂尔多斯陆块和阴山陆块碰撞拼合形成的孔兹岩带内的岩浆变质事件以及华北克拉通北缘阿拉善地块古元古代中晚期的岩浆变质事件密切相关,孔兹岩带和阿拉善地块大量的变质岩和岩浆岩共同在古元古代时期为研究区提供物源。

  • 研究区3件样品碎屑锆石U⁃Pb年龄集中245.1~322.6 Ma,分别占到总谐和年龄的11.3%、20.3%和6%(图5)。前人研究表明,在早石炭世晚期—中二叠世(330~265 Ma),由于古亚洲洋向华北板块强烈俯冲[78],在阿拉善地区广泛分布诺尔公、红古尔玉林、哈拉托洛海、少勒套海、牙马图—迭布斯格等一系列花岗岩[26]。此外,由于阿拉善地块上缺失古生代的沉积,并且在本区广泛分布的花岗岩类岩石在早古生代和晚古生代早期也处于稳定状态,没有发生明显的花岗岩化作用,同时阿拉善地块长期的隆起,也就是长期被剥蚀,使得其成为外围沉积区域陆源碎屑物质的来源之一[26]。前文所述阿拉善地块的构造岩浆事件及所测得岩浆岩体中锆石的年龄与鄂尔多斯盆地西北缘晚三叠世碎屑锆石年龄具有较好的一致性,因此,研究区晚古生代锆石主要来自阿拉善地块海西期的岩浆岩。

  • 从岩相古地理图中可以看出(图7),晚三叠世早期鄂尔多斯地区周缘被古陆块或者褶皱造山带所围限,它们是盆地内众多沉积体系的物源供给者,再者由于此时期鄂尔多斯地区主要发育湖泊—三角洲沉积体系[79],周缘较为发育的河流体系为研究区带来了丰富的碎屑物质,其中阿拉善古陆和北部的造山带为主要的物源区。

    Figure 7.  Lithofacies and paleogeography of the early Late Triassic in the Ordos Basin and surrounding areas (modified from Liu et al.[79])

    综上分析可知,鄂尔多斯盆地西北缘晚三叠世早期沉积物源具有多地区和多时期的特点,研究区为一混源区。结合研究区周缘地区的构造演化背景以及锆石年龄分布特征,笔者认为华北板块西部基底、阿拉善地块以及孔兹岩带均为研究区提供物源,值得注意的是在不同时期物源的供给存在一定的差异。在古元古代早期—新太古代,在华北克拉通主要经历了主要陆壳生长事件、克拉通化事件以及古元古代造山事件[80],这一系列事件导致了构造岩浆及变质事件的发生,因而在华北克拉通西部基底保存有大量这一时期的岩浆岩和变质岩[58],可为研究区提供~2 500 Ma峰值年龄的锆石,到了古元古代中晚期,华北克拉通三大陆块之间先后发生碰撞及拼合,在华北克拉通西部陆块展布一条长度1 000 km以上的孔兹岩带[59],且其长期为隆起区,发育大量古元古代的变质岩和岩浆岩,可为南部地区源源不断提供物源。从锆石年龄谱中可以看出,阿拉善地块存在500~1 500 Ma的锆石年龄段,而研究区三件样品无一出现这一阶段锆石年龄,这是由于仅阿拉善地块东缘的巴音诺尔公地区和西南缘的龙首山零星存在这一阶段的锆石年龄[8183],阿拉善地块的其余大部分地区500~1 500 Ma这一阶段年龄较少,而古元古代早期—新太古代末期、古元古代以及晚古生代这三个阶段的锆石年龄较多[2736]。研究区的碎屑锆石也缺乏加里东期的锆石年龄,因而推断其西南缘的祁连造山带对研究区的物源供给影响较小。此外,从研究区锆石年龄谱中可以看出,研究区有来自晚古生代这一时期的物源供给,结合阿拉善地区的构造演化背景,其在整个中生代都处于隆升的状态,且除少量二叠纪火山岩外几乎缺失整个古生代和三叠纪沉积[84],因而可以为研究区提供晚古生代这一期的物源。

  • (1) 鄂尔多斯盆地西缘晚三叠世碎屑锆石U⁃Pb年龄可分为三组:古元古代早期—新太古代(2 204.3~2 610.1 Ma)、古元古代(1 667~2 171.8 Ma)和晚古生代(245.1~322.6 Ma),其中以古元古代年龄为主。

    (2) 鄂尔多斯盆地西北缘晚三叠世碎屑锆石的三组年龄分别与新太古代末华北克拉通化的基本完成、古元古代晚期华北克拉通三大陆块(阴山陆块、鄂尔多斯陆块和东部陆块)之间的相互碰撞拼合以及晚古生代古亚洲洋向华北板块俯冲而形成的构造岩浆事件相对应。

    (3) 通过与周缘不同地区碎屑锆石年龄对比和岩相古地理分析得知,鄂尔多斯盆地西北缘晚三叠世早期物源来自北部和西北部地区,主要为古元古代孔兹岩带和阿拉善地块的变质岩和岩浆岩,其次为华北板块西部基底的岩浆岩和阿拉善地块海西期的岩浆岩。

Reference (84)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return