Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

GAO XiaoXue, HAN RuiChen, FAN HuTong, WANG YongBo, ZHAO Yan, SHEN Ji, LIU XingQi, WANG Yong. Climate Variation during the Past 2050 Years Recorded in Sediments from Beihai Wetland, Yunnan Province, and Its Potential Influence on Civilization Evolution[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1016-1025. doi: 10.14027/j.issn.1000-0550.2019.100
Citation: GAO XiaoXue, HAN RuiChen, FAN HuTong, WANG YongBo, ZHAO Yan, SHEN Ji, LIU XingQi, WANG Yong. Climate Variation during the Past 2050 Years Recorded in Sediments from Beihai Wetland, Yunnan Province, and Its Potential Influence on Civilization Evolution[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1016-1025. doi: 10.14027/j.issn.1000-0550.2019.100

Climate Variation during the Past 2050 Years Recorded in Sediments from Beihai Wetland, Yunnan Province, and Its Potential Influence on Civilization Evolution

doi: 10.14027/j.issn.1000-0550.2019.100
Funds:

National Natural Science Foundation of China 41877282, 41861134030

“Practical Training Program” for Universities in Beijing, 01119530020029

  • Received Date: 2019-09-02
  • Rev Recd Date: 2019-11-19
  • Publish Date: 2020-10-28
  • The variation of climate over the past 2 000 years is the key to understanding the mechanism of past global changes, and for investigating the correlation between human activity and natural environmental evolution, especially in southwestern China which is directly influenced by the summer monsoon. A 2 050⁃year continuous sediment core was recovered from the from Beihai Wetland, northwestern Yunnan province. Based on the age⁃depth model determined by radiocarbon dating, grain size and loss on ignition (LOI) data was used to reconstruct regional climate variation. This showed distinct variations since 2 050 cal. a B.P. The period between 2 050 cal. a B.P. and 1 400 cal. a B.P. was generally dry and cold, especially in the last 300 years of this stage. It then became warm and wet from 1 400 cal. a B.P. to 750 cal. a B.P., temporally consistent with the Medieval Warm Period (MWP). It was cold and dry during the Little Ice Age (LIA) from 750 cal. a B.P. to 300 cal. a B.P., the last 300 years of which was characterized by increasing temperature and moisture. A comparison with historical records from Yunnan showed that the settlements of the Nanzhao and Dali Kingdoms existed mainly in the warm and wet conditions of the MWP. In addition, the variation in population of Yunnan also showed a close correlation with changes in the climate. Both aspects have confirmed the general influence of natural climate change on the evolution of civilization.
  • [1] Yan H, Yang B, Tan L C. High resolution climate changes in Asia- Pacific region during the past 2,000 years (Asia-Pacific-2k)[J]. Quaternary International, 2018, 487: 1-2.
    [2] Intergovernmental Panel on Climte Change. Climate change 2014: Impacts, adaptation, and vulnerability, contribution of working group II to the fifth assessment report [M]. New York, Cambridge University Press, 2014.
    [3] 王绍武,罗勇,赵宗慈,等. PAGES 2k[J]. 气候变化研究进展,2013,9(4):309-312.

    Wang Shaowu, Luo Yong, Zhao Zongci, et al. PAGES 2k[J]. Progressus Inquisitiones DE Mutatione Climatis, 2013, 9(4): 309-312.
    [4] 葛全胜,郑景云,郝志新,等. 过去2000年中国气候变化研究的新进展[J]. 地理学报,2014,69(9):1248-1258.

    Ge Quansheng, Zheng Jingyun, Hao Zhixin, et al. State-of-the-arts in the study of climate changes over China for the past 2000 years[J]. Acta Geographica Sinica, 2014, 69(9): 1248-1258.
    [5] 郑景云,邵雪梅,郝志新,等. 过去2000年中国气候变化研究[J]. 地理研究,2010,29(9):1561-1570.

    Zheng Jingyun, Shao Xuemei, Hao Zhixin, et al. An overview of research on climate change in China during the past 2000 years[J]. Geographical Research, 2010, 29(9): 1561-1570.
    [6] He M H, Yang B, Bräuning A, et al. Tree-ring derived millennial precipitation record for the South-Central Tibetan Plateau and its possible driving mechanism[J]. The Holocene, 2013, 23(1): 36-45.
    [7] Kaspari S, Mayewski P, Kang S, et al. Reduction in northward incursions of the South Asian monsoon since ~1400 AD inferred from a Mt. Everest ice core[J]. Geophysical Research Letters, 2007, 34(16): L16701.
    [8] Wu X D, Liu X Q, Wang J J, et al. Climatic and ecological changes of the past 1900 years inferred from long-chain alkenones in Kusai Lake, northern Qinghai-Tibetan Plateau[J]. Quaternary International, 2018, 487: 33-42.
    [9] Tan L C, Cai Y J, Cheng H, et al. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years[J]. Quaternary Science Reviews, 2018, 195: 122-132.
    [10] Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.
    [11] Yang B, Bra̋uning A, Shi Y F. Late Holocene temperature fluctuations on the Tibetan Plateau[J]. Quaternary Science Reviews, 2003, 22(21/22): 2335-2344.
    [12] 沈吉,薛滨,吴敬禄,等. 湖泊沉积与环境演化[M]. 北京:科学出版社,2010.

    Shen Ji, Xue Bin, Wu Jinglu, et al. Lake sediments and environmental evolution[M]. Beijing: Science Press, 2010.
    [13] 王苏民,张振克. 中国湖泊沉积与环境演变研究的新进展[J]. 科学通报,1999,44(6):579-587.

    Wang Sumin, Zhang Zhenke. New progress of lake sediments and environmental changes research in China[J]. Chinese Science Bulletin, 1999, 44(6): 579-587.
    [14] 李文静,常凤琴. 过去2ka湖泊沉积记录及所揭示的气候环境变化研究进展[J]. 气候变化研究快报,2014,3(3):95-106.

    Li Wenjing, Chang Fengqin. The progress and a perspective on the climate-environmental changes and lacustrine records of last 2000 years[J]. Climate Change Research Letters, 2014, 3(3): 95-106.
    [15] An Z S, Clemens S C, Shen J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
    [16] Shen J, Jones R T, Yang X D, et al. The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: The role of climate and human forcings[J]. The Holocene, 2006, 16(2): 265-276.
    [17] Chen F H, Chen X M, Chen J H, et al. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, South-West China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
    [18] Xiao X Y, Haberle S G, Shen J, et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan province, southwestern China[J]. Quaternary Science Reviews, 2014, 86: 35-48.
    [19] Zhang E L, Zhao C, Xue B, et al. Millennial-scale hydroclimate variations in Southwest China linked to tropical Indian Ocean since the Last Glacial Maximum[J]. Geology, 2017, 45(5): 435-438.
    [20] 李素萍,李金锋,武振杰,等. 泸沽湖地区晚全新世气候和环境演变[J]. 地质学报,2016,90(8):1998-2012.

    Li Suping, Li Jinfeng, Wu Zhenjie, et al. Climatic and environmental changes of the Lugu Lake area during the Late Holocene[J]. Acta Geologica Sinica, 2016, 90(8): 1998-2012.
    [21] 张振克,吴瑞金,沈吉,等. 近2000年来云南洱海沉积记录的气候变化[J]. 海洋地质与第四纪地质,2001,21(2):31-35.

    Zhang Zhenke, Wu Ruijin, Shen Ji, et al. Lacustrine records showing climatic changes in Erhai Lake, Yunnan province since the past 2000 years[J]. Marine Geology & Quaternary Geology, 2001, 21(2): 31-35.
    [22] Bird B W, Lei Y B, Perello M, et al. Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir'pa Co, southeastern Tibet[J]. The Holocene, 2017, 27(4): 541-552.
    [23] Sinha A, Kathayat G, Cheng H, et al. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia[J]. Nature Communications, 2015, 6(1): 6309.
    [24] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic Climate[J]. Science, 2005, 308(5723): 854-857.
    [25] Sheng E G, Yu K K, Xu H, et al. Late Holocene Indian summer monsoon precipitation history at Lake Lugu, northwestern Yunnan province, southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 24-33.
    [26] Xu H, Zhou X Y, Lan J H, et al. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, southwestern China[J]. Quaternary Research, 2015, 83(2): 307-314.
    [27] Dearing J A, Jones R T, Shen J, et al. Using multiple archives to understand past and present climate-human-environment interactions: The Lake Erhai catchment, Yunnan province, China[J]. Journal of Paleolimnology, 2008, 40(1): 3-31.
    [28] 张振克,吴瑞金,沈吉,等. 近1800年来云南洱海流域气候变化与人类活动的湖泊沉积记录[J]. 湖泊科学,2000,12(4):297-302.

    Zhang Zhenke, Wu Ruijin, Shen Ji, et al. Lacustrine records of climatic change and human activities in the catchment of Erhai Lake, Yunnan province since the past 1800 years[J]. Journal of Lake Sciences, 2000, 12(4): 297-302.
    [29] Wu D, Zhou A F, Liu J B, et al. Changing intensity of human activity over the last 2,000 years recorded by the magnetic characteristics of sediments from Xingyun Lake, Yunnan, China[J]. Journal of Paleolimnology, 2015, 53(1): 47-60.
    [30] 葛全胜. 中国历朝气候变化[M]. 北京:科学出版社,2011:61-665.

    Ge Quansheng. The climate change in China during the past dynasties[M]. Beijing: Science Press, 2011: 61-665.
    [31] Zhang D D, Brecke P, Lee H F, et al. Global climate change, war, and population decline in recent human history[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19214-19219.
    [32] 沈立新,段成波. 北海湿地保护区植被类型及其环境状况的研究[J]. 西部林业科学,2004,33(4):13-16.

    Shen Lixin, Duan Chengbo. Study on vegetative types and environment status of Baihai wetland reserve[J]. Journal of West China Forestry Science, 2004, 33(4): 13-16.
    [33] Heiri O, Lotter A F, Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results[J]. Journal of Paleolimnology, 2001, 25(1): 101-110.
    [34] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474.
    [35] 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 中国科学(D辑):地球科学,1973(2):168-189.

    Zhu Kezhen. A preliminary study on the climatic fluctuations during the last 5000 years in China[J]. Science China (Seri. D): Earth Sciences, 1973(2): 168-189.
    [36] Mann M E, Jones P D. Global surface temperatures over the past two millennia[J]. Geophysical Research Letters, 2003, 30(15): 1820.
    [37] Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11,300 years[J]. Science, 2013, 339(6124): 1198-1201.
    [38] 赵文林,谢淑君. 中国人口史[M]. 北京:人民出版社,1988:649.

    Zhao Wenlin, Xie Shujun. Population history of China[M]. Beijing: People’s Publishing House, 1988: 649.
    [39] Liu X Q, Dong H L, Yang X D, et al. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 280(1/2/3/4): 276-284.
    [40] Xiao J L, Fan J W, Zhou L, et al. A model for linking grain-size component to lake level status of a modern clastic lake[J]. Journal of Asian Earth Sciences, 2013, 69: 149-158.
    [41] Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2008, 70(3): 412-425.
    [42] Xiao J L, Fan J W, Zhai D Y, et al. Testing the model for linking grain-size component to lake level status of modern clastic lakes[J]. Quaternary International, 2015, 355: 34-43.
    [43] Ning D L, Zhang E L, Sun W W, et al. Holocene Indian summer monsoon variation inferred from geochemical and grain size records from Lake Ximenglongtan, southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487: 260-269.
    [44] 申洪源,贾玉连,张红梅,等. 内蒙古黄旗海湖泊沉积物粒度指示的湖面变化过程[J]. 干旱区地理,2006,29(4):457-462.

    Shen Hongyuan, Jia Yulian, Zhang Hongmei, et al. Environmental change inferred from granular size character of lacustrine sediment in Inner Mongolia Huangqihai, during 8.0~2.2 ka BP[J]. Arid Land Geography, 2006, 29(4): 457-462.
    [45] 申慧彦,李世杰,于守兵,等. 青藏高原兹格塘错沉积物粒度组成及其环境记录的研究[J]. 第四纪研究,2007,27(4):613-619.

    Shen Huiyan, Li Shijie, Yu Shoubing, et al. Grain-size characteristics of sediments from the Zigetang Co Lake, Tibetan Plateau and their environmental implication[J]. Quaternary Sciences, 2007, 27(4): 613-619.
    [46] 叶远达,徐海,蓝江湖,等. 云南程海沉积物粒度对水深的指示意义[J]. 第四纪研究,2018,38(4):1007-1016.

    Ye Yuanda, Xu Hai, Lan Jianghu, et al. Sedimentary grain size at Lake Chenghai, Yunnan province: Indicator for water depth[J]. Quaternary Sciences, 2018, 38(4): 1007-1016.
    [47] Dean W E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods[J]. Journal of Sedimentary Research, 1974, 44(1): 242-248.
    [48] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261-289.
    [49] 沈吉,张恩楼,夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录[J]. 第四纪研究,2001,21(6):508-513.

    Shen Ji, Zhang Enlou, Xia Weilan. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1 000 years[J]. Quaternary Sciences, 2001, 21(6): 508-513.
    [50] 马学志,王永波,赵辰辰,等. 青藏高原东南部巴松措现代沉积过程及其对气候变化的响应[J]. 湖泊科学,2019,31(4):1169-1181.

    Ma Xuezhi, Wang Yongbo, Zhao Chenchen, et al. Modern sedimentary process of Lake Basomtso in the southeastern Tibetan Plateau and its response to climate change[J]. Journal of Lake Sciences, 2019, 31(4): 1169-1181.
    [51] 吴旭东,沈吉,汪勇. 湖光岩玛珥湖沉积物反映的全新世以来古环境演化[J]. 海洋地质与第四纪地质,2011,31(4):155-162.

    Wu Xudong, Shen Ji, Wang Yong. Holocene paleoenvironmental evolution of the Huguangyan Maar Lake[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 155-162.
    [52] 张芸,孔昭宸,倪健,等. 新疆草滩湖村湿地4550年以来的孢粉记录和环境演变[J]. 科学通报,2008,53(3):306-316.

    Zhang Yun, Kong Zhaochen, Ni Jian, et al. Pollen record and environmental evolution of Caotanhu wetland in Xinjiang since 4 550 cal. a BP[J]. Chinese Science Bulletin, 2008, 53(3): 306-316.
    [53] Mann M E, Zhang Z H, Hughes M K, et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13252-13257.
    [54] 郑景云,葛全胜,方修琦,等. 基于历史文献重建的近2000年中国温度变化比较研究[J]. 气象学报,2007,65(3):428-439.

    Zheng Jingyun, Ge Quansheng, Fang Xiuqi, et al. Comparison on temperature series reconstructed from historical documents in China for the last 2000 years[J]. Acta Meteorologica Sinica, 2007, 65(3): 428-439.
    [55] 王苏民,刘健,周静. 我国小冰期盛期的气候环境[J]. 湖泊科学,2003,15(4):369-376.

    Wang Sumin, Liu Jian, Zhou Jing. The climate of little ice age maximum in China[J]. Journal of Lake Sciences, 2003, 15(4): 369-376.
    [56] Cai Y J, Zhang H W, Cheng H, et al. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections[J]. Earth and Planetary Science Letters, 2012, 335-336: 135-144.
    [57] Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Nature, 2003, 300(5626): 1737-1739.
    [58] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the east Asian monsoon[J]. Nature, 2007, 445(7123): 74-77.
    [59] Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-Year Chinese cave record[J]. Science, 2008, 322(5903): 940-942.
    [60] Hillman A L, Yu J Q, Abbott M B, et al. Rapid environmental change during dynastic transitions in Yunnan province, China[J]. Quaternary Science Reviews, 2014, 98: 24-32.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(1)

Article Metrics

Article views(440) PDF downloads(80) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-09-02
  • Revised:  2019-11-19
  • Published:  2020-10-28

Climate Variation during the Past 2050 Years Recorded in Sediments from Beihai Wetland, Yunnan Province, and Its Potential Influence on Civilization Evolution

doi: 10.14027/j.issn.1000-0550.2019.100
Funds:

National Natural Science Foundation of China 41877282, 41861134030

“Practical Training Program” for Universities in Beijing, 01119530020029

Abstract: The variation of climate over the past 2 000 years is the key to understanding the mechanism of past global changes, and for investigating the correlation between human activity and natural environmental evolution, especially in southwestern China which is directly influenced by the summer monsoon. A 2 050⁃year continuous sediment core was recovered from the from Beihai Wetland, northwestern Yunnan province. Based on the age⁃depth model determined by radiocarbon dating, grain size and loss on ignition (LOI) data was used to reconstruct regional climate variation. This showed distinct variations since 2 050 cal. a B.P. The period between 2 050 cal. a B.P. and 1 400 cal. a B.P. was generally dry and cold, especially in the last 300 years of this stage. It then became warm and wet from 1 400 cal. a B.P. to 750 cal. a B.P., temporally consistent with the Medieval Warm Period (MWP). It was cold and dry during the Little Ice Age (LIA) from 750 cal. a B.P. to 300 cal. a B.P., the last 300 years of which was characterized by increasing temperature and moisture. A comparison with historical records from Yunnan showed that the settlements of the Nanzhao and Dali Kingdoms existed mainly in the warm and wet conditions of the MWP. In addition, the variation in population of Yunnan also showed a close correlation with changes in the climate. Both aspects have confirmed the general influence of natural climate change on the evolution of civilization.

GAO XiaoXue, HAN RuiChen, FAN HuTong, WANG YongBo, ZHAO Yan, SHEN Ji, LIU XingQi, WANG Yong. Climate Variation during the Past 2050 Years Recorded in Sediments from Beihai Wetland, Yunnan Province, and Its Potential Influence on Civilization Evolution[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1016-1025. doi: 10.14027/j.issn.1000-0550.2019.100
Citation: GAO XiaoXue, HAN RuiChen, FAN HuTong, WANG YongBo, ZHAO Yan, SHEN Ji, LIU XingQi, WANG Yong. Climate Variation during the Past 2050 Years Recorded in Sediments from Beihai Wetland, Yunnan Province, and Its Potential Influence on Civilization Evolution[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1016-1025. doi: 10.14027/j.issn.1000-0550.2019.100
  • 过去2 000年是衔接地质记录、历史文献资料和现代器测气候记录,进而预测未来人类生存环境变化的一个重要“时间窗”,对深入理解气候变化机制有着重要的科学意义[15]。近年来,在现代科学技术的支持下,利用树轮[6]、冰芯[7]、湖泊沉积物[8]及石笋[9]等记录获取了大量古气候演化记录[1011]。此外,由于水下沉积可以忠实地记录历史时期气候波动与流域环境变化过程,其沉积过程连续性好、分辨率高、信息量丰富,成为探讨过去气候变化重要的研究手段之一,在探讨不同时间尺度过去气候环境演化中取得了显著成果[1214]

    我国西南部的云南地区,受源于印度洋的夏季风、中纬度西风环流以及青藏高原局地气候的影响,形成了复杂多样的气候条件,使得该地区可以敏感地响应全球气候变化[15]。因此,在近年来国内外专家对云南高原湖泊沉积与环境演变进行了系统研究,并取得一系列重要研究成果[1619]。例如,泸沽湖草海地区沉积物孢粉分析研究表明,3 455 cal. a B.P.以来,泸沽湖区域的年均温变化趋势与全球气候变化的趋势基本一致[20]。洱海湖泊沉积物岩芯指标研究建立了近2 000年来流域气候变化序列,在此基础上恢复的区域气候演化模式与印度夏季风演化过程密切相关[21]。大量研究表明,在千年尺度上亚洲季风区气候演化主要呈现“暖湿—冷干”的水热组合模式,而在晚全新世阶段气候演化研究当中,仍存在一定的不一致性。同样受到印度夏季风的影响,青藏高原地区湖泊沉积物[22]以及贵州、印度的石笋记录呈现“暖湿—冷干”的气候组合模式[2324],然而近年来云南湖泊沉积物记录研究却发现“暖干—冷湿”的气候组合[2526]。因此,进一步建立该地区晚全新世气候演化序列,对于厘清区域气候演化的规律与机制具有重要意义。

    同时,全新世人类活动在云南地区诸多研究记录中均有所报道[16,27]。如洱海近1 800年来沉积物记录中磁化率、色素等指标的变化被认为可以有效地指示流域内的人类活动[28]。星云湖沉积物过去2 000年的沉积物磁学参数变化同样可作为人类活动记录的敏感指示[29]。与此同时,气候变化也被认为是影响人类文明发展尤其是朝代更替的重要因素之一[3031],进一步开展云南地区晚全新世阶段气候演化序列研究,探讨其与人类文明发展的相互关系具有重要意义。

    目前云南地区的研究多集中于高黎贡山的东侧,而其西侧地区由于不受山脉阻挡,受到印度夏季风的直接影响,可以更敏感地记录季风的演化历史,然而目前西侧的研究相对比较薄弱。因此,本研究以位于云南省腾冲县东北部的北海湿地为研究对象,利用AMS 14C年代建立沉积物的年代序列,通过对粒度、烧失量等指标的分析重建云南西部地区过去2 050年以来气候变化历史;并与中国以及全球不同的地区近2 000年来的气候记录进行对比分析,探讨该地区对全球气候变化的响应过程;同时结合历史文献记录,探讨气候变化对该地区人类文明发展的影响。

  • 腾冲北海湿地(25°07'32.0″ N,98°33'19.5″ E)位于云南省保山市腾冲县北海村,西临缅甸,三面环山,是一个较为封闭的盆地(图1a)。该盆地的面积约为16.29 km2,有北海湿地和青海湖两个主要水体,周边被开垦为农田,属高原火山堰塞湖生态系统。北海湿地面积约为0.46 km2,其中水面面积约为0.14 km2,有大片漂浮于水面的植物,当地称之为“草排”。盆地内平均水深6 m,大部分为沼泽泥炭沉积。北海湿地位于亚热带季风区,降水量丰富,根据腾冲气象站(1951—2017年)的气象记录,该地区年降水量变化范围为1 100~1 870 mm,年平均气温在14.1 ℃和15.1 ℃之间波动;同时,受印度夏季风的影响,夏季(5—9月)降水量占全年降水量的80%以上。湿地内植被以大量沼生和水生植物为主,如莎草科苔草属(Carex)、莎草属(Cyprus)等;盆地周边以森林植被为主,包括半湿润常绿阔叶林(高山栲Castanopsis delavayi为主)、中山湿性常绿阔叶林(刺斗石栎Lithocarpus ethinotholus为主)、落叶阔叶林(滇楸Catalpa fargesii Bur.f. duclouxii等)、针叶林(主要是云南松Pinus yunnanensis等)及灌草丛等[32]

    Figure 1.  (a) Location of Beihai Wetland and summer wind system in the study area; (b) Satellite image of Beihai Wetland and the coring site

  • 2011年夏,我们在北海湿地南部“草排”上(25°07'32.0″ N,98°33'19.5″ E)处利用重力采样器在水深1.5 m处采集到270 cm连续沉积物岩芯(HB1)(图1b);沉积物主要由灰棕色黏土和细粉砂组成,且上部含一定植物残体。并以1 cm为间隔对沉积物进行分样,共获取沉积物样品270个。

    为建立沉积物的年代序列,选取不同深度层位的5个样品用于AMS 14C测试,测年物质为植物残体及全有机质,年代学测试在新西兰Rafter放射性科学研究所及美国Beta放射性测年实验室完成。

  • 样品粒度分析以5 cm为间隔进行,共计取样54个。前处理过程如下:取0.5 g左右样品置于烧杯中,加入10 mL浓度为10%的过氧化氢(H2O2)溶液以去除样品中的有机质,反应完毕后加入10 mL浓度为10%的稀盐酸(HCl)溶液以去除样品中的碳酸盐,加入10 mL浓度为10%的六偏磷酸钠(NaPO36溶液作分散剂,并进行超声波震荡15~20 min,随后利用Malvern Mastersizer3000激光粒度仪进行测量。

  • 样品运回实验室后以2 cm的间隔取样进行烧失量的分析测试,共计取样135个。实验步骤如下[33]:1)将样品研磨后放入105 ℃电热干燥箱中烘干至恒重,称量并记录样品质量(M105);2)将样品在马弗炉中550 ℃燃烧4 h以去除样品中的有机质,冷却后称量残渣质量(M550);3)利用以下公式计算得到LOI550

    LOI550=(M105-M550)×100%/M105

    式中:LOI550是550 ℃时烧失量的百分比,M105是干样品质量,M550是550 ℃加热后残渣的质量。

  • 利用AMS 14C法测得的5个不同深度沉积物年代结果随深度变大逐渐变老,且呈现出较好的线性关系,表明整个钻孔沉积环境相对稳定(图2表1)。同时,基于植物残体及全有机质样品获取的年代结果具有良好的线性关系,表明该沉积物岩芯样品的年代学结果并没有受到“碳库效应”影响。随后,利用Bacon模型对5个AMS 14C年代利用Intcal 13数据库进行日历年龄校正并插值以建立沉积物的年代学序列,钻孔270 cm深度处的年龄为2 050 cal. a B.P.[34]

    Figure 2.  Bacon age⁃depth model for Beihai Wetland based on AMS 14C results

    实验室编号 深度/cm 测年材料 14C年龄/a B.P. 日历年龄/cal. a B.P.
    Beta⁃491888 14 植物残体 290±30 349~457
    Beta⁃493799 56 植物残体 750±30 664~727
    Beta⁃496017 119 植物残体 980±30 796~875
    NZA38015 183 全有机质 1 508±15 1 349~1 411
    NZA38016 233 全有机质 1 753±20 1 607~1 715

    Table 1.  AMS 14C dating results of Beihai Wetland

  • 北海湿地沉积物整体上以粒径范围在4~16 μm的细粉砂为主,占沉积物样品的35%以上,最高可达近60%(图3b)。其次,中粉砂(16~32 μm)和黏土(<4 μm)组分分别占沉积物的20%左右(图3a,c)。相比之下,粗颗粒(>32 μm)组分仅占沉积物组成的10%左右,呈现出明显的阶段性波动变化,最高可达近20%(图3d)。沉积物中值粒径在10 μm至35 μm之间波动变化,且与粗颗粒组分(>32 μm)变化一致:在2 050 cal. a B.P.~1 700 cal. a B.P.、1 400 cal. a B.P.~750 cal. a B.P.以及350 cal. a B.P.至今3个时段内粗颗粒组分含量较低,中值粒径偏小;相反,在1 700 cal. a B.P.~1 400 cal. a B.P.和750 cal. a B.P.~350 cal. a B.P.两个时间段内粗颗粒组分含量明显偏高,中值粒径偏粗(图3e)。

    Figure 3.  Grain size composition of samples from Beihai Wetland and stable oxygen isotope record from Dongge Cave[24]

    腾冲北海湿地沉积物有机质含量(LOI550)整体较高,在15.5%~58.6%之间变化,平均值30.6%,且呈现出明显的阶段性变化(图4a)。在2 050 cal. a B.P.~1 400 cal. a B.P.阶段,烧失量在28.6%~38.0%之间变化,整体含量较为稳定,变化不明显。随后在1 400 cal. a B.P.~750 cal. a B.P.阶段,烧失量较前一阶段明显升高,且在1 050 cal. a B.P.前后出现峰值高达58.6%。自750 cal. a B.P.以来,烧失量急剧降低至20.0%以下,且含量变化波动明显,仅在最近200年时段内含量略有升高。

    Figure 4.  (a) Variation of LOI of samples from Beihai Wetland; (b) temperature variations during the past 2000 years based on historical documents and proxies based reconstructions (c) China; (d) Northern Hemisphere; and (e) whole globe. (f) Population of Yunnan (logarithmic base 10 )

  • 沉积物粒度组成是沉积环境尤其是水动力条件的直接反映,可以有效地指示沉积过程的变化,在古气候及古环境演化研究中得到广泛应用[12,3940]。然而,沉积物中粒度组成的变化常受物质搬运及沉积过程的综合影响:一方面,在湿润的气候条件下,流域内地表径流的增加导致水动力条件增强,可以搬运更多粗颗粒物质导致沉积物颗粒组成偏粗[41];另一方面,在干旱的气候条件下,水体水位下降,水体中心位置更靠近岸边,同样会因水动力条件增强而导致沉积物颗粒偏粗[40,4243]。本次所采集的沉积物岩芯位于腾冲北海湿地的中心位置,且流域内无明显径流发育,粗颗粒物质很难搬运至该位置沉积,因而沉积物以颗粒较细的组分(细粉砂、黏土和中粉砂)为主(图3)。然而,在相对干旱的时期,湿地水体水位下降,水域面积缩小,采样点位置更靠近岸边,使得较粗颗粒组分(>32 μm组分)更易于搬运至采样点位置沉积,含量升高。前人的研究发现,在深度较浅的湖泊或者水体中,沉积物的粒度组成受水位变化的影响明显,如内蒙古的黄旗海[44]、青藏高原的兹格塘措[45]以及云南的程海[46]记录中均有报道。近期,位于云南省西南部的西门龙潭沉积物粒度分析也表明,大于32 μm的颗粒组分主要反映湖岸至采样点位置的近距离搬运过程,进而可以指示湖泊面积及水位变化[43]。因此,北海湿地沉积物中粗颗粒组分(>32 μm)以及中值粒径的变化可以有效地指示区域湿度的变化,当气候变干时,水位下降,粗颗粒组分(>32 μm)含量增加,中值粒径变粗;反之,在气候湿润时期,粗颗粒组分含量降低,中值粒径变细。

    烧失量是一种广泛用于测定沉积物中有机质和碳酸盐含量的方法[47],已有研究发现,550 ℃烧失量与样品中有机质含量之间相关性显著,在一定程度上可以有效地反映沉积物中有机质的含量变化,因而在重建过去气候环境演化历史当中发挥了重要作用[33]。沉积物中所保存的有机质含量,可以反映湖泊或湿地自身初级生产力强弱,进而揭示区域气候演化历史[48]。比如,对青海湖近千年来的沉积物进行分析后发现,其有机质含量可以有效地反映区域温度变化,沉积物中有机质含量较高时对应相对温暖的时期[49]。对青藏高原东南部巴松措过去60年沉积物研究也发现,其沉积物中有机碳含量变化与该地区气象站点记录的年均温度变化呈现出较高的相关性[50]。此外,广东湖光岩玛珥湖沉积物研究记录也表明,烧失量的波动主要反映流域生产力水平的变化[51],而新疆草滩湖村湿地沉积物烧失量也指示了气候波动导致的有机碳含量变化以及相应的植被盖度变化[52]。对于北海湿地,其沉积物中较高的有机质含量(高达58.6%)主要源于湿地内大量水生植物,其变化可反映湿地自身初级生产力的大小。由于腾冲地区降水较为丰富,湿地初级生产力在一定程度上受温度变化控制明显。如图4所示,北海湿地沉积物2 050年来LOI550记录的有机质含量变化与过去2 000年温度变化记录均呈现出较为一致的变化趋势[11,3537],进一步说明该沉积物中有机质含量变化主要受区域温度变化控制。在气候温暖时期,利于植物生长,湿地初级生产力提高,有机质含量增加,烧失量偏高;反之,在气候寒冷时期,烧失量偏低。

  • 结合AMS 14C年代学序列,根据沉积物烧失量及粒度组成的变化,北海地区过去2 050年气候演化主要经历了以下几个阶段:

    (1) 在2 050 cal. a B.P.~1 400 cal. a B.P.阶段,烧失量LOI550整体变化稳定,表明该时间段内区域温度变化不明显,在1 500 cal. a B.P.前后略有降低,指示该时段内区域温度有所降低(图4a);另一方面,在本阶段内沉积物粒度组成及中值粒径也呈现出较为明显的变化,尤其是在温度相对较低的1 700cal. a B.P.~1 400 cal. a B.P.时段内,粗颗粒组分含量明显增加,中值粒径变粗,指示北海湿地水位下降(图3d,e)。因此,该阶段区域气候整体寒冷干旱,尤其是在后期的300年时间段内。

    (2) 在1 400 cal. a B.P.~750 cal. a B.P.阶段,北海湿地沉积物LOI550较前一阶段明显升高且达到钻孔的最高值,除在其后期出现小幅波动外整体偏高,表明湿地生态系统初级生产力提高(图4a);同时,沉积物中粗颗粒组分含量在这一阶段明显降低,沉积物中值粒径变细,表明湿地水位上升,水域面积扩大(图3e)。因而,该阶段气候相对温暖湿润。

    (3) 随后,在750 cal. a B.P.~300 cal. a B.P.阶段内,烧失量大幅下降至钻孔的最低值,表明湿地初级生产力明显降低,指示一次较为剧烈的降温过程;沉积物粒度组成也发生明显变化,粗颗粒组分含量再次增加导致中值粒径变粗,表明湿地水位再次大幅降低。由此可见,这一时期该区域经历了一次明显的气候波动,整体环境变得寒冷干旱。

    (4) 300 cal. a B.P.以来,沉积物烧失量相比前一阶段略有升高,粗颗粒组分含量明显减少,中值粒径变细,表明湿地初级生产力增加,水位升高,区域气温回升且降水量增加,气候温暖湿润。

  • 过去2 000年来全球气温变化经历了明显的波动,大量记录表明在百年时间尺度上北半球温度变化呈现出较为一致的趋势,经历了黑暗冷期(Dark Age Cold Period, DACP)、中世纪暖期(Medieval Warm Period, MWP)、小冰期(Little Ice Age,LIA)以及现代暖期(Current Warm Period, CWP)等气候阶段[4,53]。北海湿地沉积物烧失量反应的过去2 050年温度变化趋势与其他研究结果具有较好的一致性,包括根据古气候记录再分析获取的全球[37]及北半球[51]尺度的温度变化,基于树轮、冰芯、沉积物记录以及文献资料建立的中国2 000年温度变化[11],以及利用物候学恢复的中国近代温度变化[35,54]等。北海湿地沉积物烧失量记录在1 500 cal. a B.P.附近出现低值,表明当时区域经历一段寒冷时期,在时间上与广泛报道的黑暗冷期一致(图4)。随后,进入中世纪暖期,全球温度迅速上升,气候温暖,北海湿地初级生产力增加,沉积物中保存的有机质含量升高进而导致烧失量达到钻孔的最高值(图4)。此后,小冰期作为距今最近的典型全球性冷气候事件,备受研究学者的关注,在不同尺度温度记录中均有明显变化[55],受寒冷气候的影响,湿地初级生产力较低,北海湿地沉积物烧失量在该时段出现钻孔最低值(图4)。

    由于北海湿地受印度夏季风影响明显,区域降水变化与夏季风强度密切相关。大量研究表明,洞穴石笋的氧同位素记录可以有效地指示降水以及季风强度的变化,在恢复过去环境当中发挥重要作用[24,5657]。根据贵州荔波董哥洞石笋氧同位素记录,在过去2 050年间季风强度波动变化,在1 700 cal. a B.P.~1 400 cal. a B.P.和750 cal. a B.P.~300 cal. a B.P.阶段氧同位素正偏,指示季风强度相对较弱[24]图3f)。北海湿地沉积物粒度组成变化与夏季风强度变化相一致,在季风相对减弱的时段(1 700 cal. a B.P.~1 400 cal. a B.P.和750 cal. a B.P.~300 cal. a B.P.),由于降水减少,湿地水位下降,沉积物中粗颗粒物质增加导致中值粒径变粗。相反,随着季风的增强,在2 050 cal. a B.P.~1 700 cal. a B.P.、1 400 cal. a B.P.~750 cal. a B.P.以及300 cal. a B.P.以来的时间,季风降水的增加造成湿地水位上涨,沉积物粒度变细。

    综上,北海湿地沉积物烧失量、粒度指标分析表明,该地区过去2 050年气候演化敏感的记录了其对全球温度变化以及印度夏季风的演化的响应过程。另一方面,北海湿地沉积物记录的过去2 050年气候演化整体上呈现出暖湿—冷干的水热组合模式,在黑暗冷期及小冰期时段内气候寒冷干旱,在中世纪暖期及现代暖期,气候相对温暖湿润。之前研究发现,印度中部石笋以及青藏高原东南部的冰芯、树轮记录在中世纪暖期气候偏湿,而在小冰期明显偏干[67,10,23]。由于北海湿地位于云南省的西侧,在一定程度上区域气候变化受印度夏季风更加直接的控制,局地地形等因素对其气候模式影响较小,形成与云南高原中部地区不同的水热组合模式。

  • 云南地区人类文明发展历史悠久,湖泊沉积物中记录的人类活动可以追溯到6 000多年以前[16],大量研究均揭示该地区人类活动在过去数千年内可能通过改变区域植被组成、流域侵蚀过程等在沉积物序列中保存证据,尤其是在近2 000年时段内人类活动强度明显加剧[29]。另一方面,自然气候环境的变化深刻影响着人类社会文明的发展。例如,湖光岩玛珥湖沉积物记录的季风演化历史表明,1 080 cal. a B.P.时期季风衰退造成的气候突变可能是引起中国唐朝的衰落的原因[58];万象洞石笋氧同位素记录表明过去1 810年气候变化可能在一定程度上驱动了中国历史朝代的更替[59];近期研究则发现,云南高原星云湖沉积物记录了历史朝代更替时的快速环境变迁[60]。在云南历史上,南诏和大理是我国西南地区具有重要影响的民族政权,分别在约1 200 cal. a B.P.~1 050 cal. a B.P.及1 000~850 cal. a B.P.统治我国西南地区。北海湿地气候演化记录显示,在该时段,气候相对温暖湿润,适宜的自然环境在一定程度上促进了该地区农业生产的发展,促使该地区文明政权得到建立。另一方面,据历史资料记载,云南省人口数量在过去2 000年呈现波动变化(图4f),其整体变化趋势与北海湿地沉积物记录的区域气候演化记录具有很好的一致性[38]。在相对寒冷、干旱的时期(1 700 cal. a B.P.~1 400 cal. a B.P.和750 cal. a B.P.~300 cal. a B.P.),由于自然环境较为恶劣,人类的发展受到限制,人口数量较低;而在相对温暖、湿润的气候时期(1 400 cal. a B.P.~750 cal. a B.P.,尤其是300 cal. a B.P.以来),人口数量大幅增加。

  • 通过对云南省西部北海湿地沉积物进行分析研究发现,沉积物烧失量、粒度组成可以有效地指示该地区温度、湿度的变化。在AMS 14C年代序列基础上,建立了该地区过去2 050年气候变化过程:在2 050 cal. a B.P.~1 400 cal. a B.P.及750 cal. a B.P.~300 cal. a B.P.时段内气候寒冷干旱,在1 400 cal. a B.P.~750 cal. a B.P.及300 cal. a B.P.以来气候相对温暖湿润。整体上,北海湿地沉积物记录的区域气候演化呈现出暖湿—冷干的水热组合模式,可能是由于该地区受印度夏季风控制更为显著。此外,对比历史文献资料发现,云南地区南诏、大理政权的繁盛均处于气候相对温暖湿润的时期,尤其是云南省近2 000年来人口数量与气候演化呈现出较为一致的变化趋势,在一定程度上指示了自然气候环境对人类文明发展的影响。

Reference (60)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return