Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

HUANG WenAo, ZHAO XiaoMing, TAN ChengPeng, GE JiaWang, FENG ShuangQi, LI ChenXi, LU WenMing. Sedimentary Model Analysis of Triassic Deep⁃water Channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075. doi: 10.14027/j.issn.1000-0550.2019.097
Citation: HUANG WenAo, ZHAO XiaoMing, TAN ChengPeng, GE JiaWang, FENG ShuangQi, LI ChenXi, LU WenMing. Sedimentary Model Analysis of Triassic Deep⁃water Channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075. doi: 10.14027/j.issn.1000-0550.2019.097

Sedimentary Model Analysis of Triassic Deep⁃water Channels in Zhihelong, West Qinling Mountains

doi: 10.14027/j.issn.1000-0550.2019.097
Funds:

National Natural Science Foundation of China 41872142, 41602145

National Science and Technology Major Project 2016ZX05033⁃003⁃005

  • Received Date: 2019-06-17
  • Rev Recd Date: 2019-11-12
  • Publish Date: 2020-10-28
  • The Triassic strata of West QinLing Mountains are mainly composed of deep⁃water deposits. This study takes three well⁃exposed profiles in the Zhihelong area as the research objects and comprehensively summarizes six types of lithofacies by types of gravity flow and sedimentary phenomena under hydrostatic conditions. The six lithofacies are slump facies (F1), debris⁃flow facies (F2), ultra⁃high⁃density flow facies (F3), high⁃density turbidity current facies (F4), low⁃density turbidity current facies (F5) and deep⁃sea mudstone facies( F6). By tracking and correlation of three outcrop profiles, and combining the analysis of lithofacies proportion and sand stacking style in the different sedimentary environments, three types of sedimentary units were recognized: confined channel, weakly⁃confined channel and levee deposit. Confined channels feature complex amalgamation of sands, in which ultra⁃high⁃density flow facies are predominant, with sporadic debris⁃flow facies. In weakly⁃confined channels, the amalgamation of sands is relatively regular, within which ultra⁃high⁃density flow facies are dominant, with sporadic low⁃density turbidity current facies. Levee deposits are characterized by sand/mud interbeds (total thickness 15 m), dominated by low⁃density turbidity current facies and deep⁃sea mudstone facies. Finally, this study proposes a sedimentary evolution model of deepwater channels in the study area. Channels are straight and narrow in the early confined background, accompanied by complex sand amalgamation. In the middle stage of decreased confinement, the sinuosities and widths of the channels increase, commonly with the occurrence of overbank deposits and complex sand amalgamation. In the late stage, as the background becomes more weakly confined, levee deposits tend to occur on both sides of channels and sand amalgamation becomes relatively regular. This sedimentary evolution model of deepwater channels was inferred from observation of outcrops, and to some degree reconstructs the evolution and development process of gravity flows and is a significant reference for similar studies around the world.
  • [1] Shanmugam G. 深水砂体成因研究新进展[J]. 石油勘探与开发,2013,40(3):294-301.

    Shanmugam G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 294-301.
    [2] 裴羽,何幼斌,李华,等. 高密度浊流和砂质碎屑流关系的探讨[J]. 地质评论,2015,61(6):1281-1292.

    Pei Yu, He Youbin, Li Hua, et al. Discuss about relationship between high-density turbidity current and sandy debris flow[J]. Geological Review, 2015, 61(6): 1281-1292.
    [3] 张景军,李凯强,王群会,等. 渤海湾盆地南堡凹陷古近系重力流沉积特征及模式[J]. 沉积学报,2017,35(6):1241-1253.

    Zhang Jingjun, Li Kaiqiang, Wang Qunhui, et al. Sedimentary characteristics and model of Paleogene gravity flow in Nanpu Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1241-1253.
    [4] 朱筱敏,谈明轩,董艳蕾,等. 当今沉积学研究热点讨论:第20届国际沉积学大会评述[J]. 沉积学报,2019,37(1):1-16.

    Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, et al. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress[J]. Acta Sedimentologica Sinica, 2019, 37(1): 1-16.
    [5] Moody J D, Pyles D R, Clark J, et al. Quantitative outcrop characterization of an analog to weakly confined submarine channel systems: Morillo 1 member, Ainsa Basin, Spain[J]. AAPG Bulletin, 2012, 96(10): 1813-1841.
    [6] 张文彪,段太忠,刘志强,等. 深水浊积水道沉积构型模式及沉积演化:以西非M油田为例[J]. 地球科学,2017,42(2):273-285.

    Zhang Wenbiao, Duan Taizhong, Liu Zhiqiang, et al. Architecture model and sedimentary evolution of deepwater turbidity channel: A case study of M oilfield in West Africa[J]. Earth Science, 2017, 42(2): 273-285.
    [7] 赵晓明,刘丽,谭程鹏,等. 海底水道体系沉积构型样式及控制因素:以尼日尔三角洲盆地陆坡区为例[J]. 古地理学报,2018,20(5):825-840.

    Zhao Xiaoming, Liu Li, Tan Chengpeng, et al. Styles of submarine-channel architecture and its controlling factors: A case study from the Niger delta basin slope[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(5): 825-840.
    [8] 张磊夫,吴陈君,苏洋,等. 爱尔兰克莱尔盆地Ross Sandstone组深水浊积岩露头高分辨率层序地层学[J]. 石油与天然气地质,2017,38(1):165-174.

    Zhang Leifu, Wu Chenjun, Su Yang, et al. High resolution sequence stratigraphy of the Ross Sandstone deepwater turbidite outcrops in the Clare Basin, Ireland[J]. Oil & Gas Geology, 2017, 38(1): 165-174.
    [9] 张娜,姜涛,张道军. 琼东南盆地海底地形地貌特征及其对深水沉积的控制[J]. 海洋地质与第四纪地质,2012,32(5):27-33.

    Zhang Na, Jiang Tao, Zhang Daojun. Topography and its control over deepwater sedimentation in the Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 27-33.
    [10] 冯益民,曹宣铎,张二朋,等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质,2003,36(1):1-10.

    Feng Yimin, Cao Xuanduo, Zhang Erpeng, et al. Tectonic evolution framework and nature of the West Qinling orogenic belt[J]. Northwestern Geology, 2003, 36(1): 1-10.
    [11] 塔斯肯,李江海,李维波,等. 三叠纪全球板块再造及岩相古地理研究[J]. 海洋地质与第四纪地质,2014,34(5):153-162.

    Taskyn A, Li Jianghai, Li Weibo, et al. Research on global paleo-plate reconstuction and lithofacies palaeogeography in Triassic[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 153-162.
    [12] 赖旭龙,殷鸿福,杨逢清. 秦岭三叠纪古海洋再造[J]. 地球科学——中国地质大学学报,1995,20(6):648-656.

    Lai Xulong, Yin Hongfu, Yang Fengqing. Reconstruction of the Qinling Triassic paleo-ocean[J]. Earth Science——Journal of China University of Geosciences, 1995, 20(6): 648-656.
    [13] 田向盛,王建飞,赵志成,等. 甘肃加甘滩金矿床地质特征及找矿标志[J]. 甘肃地质,2016,25(1):25-31.

    Tian Xiangsheng, Wang Jianfei, Zhao Zhicheng, et al. Geological characteristics and prospecting criteria of Jiagantan gold deposit, Gansu[J]. Gansu Geology, 2016, 25(1): 25-31.
    [14] 严琼,郑崔勇,王建良. 青海省泽库县尼马龙卡钨矿地质特征及找矿前景[J]. 甘肃冶金,2017,39(5):83-85.

    Yan Qiong, Zheng Cuiyong, Wang Jianliang. The geological characteristics and ore-searching prospection of Nimalongda Tungsten in Zeku county in Qinghai province[J]. Gansu Metallurgy, 2017, 39(5): 83-85.
    [15] 赵江天,杨逢清. 甘肃合作地区早、中三叠世盆地一斜坡沉积环境分析[J]. 岩相古地理,1991(5):27-34.

    Zhao Jiangtian, Yang Fengqing. Early and Middle Triassic basin-slope environments in the Hezuo region, Gansu[J]. Sedimentary Facies and Palaeogeography, 1991(5): 27-34.
    [16] Kuenen H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 97-127.
    [17] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep-water sedimentation. California: SEPM Pacific Section Short Course, 1973: 1-38.
    [18] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Petrology, 1982, 52(1): 279-297.
    [19] Shanmugam G. Ten turbidite myths[J]. Earth-Science Reviews, 2002, 58(3/4): 311-341.
    [20] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
    [21] Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
    [22] 李林,曲永强,孟庆任,等. 重力流沉积:理论研究与野外识别[J]. 沉积学报,2011,29(4):677-688.

    Li Lin, Qu Yongqiang, Meng Qingren, et al. Gravity flow sedimentation: Theoretical studies and field identification[J]. Acta Sedimentologica Sinica, 2011, 29(4): 677-688.
    [23] 孙宁亮,钟建华,王书宝,等. 鄂尔多斯盆地南部三叠系延长组深水重力流沉积特征及其石油地质意义[J]. 古地理学报,2017,19(2):299-314.

    Sun Ningliang, Zhong Jianhua, Wang Shubao, et al. Sedimentary characteristics and petroleum geologic significance of deep-water gravity flow of the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(2): 299-314.
    [24] 操应长,王思佳,王艳忠,等. 滑塌型深水重力流沉积特征及沉积模式:以渤海湾盆地临南洼陷古近系沙三中亚段为例[J]. 古地理学报,2017,19(3):419-432.

    Cao Yingchang, Wang Sijia, Wang Yanzhong, et al. Sedimentary characteristics and depositional model of slumping deep-water gravity flow deposits: A case study from the middle member 3 of Paleogene Shahejie Formation in Linnan subsag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2017, 19(3): 419-432.
    [25] 袁珍,李文厚,范萌萌,等. 深水块状砂岩沉积特征及其成因机制探讨:以鄂尔多斯盆地东南缘上三叠统长6油层组为例[J]. 地质科技情报,2011,30(4):43-49.

    Yuan Zhen, Li Wenhou, Fan Mengmeng, et al. Genetic mechanism and sedimentary features of deep water massive sandstone: A case study of the Upper Triassic sandstones of Chang 6 Formation in the southeast of Ordos Basin[J]. Geological Science and Technology Information, 2011, 30(4): 43-49.
    [26] 廖纪佳,朱筱敏,邓秀芹,等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘,2013,20(2):29-39.

    Liao Jijia, Zhu Xiaomin, Deng Xiuqin, et al. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong area in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 29-39.
    [27] Mohrig D, Ellis C, Parker G, et al. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 1998, 110(3): 387-394.
    [28] Dasgupta P. Sediment gravity flow—the conceptual problems[J]. Earth-Science Reviews, 2003, 62(3/4): 265-281.
    [29] Hamilton E L. Physical principles of sedimentology. A readable textbook for beginners and experts: K.J. Hsü. Springer-Verlag, Berlin, Heidelberg, New York, 1989, x + 233 pp., DM 42 (paperback), ISBN 3-540-51268-3[J]. Marine Geology, 1993, 110(1/2): 187-188.
    [30] Scully M E, Friedrichs C T, Wright L D. Application of an analytical model of critically stratified gravity-driven sediment transport and deposition to observations from the Eel River continental shelf, northern California[J]. Continental Shelf Research, 2002, 22(14): 1951-1974.
    [31] Johansson M, Stow D A V. A classification scheme for shale clasts in deep water sandstones[J]. Geological Society, London, Special Publications, 1995, 94(1): 221-241.
    [32] Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: A mechanism for their emplacement[J]. Sedimentary Geology, 1988, 58(1): 47-61.
    [33] 张兴阳,罗顺社,何幼斌. 沉积物重力流—深水牵引流沉积组合:鲍玛序列多解性探讨[J]. 江汉石油学院学报,2001,23(1):1-4.

    Zhang Xingyang, Luo Shunshe, He Youbin. Deposit assemblage of gravity flow and traction current in deep water: A study of the multiple interpretation of the Bouma Sequence[J]. Journal of Jianghan Petroleum Institute, 2001, 23(1): 1-4.
    [34] Aalto K R. Sedimentology of a mélange: Franciscan of Trinidad, California[J]. Journal of Sedimentary Petrology, 1976, 46(4): 913-929.
    [35] Sohn Y K. On traction-carpet sedimentation[J]. Journal of Sedimentary Research, 1997, 67(3): 502-509.
    [36] Arnott R W C, Hand B M. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain[J]. Journal of Sedimentary Petrology, 1989, 59(6): 1062-1069.
    [37] Sanders J E. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[M]//Middleton G V. Primary sedimentary structures and their hydrodynamic interpretation. Tulsa: SEPM Society for Sedimentary Geology, 1965: 192-219.
    [38] Talling P J, Paull C K, Piper D J W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125: 244-287.
    [39] 张昌民,朱锐,李少华,等. 广西潞城深水沉积地层构型特征及其石油地质意义[J]. 岩性油气藏,2015,27(4):1-10.

    Zhang Changmin, Zhu Rui, Li Shaohua, et al. Stratigraphic configuration characteristics and their geologic significance of deep water deposits of Lucheng outcrop, Guangxi[J]. Lithologic Reservoirs, 2015, 27(4): 1-10.
    [40] Bádenas B, Aurell M, Gröcke D R. Facies analysis and correlation of high-order sequences in middle-outer ramp successions: Variations in exported carbonate on basin-wide δ13Ccarb (Kimmeridgian, NE Spain)[J]. Sedimentology, 2005, 52(6): 1253-1275.
    [41] Mutti E, Normark W R. An integrated approach to the study of turbidite systems[M]//Weimer P, Link M H. Seismic facies and sedimentary processes of submarine fans and turbidite systems. New York: Springer, 1991: 75-106.
    [42] Mohrig D, Buttles J. Deep turbidity currents in shallow channels[J]. Geology, 2007, 35(2): 155-158.
    [43] Posamentier, Henry W. A linked shelf-edge delta and slope-channel turbidite system: 3D seismic case study from the eastern gulf of Mexico[M]//Roberts H H, Rosen N C, Fillon R F, et al. Shelf margin deltas and linked down slope petroleum systems: Global significance and future exploration potential. Gulf Coast Section SEPM Foundation, 23rd Annual Bob F. Perkins Research Conference. Texas: GCSSEPM Proceedings, 2003: 115-134.
    [44] Posamentier H W, Walker R G. Deep-water turbidites and submarine fans[M]//Posamentier H W, Walker R G. Facies models revisited. Tulsa: SEPM Society for Sedimentary Geology, 2006: 399-520.
    [45] 蒋恕,王华,Weimer P. 深水沉积层序特点及构成要素[J]. 地球科学——中国地质大学学报,2008,33(6):825-833.

    Jiang Shu, Wang Hua, Weimer P. Sequence stratigraphy characteristics and sedimentary elements in deepwater[J]. Earth Science—Journal of China University of Geosciences, 2008, 33(6): 825-833.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)  / Tables(1)

Article Metrics

Article views(793) PDF downloads(124) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-06-17
  • Revised:  2019-11-12
  • Published:  2020-10-28

Sedimentary Model Analysis of Triassic Deep⁃water Channels in Zhihelong, West Qinling Mountains

doi: 10.14027/j.issn.1000-0550.2019.097
Funds:

National Natural Science Foundation of China 41872142, 41602145

National Science and Technology Major Project 2016ZX05033⁃003⁃005

Abstract: The Triassic strata of West QinLing Mountains are mainly composed of deep⁃water deposits. This study takes three well⁃exposed profiles in the Zhihelong area as the research objects and comprehensively summarizes six types of lithofacies by types of gravity flow and sedimentary phenomena under hydrostatic conditions. The six lithofacies are slump facies (F1), debris⁃flow facies (F2), ultra⁃high⁃density flow facies (F3), high⁃density turbidity current facies (F4), low⁃density turbidity current facies (F5) and deep⁃sea mudstone facies( F6). By tracking and correlation of three outcrop profiles, and combining the analysis of lithofacies proportion and sand stacking style in the different sedimentary environments, three types of sedimentary units were recognized: confined channel, weakly⁃confined channel and levee deposit. Confined channels feature complex amalgamation of sands, in which ultra⁃high⁃density flow facies are predominant, with sporadic debris⁃flow facies. In weakly⁃confined channels, the amalgamation of sands is relatively regular, within which ultra⁃high⁃density flow facies are dominant, with sporadic low⁃density turbidity current facies. Levee deposits are characterized by sand/mud interbeds (total thickness 15 m), dominated by low⁃density turbidity current facies and deep⁃sea mudstone facies. Finally, this study proposes a sedimentary evolution model of deepwater channels in the study area. Channels are straight and narrow in the early confined background, accompanied by complex sand amalgamation. In the middle stage of decreased confinement, the sinuosities and widths of the channels increase, commonly with the occurrence of overbank deposits and complex sand amalgamation. In the late stage, as the background becomes more weakly confined, levee deposits tend to occur on both sides of channels and sand amalgamation becomes relatively regular. This sedimentary evolution model of deepwater channels was inferred from observation of outcrops, and to some degree reconstructs the evolution and development process of gravity flows and is a significant reference for similar studies around the world.

HUANG WenAo, ZHAO XiaoMing, TAN ChengPeng, GE JiaWang, FENG ShuangQi, LI ChenXi, LU WenMing. Sedimentary Model Analysis of Triassic Deep⁃water Channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075. doi: 10.14027/j.issn.1000-0550.2019.097
Citation: HUANG WenAo, ZHAO XiaoMing, TAN ChengPeng, GE JiaWang, FENG ShuangQi, LI ChenXi, LU WenMing. Sedimentary Model Analysis of Triassic Deep⁃water Channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075. doi: 10.14027/j.issn.1000-0550.2019.097
  • 随着全球深水油气勘探开发的不断发展,目前深水沉积已成为当今沉积学领域研究的重点与热点[14]。2012年,Moody et al. [5]基于野外露头资料提出将深水水道划分为限制性水道、低限制性水道及非限制性水道——朵体体系三种类型。近年来,国内学者专家多借助浅层高频地震资料对限制性水道、低(半、弱)限制性水道、非限制性水道的外部形态及内部结构均做出可观的研究成果[67]。而地震资料分辨率受多方面因素的影响,使得其多解性较强,难以较为有效地预测和对比沉积时间短、规模较小的砂体,造成其解释结果和准确度需要进一步探讨与验证[8]

    相反,野外深水露头对水道沉积体系的研究有着直观性的突出优势,相对地震资料具有更高的分辨率。本文以西秦岭甘南直合隆地区出露较好的三处早中三叠世隆务河组浊积岩露头剖面为例,通过对剖面的实地考察、测量、解剖,总结能直接反映沉积环境的岩石相类型。从流动机制和沉降机制上,对重力流的分类方式进行了说明。从宏观角度上对该套沉积砂体的切叠关系进行分析并结合剖面追踪对比结果,重点探讨了该地区的深水水道沉积演化模式。可以有效验证斜坡——深海平原过渡段水道沉积体系的地震资料解释成果[9],为后续水道沉积演化模式的研究提供参考基础及模型指导。

  • 三叠纪时期,扬子板块与华北板块逐渐拼合,最终发生碰撞形成秦岭造山带(图1a)。在古特提斯洋前陆逆冲带的作用下,西秦岭海盆发生强烈的伸展作用,形成三叠纪裂陷槽,裂陷槽中心位于甘肃合作至陕西凤县一线( 2 2 [1012]图1b)。区域构造变形强烈,褶皱、断裂带普遍发育。主断裂构造为向东延伸入陕西,向西经过同仁延伸入青海整体呈NWW向的夏河—合作区域性逆冲推覆断裂带[13]。研究区位于夏河—合作断裂带的南西方向,靠近桑科南—格里那断裂(图1c)。隶属于西秦岭褶皱带,主要为三叠系地层,出露早中三叠世隆务河组深水沉积露头。裂陷槽中心发育深海槽盆碎屑岩沉积( 2 2 ),往北逆着盆地物源搬运方向依次发育斜坡浊积岩沉积( 2 2 )和华北地台边缘海湾沉积(Ⅰ1[12]图1b)。

    Figure 1.  Outline of regional geological setting and geographical position of the study area (modified from Taskyn et al. [11], Lai et al. [12]

    整体区域内早中三叠世隆务河组和中三叠统古浪堤组地层共同组成倒转背斜构造,轴向北西——南东。核部出露地层为隆务河组,两翼出露古浪堤组,两翼地层倾向北——北东,南翼为倒转翼[14]。早中三叠世隆务河组常见灰绿色—灰黑色—黑灰色长石石英砂岩,部分夹薄层灰岩、泥灰岩及断续分布的砾石,在其下岩层组部分发育深灰色泥岩、粉砂质板岩[15]。自下而上由含砾中粗砂岩—块状细中砂岩—粉砂岩及延伸并不稳定的泥岩层等基本层序有序叠加而成。岩层组原生沉积构造较为发育,砂岩中发育正韵律层理,平行层理,粉砂岩中发育水平层理。研究区内隆务河组剖面未见底,与上覆地层整合接触,地层整体倾向为351°~356°,倾角为78°~86°。

    研究区直合隆位于甘肃省西南部的甘、青、川三省交界处的甘南藏族自治州,地理坐标位于33°06′~36°10′ N,100°46′~104°44′ E之间,处于青藏高原和黄土高原过渡地带,地势西北部高,东南部低。此次研究选取直合隆地区出露条件较好的3条剖面(图1d),其中3条剖面两两相距约400 m,有利于沉积体系的横向追踪对比。

  • 随着学者专家对沉积物重力流研究不断深入,出现了多元化分类命名方式及相关专业术语,例如砂质碎屑流、高密度浊流和低密度浊流等[1619]。从沉积物重力流基本理论上进行分类,将其分为碎屑流沉积、超高密度流沉积和高密度流沉积[20]。Shanmugam[21]将超高密度流命名为砂质碎屑流。实际上,碎屑流属于黏结流,砂质碎屑流为摩擦流,两个名词有重叠部分,含义上却相互矛盾[22]。为了避免概念上的混乱,这里使用超高密度流这一术语。其次,因为重力流在流动过程中会发生流动转换的现象,使得高密度流沉积与低密度流沉积的界定不明确。所以,本文以浊流为限,区别高密度流与低密度流的特点。综上所述,本文采用的是碎屑流、超高密度流、高密度浊流、低密度浊流的分类方式(图2)。通过对西秦岭直合隆剖面露头岩性、粒度、沉积构造等特征进行分析,共总结出六种基本岩石相类型。

    Figure 2.  Classification and basic characteristics of gravity flow (modified from Li et al.[22]

    (1) 滑塌岩相(简称F1)(图3)。研究区内滑塌岩相发育规模小,连续性差,剖面2处未见其发育,主要集中发育在剖面1处,总厚度为7.01 m,剖面3处少量发育,厚度仅为0.48 m。该种岩相特征是滑塌体内发育明显的揉皱变形,存在大量变形泥砾及变形砂块。整体呈不规则状分布,混杂堆积,与下伏块状砂体间存在不规则接触面(图4a)。

    Figure 3.  Slump facies

    Figure 4.  Partial photographs of field profiles in Gannan

    滑塌岩相起始发育在斜坡上,由于地震或其他外界因素影响,导致沉积物发生垮塌。沉积物由开始较为完整连续的滑动块体转变为部分质点较为分散的滑塌块体,并向坡底滑动,随着能量逐渐损失,在坡底堆积形成的沉积体。或随地形的起伏,与遮挡物连续碰撞接触等损失能量后在斜坡上形成的沉积体[2324]。纵观整个过程,可发现与其相对应的沉积构造及特点。滑塌过程中,滑塌体底部会出现拖拽变形,层内也会发育揉皱及变形层理(图4b),具有明显的滑动(图4c)和角砾化(图4d)现象。变形构造是识别滑塌体的重要标志[2526]

    (2) 碎屑流相(简称F2)(图5)。研究区内碎屑流发育较为局限,剖面1和剖面3处均有发育,剖面2处不发育。平均厚度为1.9 m,最厚可达4.5 m。以厚层块状中粗砂岩或中砂岩为主,无明显粒序,分选较差。多数砂岩底部与下伏地层平坦接触,对下伏沉积物没有明显侵蚀现象(图4e)。且砂岩层内发育长轴方向保持一致的砾石或泥砾(图4f),可见部分泥质碎屑顺层分布在砂体的各个层位(图5)。

    Figure 5.  Debris flow facies

    碎屑流通常发育在靠近物源处,是以泥质基质为主,混杂砂质或砾质碎屑的塑性流体。以整体形式裹杂着碎屑物质缓慢向前筏运(float)的过程中,黏结性泥质基质具有凝聚力,能阻止围水的进入,保持了碎屑流流体内部结构,所以可见碎屑物质散乱分布在砂体内部[17]。因为“滑水机制”[27]的存在,在远距离搬运过程中,阻止了碎屑流对下伏地层发生侵蚀作用,其沉降方式只能因为能量的递减,整体固结沉降形成块状砂岩。长轴方向保持一致的碎屑物质反映了碎屑流内部处于层流的状态[2830]

    (3) 超高密度流相(简称F3)(图6)。研究区内超高密度流广泛分布,占主导地位。平均厚度为2.1 m,最大厚度为7.7 m,主要为厚层块状细中、中砂岩,砂岩内部不具明显粒序层和其他构造,具平坦或不规则接触面(图4e),砾石或泥砾散乱分布在层内不同位置。

    Figure 6.  Ultra⁃high density flow facies

    超高密度流是一种泥质基质含量较少,主要以砂质为主,沉积物颗粒之间相互分散且不具有黏结性的塑性流体[20]。因其具有受阻沉降的沉积特点,在超高密度流发生沉降时,内部结构相对稳定,各质点以相同速率向下运动,形成块状砂岩[31]。塑性流体不具侵蚀性,若下伏地层层面平坦,则块状砂岩与其平坦接触。若下伏地层被早期流体侵蚀而未被沉积充填时,则会表现出不规则接触面。

    (4) 高密度浊流相(简称F4)(图7)。研究区内高密度浊流并不常见,发育规模较小,平均厚度为1.1 m,最大厚度为1.95 m。主要是近块状或弱正粒序结构的细中、细砂岩。底部可为含砾石或泥砾的块状砂岩,而顶部出现平行层理或流水砂纹层理、交错层理。

    Figure 7.  High⁃density turbidity facies

    高密度浊流是一种介于超高密度流和低密度浊流之间的过渡性流体,其沉积物密度也同样介于两者之间,并兼互两种流体的性质及沉积特点[3233]。上部沉积物颗粒向下补充,密度逐渐变小,在相对较强的水动力作用下沉积形成平行层理。上部呈悬浮状态的细粒沉积物不断供给,导致砂纹在流动过程中向前推移并能在垂向上叠置形成流水砂纹层理。亦或是早期形成的平行层理,接受后期流体的改造而形成交错层理[3435]

    (5) 低密度浊流相(简称F5)(图8)。低密度浊流在研究区内均有发育,平均厚度约为1 m,最大规模低密度浊流沉积体以砂泥互层的形式产出,厚度可达15 m。主要为具正粒序结构的细中、细砂岩,部分砂岩发育不完整的鲍马序列“a~d段”,具平坦底面或侵蚀底面,底部偶见冲刷面、槽模、沟模、重荷模等构造(图4e)。

    Figure 8.  Low⁃density turbidity facies

    低密度浊流是大家最为熟知的深水重力流类型,其沉积物颗粒含量最低,流体内部各质点均处于完全紊乱的状态,以湍流支撑[23]。低密度浊流是流体流,一旦给予初始动力,便会一直向前运动。但随着能量的损失,粗细颗粒按各自沉积速率以悬浮沉降的方式不断卸载沉积物颗粒,形成正粒序结构,流体密度降低后向牵引流转化,继续沉降形成平行层理,或经后期流体改造形成交错层理等[18,36]

    当低密度浊流沉积物颗粒粒度较小时,侵蚀能力较弱,会形成较为平坦的接触界面。当粒度较大时,侵蚀能力明显增强,流体能量更大,可侵蚀下伏地层形成冲刷面,带动底部砾石向前运移形成工具模等[22,3738]

    (6) 深海泥岩相(简称F6)。研究区内深海泥岩相发育较为局限,整体上厚度较大,平均厚度为3.7 m,最大厚度可达5 m,单独产出的泥岩层单层最薄厚度为1.6 m。主要是灰黑色纯净泥岩,是半远洋—远洋悬浮沉降的产物。

    水体较深,稳定环境下沉积的泥岩质较纯,厚度较厚。在重力流发育较为频繁的部位,泥岩以薄层形式产出,且上下泥岩中可发育砂质夹层,此时的泥岩并不纯净,可能为粉砂质泥岩。

  • 上述已总结的岩石相类型在研究区内有着不同的岩石相占比,反映了不同的流动过程[23]。需要指出的是:理论上,多种岩石相占比可表现出更为复杂的结果,但实际上由于重力流具有随着流动距离增加,重力流所携带的砾石形状会产生相应的变化,能够在一定程度上反映出沉积环境的变化,同时随着能量逐渐衰减,流体密度逐渐变小的流体性质[3940]也无法携带大型砾石向前筏运。根据岩石相的局部特征及其占比,水道砾石成分、大小磨圆(图9)以及砂体的堆叠形式,从而得出合理的认识——共识别出限制性水道、弱限制性水道及天然堤三类沉积单元体(表1)。

    Figure 9.  Channel gravel properties

    沉积单元 露头剖面 岩 石 相 类 型
    F1 F2 F3 F4 F5 F6
    限制性水道 剖面1 16.65% 16.99% 62.56% 3.8%
    剖面3 1.54% 21.6% 54.5% 6.4% 16.06%
    弱限制性水道 剖面1 71.9% 3.6% 24.5%
    剖面2 70.02% 29.98%
    剖面3 72.5% 22.05% 5.45%
    水道天然堤 剖面2 52.42% 47.58%

    Table 1.  Lithofacies types in each sedimentary unit

  • 研究区剖面1下部1~10层(图10a,b)及研究区剖面3下部1~12层(图11a),从野外露头可以直观的观察出相互叠置较为复杂的砂体。其中剖面1第1层局部砂岩层面发育散乱分布的砾石(图4f、图10d);第7层发育具明显切叠关系的砂体(图10f),且上覆局部砂体有明显的揉皱变形(图10e);第10层为滑塌块体,发育大量变形泥砾(图3图4a, b)。剖面3第7层底面大规模发育槽模构造(图11c);第10层发育多套砂岩夹泥岩层(图11d);第12层砂岩夹泥岩层规模相当但厚度减薄(图11e)。

    Figure 10.  Comprehensive survey map of Zhihelong section 1

    Figure 11.  Comprehensive survey map of Zhihelong section 3

    从岩石相占比分析可得,两处剖面下部层段整体上均以超高密度流发育为主,表现为厚层块状砂体的叠置,其次是粒度较粗的碎屑流沉积。碎屑物质沿着海底峡谷向海底平原输送,距物源越近的沉积体粒度越粗。一部分碎屑物质入水会形成碎屑流,另一部分则可能形成超高密度流,而碎屑流在搬运碎屑物质的过程中,会逐渐发生流动转化形成超高密度流,于是造成水道整体上以超高密度流沉积为主,碎屑流沉积次之的沉积特点。由于环境的限制,高能量流体会冲刷水道底部,形成冲刷面,可推动大型砾石向前移动,形成槽模构造,同时还会卷入部分砾石或泥砾。在流体向前运动的过程中,碎屑物质粒度大的先发生沉积,后续流体会因为早期沉积砂体的阻挡,能量大幅度损失,沉积时局部砂体会发生变形的现象(图10e)。

  • 研究区剖面1上部11~16层(图10c),剖面3上部13~18层(图11b)及剖面2下部1~7层(图12a),从野外露头可以直观地观察出叠置较为规则的砂体。其中剖面1第12层发育具弱正粒序的砂岩及不完整的鲍马序列“a~d段”(图78),常见低密度浊流侵蚀下伏地层形成的不规则界面,可见厚层块状砂岩内部夹有不连续的泥质薄层(图10g)。剖面3第15层砂岩平坦接触,叠置较为规则(图11f),其他特征在上述两个剖面中均有描述,如多发育砂岩夹泥岩层,存在多处侵蚀界面等。剖面2下部常见砂岩夹泥质板岩,第4层发育规模较大的底面构造,如沟模、重荷模等(图12b),部分层内偶见大型泥砾发育。

    Figure 12.  Comprehensive survey map of Zhihelong section 2

    从岩石相占比分析可得,此时仍以超高密度流相占主导地位,而次级占比最高的岩相则由碎屑流相转变为低密度浊流相。整体上与限制性环境沉积体相比,砂体粒度偏细。这是因为在重力流流动过程中,随着距离的增加,部分粗颗粒碎屑物质在斜坡带上逐渐沉积,导致流体密度降低,流体逐渐转变为密度更低的沉积物重力流。此时,由于限制性环境的减弱,重力流流动面积变得更为宽泛,沉积的砂体则表现出宽而薄的特点。正粒序的发育指示具低密度浊流特点的砂岩,鲍马序列的Tb段发育平行层理,说明它们是具有牵引流性质的低密度流体流动而产生的结果[18]。低密度浊流相在侧向上延伸稳定,反映其沉积作用受水道限制较小或不受水道限制[41]

  • 主要发育在剖面2的第8层,为巨厚的砂泥互层(图12a),各岩石相类型占比为F5(52.42%)、F6(47.58%),可定为弱限制性水道两侧天然堤,是水道末期消亡时的产物[42]。水道内发育的重力流在沿下坡向深海平原运动的过程中,由于水道的限制性减弱,位于重力流顶部的密度较小偏泥质或粉砂质物质会溢出水道,形成天然堤,这些细粒物质常常为发育水平层理或上攀砂纹层理的泥质粉砂岩或粉砂质泥岩(图12c, d)。随着水道内部的重力流砂泥比增大,水道两侧溢出的偏细粒的物质逐渐减小,所形成天然堤的高度也逐渐降低,最终当其高度无法限制重力流时,重力流就会呈席状散开形成朵叶体沉积[4345]

  • 早三叠世,西秦岭裂陷中心位于中秦岭分区合作一带,为深海槽盆及大陆坡下部沉积,以黑色页岩沉积为主。而秦岭海盆西部在早三叠世宽度约为1 000 km,受印支运动的影响,规模逐渐变小,最终于晚三叠世末才消退。研究区正位于裂陷中心合作一带约30 km的直合隆地区,属于深水斜坡——平原类型沉积。

    在经过对研究区内发育的槽模(图11c)进行统计及古流向恢复后[37],发现古流向整体上为南西向(图13),按照剖面分布情况来看,重力流整体上由剖面3流向剖面1。以底部相对较厚泥岩层、底部滞留砾石层或泥砾发育层、岩性粒度及层理构造作为对比标志,将三组剖面进行对比,可更为直观地观察出弱限制性水道及限制性水道砂体的叠置关系(图14)。

    Figure 13.  Statistical analysis of flute cast and rose diagram of ancient flow direction

    Figure 14.  Lateral tracing for sectional correlation diagram

    综上观察分析可得,直合隆三组剖面沉积演化大致可分为三个时期(图15)。早期堆积在陆坡的沉积物不断前积,到达坡度发生骤变的区域时,受到自身重力作用或其他外界因素的影响(如地震),沉积物发生垮塌,顺着峡谷进入水中。由于峡谷的限制,水道弯曲度不大,沉积的砂体厚度大。同时距离物源端较近,砂岩粒度较大,且底部砂岩含有规模大小不等的砾石。中期由于前期的砂岩充填在水道底部,使得相对可容空间增大,水道宽度和弯曲度逐渐增大,并伴随水道的横向迁移。但整体上仍属于限制性环境,此时沉积的砂体厚度变小,宽度增加。重力流在该时期频繁发育,造成砂体叠置相对早期而言更为杂乱。晚期相对可容空间持续增大,沉积环境已转变为弱限制性环境。此时,水道宽度和弯曲度继续增大,水道迁移更加频繁。由于限制性环境的减弱,重力流顶部的低密度物质会在水道弯曲处溢出形成天然堤,水道内沉积砂体展开面积较广,叠置较为整齐。

    Figure 15.  Sedimentary evolution⁃stage model of Triassic deep⁃water channel in Zhihelong

  • (1) 研究区深水水道充填岩石相类型及识别标志分别为滑塌岩相、碎屑流相、超高密度流相、高密度浊流相、低密度浊流相及深海泥岩相。滑塌岩相识别标志为变形结构,碎屑流相为块状砂体且具平坦底面,砾石顺层排列等。超高密度流相为块状砂岩具弱正粒序结构,部分砂体可见逆粒序结构。高密度浊流相底部为块状砂岩,上部为正粒序结构,发育平行层理或交错层理。低密度浊流相识别标志为“鲍马序列”,深海泥岩相为黑色纯净泥岩或灰黑色泥质粉砂岩、粉砂质泥岩。

    (2) 根据岩石相类型及其占比,归纳总结出三种沉积单元,分别为限制性水道,弱限制性水道及水道天然堤。限制性水道,砂体叠置较为杂乱,且砾石或泥砾广泛存在,充填砂体的粒度偏粗。弱限制性水道,砂体连续性较好且叠置较为规则,整体粒度较细,广泛发育低密度浊流相。水道天然堤为砂泥薄互层,厚约15 m。

    (3) 建立了研究区内深水水道沉积演化阶段模式图——早期限制性环境下水道较窄且顺直,砂体叠置关系复杂;中期限制性环境相对早期有所减弱,水道弯曲度增大,水道变宽,出现溢岸沉积,砂体叠置关系复杂;晚期为弱限制性环境,弯曲水道两侧发育天然堤,砂体叠置规整。

Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return