Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

LUO NiNa, HOU ShouTan, JI YouLiang, LÜ WenRui, ZHANG YiLou, CHEN PeiLei, LI ShengMing, ZHANG Lan. Sedimentary Model of Mixed Rocks in the Upper Es3 of Paleogone in the Dawangzhuang Area, Raoyang Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1037-1048. doi: 10.14027/j.issn.1000-0550.2019.096
Citation: LUO NiNa, HOU ShouTan, JI YouLiang, LÜ WenRui, ZHANG YiLou, CHEN PeiLei, LI ShengMing, ZHANG Lan. Sedimentary Model of Mixed Rocks in the Upper Es 3 of Paleogone in the Dawangzhuang Area, Raoyang Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1037-1048. doi: 10.14027/j.issn.1000-0550.2019.096

Sedimentary Model of Mixed Rocks in the Upper Es 3 of Paleogone in the Dawangzhuang Area, Raoyang Sag, Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2019.096
Funds:

National Natural Science Foundation of China 41672098

  • Received Date: 2019-06-03
  • Rev Recd Date: 2019-11-17
  • Publish Date: 2020-10-28
  • Based on core data, microphotographs, well⁃logging and test analysis, etc., combined with regional geological data, the characteristics of mixed rocks in oil group I of the upper third member of the Paleogone Shahejie Formation in the Dawangzhuang area, Raoyang Sag, Bohai Bay Basin, were studied. The sedimentary environment was analyzed, and the sedimentary model was explored. The study shows that the mixed rocks may be divided into two categories: siliciclastic carbonate rocks and carbonate siliciclastic rocks. Mainly sandy dolomite and calcareous sandstone occur in the Dawangzhuang area, with mainly siliciclastic carbonate rocks in the central and northern areas, and carbonate siliciclastic rocks in the west and south. The genetic types of mixed sedimentation are dominated by facies mixing in the early and middle stage of oil group I of the upper third member of the Paleogone Shahejie Formation oil group, and by in situ mixing in the early stage of oil group I of the upper third member of the Paleogone Shahejie Formation oil group. A few cases of source mixing were found in the late stage of oil group I of the upper third member of the Paleogone Shahejie Formation oil group in the study area.The sedimentary environment of the mixed sedimentation of carbonates is mainly shore⁃shallow lake in the Dawangzhuang area, classified into three kinds of mixed deposits: sandstone bar microfacies, carbonate bar microfacies, and muddy shore⁃shallow lake microfacies. A comprehensive analysis of the effect of lake level variation on mixed deposition, together with tectonic evolution and paleogeomorphology, revealed a sedimentary model of mixed rocks during steadily rising, then falling, lake levels. When the lake level was slowly rising, the mixed deposits characterized by both facies mixing and in situ mixing gradually increased. When the lake level was suitable, the content of pure carbonate rocks increased and facies mixing decreased. Later, when the lake level was falling, source mixing was evident.
  • [1] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
    [2] 刘宝珺,曾允孚. 岩相古地理基础和工作方法[M]. 北京:地质出版社,1985:133-137.

    Liu Baojun,Zeng Yunfu. Base and working procedure of lithofacies paleogeography[M]. Beijing: Geological Publishing House,1985: 133-137.
    [3] Roberts H H. Modern Carbonate-siliciclastic transitions: Humid and arid tropical examples[J]. Sedimentary Geology, 1987, 50(1/2/3): 25-65.
    [4] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66.

    Yang Chaoqing, Sha Qing’an. Sedimentary environment of the middle Devonian Qujing Formation, Qujing, Yunnan province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990, 8(2): 59-66.
    [5] 张锦泉,叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92.

    Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92.
    [6] 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报,2001,3(3):63-66.

    Sha Qing’an. Discussion on mixing deposit and hunji rock[J]. Journal of Palaeogeography, 2001, 3(3): 63-66.
    [7] 郭福生,严兆彬,杜杨松. 混合沉积、混积岩和混积层系的讨论[J]. 地学前缘,2003,10(3):68.

    Guo Fusheng,Yan Zhaobin,Du Yangsong. Discussion on mixing deposit hunji rock and hunji sequence[J]. Earth Science Frontiers,2003,10(3):68.
    [8] 王国忠,吕炳全,全松青. 现代碳酸盐和陆源碎屑的混合沉积作用:涠洲岛珊瑚岸礁实例[J]. 石油与天然气地质,1987,8(1):15-25.

    Wang Guozhong, Bingquan Lü, Quan Songqing. Mixed sedimentation of recent carbonates and terrigenous clastics: Example of the coral reef of the Weizhou Island[J]. Oil & Gas Geology, 1987, 8(1): 15-25.
    [9] 王国忠,全松青,吕炳全. 南海涠洲岛区现代沉积环境和沉积作用演化[J]. 海洋地质与第四纪地质,1991,11(1):69-82.

    Wang Guozhong, Quan Songqing, Bingquan Lü. Evolution of modern sedimentary environments and sedimentations in the Weizhou island area, South China Sea[J]. Marine Geology & Quaternary Geology, 1991, 11(1): 69-82.
    [10] 全松青,王国忠,吕炳全,等. 海南岛排浦珊瑚礁区的现代沉积体系及其演化过程[J]. 沉积学报,1993,11(4):56-66.

    Quan Songqing, Wang Guozhong, Bingquan Lü, et al. Modern depositional systems and their evolutional process in the Paipu coral reef area, Hainan Island, China[J]. Acta Sedimentologica Sinica, 1993, 11(4): 56-66.
    [11] Mount J. Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification[J]. Sedimentology, 1985, 32(3): 435-442.
    [12] 叶茂松,解习农,徐长贵,等. 混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例[J]. 地质论评,2018,64(5):1118-1131.

    Ye Maosong, Xie Xinong, Xu Changgui, et al. Discussion for classification-designation system of mixed siliciclastic-carbonate sediments and the implication for their reservoir prediction: A case study of mixed sediments from Bohai Sea area[J]. Geological Review, 2018, 64(5): 1118-1131.
    [13] 张雄华. 混积岩的分类和成因[J]. 地质科技情报,2000,19(4):31-34.

    Zhang Xionghua. Classification and origin of mixosedimentite[J]. Geological Science and Technology Information, 2000, 19(4): 31-34.
    [14] 董桂玉,何幼斌,陈洪德,等. 惠民凹陷沙一中湖相碳酸盐与陆源碎屑混合沉积:以山东商河地区为例[J]. 沉积学报,2007,25(3):343-350.

    Dong Guiyu, He Youbin, Chen Hongde, et al. Mixed sedimentation of carbonates of lagoonal facies and terrigenous clastics of the middle submember of member 1 of Shahejie Formation in Huimin Sag: Taking Shanghe area in Shandong province for an example[J]. Acta Sedimentologica Sinica, 2007, 25(3): 343-350.
    [15] 王国忠. 南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用[J]. 古地理学报,2001,3(2):47-54.

    Wang Guozhong. Mixed sedimentation of recent reefoid carbonates and terrigenous clastics in the north continental shelf of the South China Sea[J]. Journal of Palaeogeography, 2001, 3(2): 47-54.
    [16] 李祥辉,曾允孚. 扬子西缘泥盆纪碳酸盐与陆源碎屑的混积层序和层序混积模式[J]. 沉积学报,1999,17(3):339-344.

    Li Xianghui, Zeng Yunfu. Sequence stratigraphy of mixed carbonate and siliciclastic sediments in Devonian along the western margin of Yangtze Plate[J]. Acta Sedimentologica Sinica, 1999, 17(3): 339-344.
    [17] 徐伟,陈开远,曹正林,等. 咸化湖盆混积岩成因机理研究[J]. 岩石学报,2014,30(6):1804-1816.

    Xu Wei, Chen Kaiyuan, Cao Zhenglin, et al. Original mechanism of mixed sediments in the saline lacustrine basin[J]. Acta Petrologica Sinica, 2014, 30(6): 1804-1816.
    [18] Khetani A B, Read J F. Sequence development of a mixed carbonate-siliciclastic high-relief ramp, Mississippian, Kentucky, U.S.A.[J]. Journal of Sedimentary Research, 2002, 72(5): 657-672.
    [19] Coffey B P, Read J F. Mixed carbonate-siliciclastic sequence stratigraphy of a Paleogene transition zone continental shelf, southeastern USA[J]. Sedimentary Geology, 2004, 166(1/2): 21-57.
    [20] LaGesse J, Read J F. Updip sequence development on a wave- and current-dominated, mixed carbonate-siliciclastic continental shelf: Paleogene, north Carolina, eastern U.S.A.[J]. Sedimentary Geology, 2006, 184(1/2): 155-182.
    [21] 李祥辉. 层序地层中的混合沉积作用及其控制因素[J]. 高校地质学报,2008,14(3):395-404.

    Li Xianghui. Mixing of siliciclastic-carbonate sediments within systems tracts of depositional sequences and its controlling factors[J]. Geological Journal of China Universities, 2008, 14(3): 395-404.
    [22] 江茂生,沙庆安,刘敏. 华北地台下中寒武统碳酸盐与陆源碎屑混合沉积:以山东张夏地区为例[J]. 沉积学报,1996,14(增刊1):63-74.

    Jiang Maosheng, Sha Qing’an, Liu Min. Mixed siliciclastic-carbonate sediments during the Lower-Middle Cambrian in the North China Platform[J]. Acta Sedimentologica Sinica, 1996, 14(Suppl.1): 63-74.
    [23] 江茂生,沙庆安. 碳酸盐与陆源碎屑混合沉积体系研究进展[J]. 地球科学进展,1995,10(6):551-554.

    Jiang Maosheng, Sha Qing’an. Research advances in the mixed siliciclastic-carbonate sedimentary systems[J]. Advances in Earth Sciences, 1995, 10(6): 551-554.
    [24] 杨永剑,刘家铎,田景春,等. 塔里木盆地上奥陶统桑塔木组混合沉积特征及控制因素[J]. 地质论评,2011,57(2):185-192.

    Yang Yongjian, Liu Jiaduo, Tian Jingchun, et al. Mixed sedimentary characteristics and controlling factors of Upper Ordovician Sangtamu Formation in Tarim Basin[J]. Geological Review, 2011, 57(2): 185-192.
    [25] 张宁生,任晓娟,魏金星,等. 柴达木盆地南翼山混积岩储层岩石类型及其与油气分布的关系[J]. 石油学报,2006,27(1):42-46.

    Zhang Ningsheng, Ren Xiaojuan, Wei Jinxing, et al. Rock types of mixosedimentite reservoirs and oil-gas distribution in Nanyishan of Qaidam Basin[J]. Acta Petrolei Sinica, 2006, 27(1): 42-46.
    [26] 冯进来,胡凯,曹剑,等. 陆源碎屑与碳酸盐混积岩及其油气地质意义[J]. 高校地质学报,2011,17(2):297-307.

    Feng Jinlai, Hu Kai, Cao Jian, et al. A review on mixed rocks of terrigenous clastics and carbonates and their petroleum-gas geological significance[J]. Geological Journal of China Universities, 2011, 17(2): 297-307.
    [27] 高岗,杨尚儒,屈童. 混合沉积研究现状及其与油气富集的关系[J]. 地质科技情报,2018,37(6):82-88.

    Gao Gang, Yang Shangru, Qu Tong. Research status of mixing sediments and their relationship with petroleum enrichment[J]. Geological Science and Technology Information, 2018, 37(6): 82-88.
    [28] 王子龙. 大王庄地区沙河街组油气成藏机制研究[D]. 青岛:中国石油大学(华东),2014.

    Wang Zilong. Researches on the formation mechanism of reservoirs in Shahejie Formation of Dawangzhuang area[D]. Qingdao: China University of Petroleum (East China), 2014.
    [29] 郑清,信荃麟. 饶阳凹陷大王庄地区沙三上及沙一下碳酸盐岩沉积模式与含油性[J]. 华东石油学院学报,1987,11(2):1-13.

    Zheng Qing, Xin Quanlin. The models of carbonate deposition and hydrocarbon distribution at Shahejie Formation of Dawangzhuang district in Raoyang Depression[J]. Journal of East China Petroleum Institute, 1987, 11(2): 1-13.
    [30] 张跃. 饶阳凹陷大王庄地区沙三段碳酸盐岩储层地质特征研究[D]. 青岛:中国石油大学(华东),2008.

    Zhang Yue. Carbonate reservoir geologic characteristic of the third member of Shahejie Formation in Dawangzhuang area in Raoyang Sag[D]. Qingdao: China University of Petroleum (East China), 2008.
    [31] 杨剑萍,杨君,邓爱居,等. 河北饶阳凹陷中央隆起带古近系沙三段上部碳酸盐岩沉积模式研究[J]. 沉积学报,2010,28(4):682-687.

    Yang Jianping, Yang Jun, Deng Aiju, et al. Carbonate rock facies model of the upper third member of Shahejie Formation of Paleogene in the central uplift belt of Raoyang Depression, Hebei pronince[J]. Acta Sedimentologica Sinica, 2010, 28(4): 682-687.
    [32] 杨剑萍,张跃,杨君,等. 饶阳凹陷大王庄地区沙三段辫状河三角洲沉积特征[J]. 特种油气藏,2008,15(2):35-39.

    Yang Jianping, Zhang Yue, Yang Jun, et al. Sedimentary characteristics of braided channel delta of s3 member of Shahejie Formation in Dawangzhuang area of Raoyang Sag[J]. Special Oil and Gas Reservoirs, 2008, 15(2): 35-39.
    [33] 董桂玉,陈洪德,何幼斌,等. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展,2007,22(9):931-939.

    Dong Guiyu, Chen Hongde, He Youbin, et al. Some problems on the study of the mixed siliciclastic-carbonate sediments[J]. Advances in Earth Science, 2007, 22(9): 931-939.
    [34] 纪友亮,马达德,薛建勤,等. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式[J]. 古地理学报,2017,19(5):757-772.

    Ji Youliang, Ma Dade, Xue Jianqin, et al. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin, western Qaidam Basin[J]. Journal of Palaeogeography, 2017, 19(5): 757-772.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(5)

Article Metrics

Article views(563) PDF downloads(110) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-06-03
  • Revised:  2019-11-17
  • Published:  2020-10-28

Sedimentary Model of Mixed Rocks in the Upper Es 3 of Paleogone in the Dawangzhuang Area, Raoyang Sag, Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2019.096
Funds:

National Natural Science Foundation of China 41672098

Abstract: Based on core data, microphotographs, well⁃logging and test analysis, etc., combined with regional geological data, the characteristics of mixed rocks in oil group I of the upper third member of the Paleogone Shahejie Formation in the Dawangzhuang area, Raoyang Sag, Bohai Bay Basin, were studied. The sedimentary environment was analyzed, and the sedimentary model was explored. The study shows that the mixed rocks may be divided into two categories: siliciclastic carbonate rocks and carbonate siliciclastic rocks. Mainly sandy dolomite and calcareous sandstone occur in the Dawangzhuang area, with mainly siliciclastic carbonate rocks in the central and northern areas, and carbonate siliciclastic rocks in the west and south. The genetic types of mixed sedimentation are dominated by facies mixing in the early and middle stage of oil group I of the upper third member of the Paleogone Shahejie Formation oil group, and by in situ mixing in the early stage of oil group I of the upper third member of the Paleogone Shahejie Formation oil group. A few cases of source mixing were found in the late stage of oil group I of the upper third member of the Paleogone Shahejie Formation oil group in the study area.The sedimentary environment of the mixed sedimentation of carbonates is mainly shore⁃shallow lake in the Dawangzhuang area, classified into three kinds of mixed deposits: sandstone bar microfacies, carbonate bar microfacies, and muddy shore⁃shallow lake microfacies. A comprehensive analysis of the effect of lake level variation on mixed deposition, together with tectonic evolution and paleogeomorphology, revealed a sedimentary model of mixed rocks during steadily rising, then falling, lake levels. When the lake level was slowly rising, the mixed deposits characterized by both facies mixing and in situ mixing gradually increased. When the lake level was suitable, the content of pure carbonate rocks increased and facies mixing decreased. Later, when the lake level was falling, source mixing was evident.

LUO NiNa, HOU ShouTan, JI YouLiang, LÜ WenRui, ZHANG YiLou, CHEN PeiLei, LI ShengMing, ZHANG Lan. Sedimentary Model of Mixed Rocks in the Upper Es3 of Paleogone in the Dawangzhuang Area, Raoyang Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1037-1048. doi: 10.14027/j.issn.1000-0550.2019.096
Citation: LUO NiNa, HOU ShouTan, JI YouLiang, LÜ WenRui, ZHANG YiLou, CHEN PeiLei, LI ShengMing, ZHANG Lan. Sedimentary Model of Mixed Rocks in the Upper Es 3 of Paleogone in the Dawangzhuang Area, Raoyang Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1037-1048. doi: 10.14027/j.issn.1000-0550.2019.096
  • 混合沉积是指碳酸盐与陆源碎屑相互混杂或交替沉积[14],可形成混积岩[57],混积岩不仅发育于古代沉积环境中,在现代沉积也有发育[810]。混合沉积的概念提出以后,不同学者利用组分建立了多种混积岩分类标准,Mount[11]以砂、异化粒、灰泥和泥质黏土为四端元,画出了三角四面体分类图,由于该方法不够直观,后来的学者多以三端元进行分类[4,1213],而对于组分简单的混积岩,董桂玉等[14]以碳酸盐与陆源碎屑的含量进行划分;与此同时,众多学者对混合沉积的成因类型进行了讨论[11,1317],提出了多种混合沉积成因类型及划分方案。也有学者研究了混积岩的层序地层学特征[1721],探讨了混合沉积的构造背景、湖平面变化及古气候背景等[5,7,2224],亦或探讨了混合沉积的油气地质意义[2527]。总体来看,混合沉积的地质意义较为明显,但前人更倾向于陆源碎屑岩和碳酸盐岩各自单独研究,混积岩研究偏少,混积岩的类型及混合沉积的成因类型的分类均缺乏普遍性。

    华北油田勘探实践表明,饶阳凹陷大王庄油田的剩余资源潜力巨大,而古近系沙三上亚段主要为构造—岩性复合油气藏[28],沉积相的系统研究对寻找复合油气藏尤为重要;同时混合沉积在沙三上亚段较为发育,所以混合沉积研究对于寻找复合油气藏十分重要。另一方面,混合沉积的成因机理、分布特征和演化过程,能有效指示湖平面的变化和古气候特征。前人曾对饶阳凹陷大王庄地区古近系沙三上亚段的陆源碎屑岩沉积和碳酸盐岩沉积进行单独研究,仅提及部分混积岩类型,并未对发育的混积岩和混合沉积进行系统研究[2931],混积岩的分类标准有待进一步细化。本文在分析区域地质、岩芯、测录井及测试分析等资料的基础上,对混合沉积的岩石学特征、成因类型特征和空间展布特征等方面进行研究,明确了混合沉积的分布和控制因素,最终建立了混合沉积模式,为研究区下一步的勘探开发提供参考。

  • 饶阳凹陷位于渤海湾盆地冀中坳陷中南部,大王庄地区位于饶阳凹陷中央隆起带的中南部,整体上东南部高,呈现向西北倾的鼻状构造。研究区位于大王庄东断层的上升盘,南部边界为大王庄东断层,东部为低洼地区。区内断裂走向以北东向为主,如大王庄断层,较少为南西向(图1)。

    Figure 1.  Structural diagram of the upper Es 3I in the Dawangzhuang area

    大王庄地区古近系沙河街组主要可分为四段,沙四段沉积时期的湖平面低,气候干燥,发育河流相与部分盐湖沉积;沙三段沉积时期,湖盆处于水体稳定加深阶段,下亚段发育辫状河三角洲平原紫红色泥岩与砂岩沉积,上亚段早期发育一套辫状河三角洲沉积,晚期转化为湖泊沉积,发育一套分布广泛的碳酸盐岩,同时其与陆源碎屑岩发生混合沉积;沙二段沉积时期,湖平面下降,发育辫状河三角洲平原沉积;沙一段沉积早期,水体加深,发育滩坝沉积,后期湖平面降低,以辫状河三角洲沉积为主[30,32]。其中古近系沙河街组沙三上亚段I油组为本文研究的目的层系。

  • 大王庄地区古近系沙三上亚段I油组5小层以陆源碎屑岩为主,绝大数岩性为厚层细砂岩,局部发育含钙砂岩或钙质砂岩等;4小层主要为含钙砂岩或钙质砂岩等,混合沉积发育;2、3小层主要发育厚层碳酸盐岩,含少量碎屑岩或砂质云岩等;1小层以碎屑岩为主,主要为泥岩和薄层含钙砂岩等,混合沉积发育范围较广,发育厚度较小(图2)。

    Figure 2.  Composite columnar section of the upper Es 3I in the Dawangzhuang area

    由于大王庄地区古近系沙三段的岩芯资料较少,利用测录井及岩芯资料,建立了研究区有取芯井的岩电图版(表1),对于无录井岩芯资料的井,可根据图版进行岩性识别,确定混合沉积发育的类型及厚度,为分析碳酸盐岩混合沉积展布特征提供了依据。

    Table 1.  Lithoelectric plates of the upper Es 3I in the Dawangzhuang area

  • 饶阳凹陷大王庄地区古近系沙三上亚段I油组发育的陆源碎屑岩主要包括泥岩、中细砂岩与粉砂岩,砾岩发育极少。

  • 大王庄地区古近系沙三上亚段I油组泥岩广泛发育,局部发育页岩,部分含粉砂,一般为灰色或者灰绿色,极少为紫红色,发育水平纹层和波状层理,可见生物扰动。泥岩发育较为稳定,测井曲线SP多呈现平直,GR值大。

  • 大王庄地区古近系沙三上亚段I油组砂岩以细砂岩为主,还包含粉砂岩,以及较少的中砂岩;颜色以灰色为主,石英含量50%~55%,长石含量40%~50%,岩屑含量8%,含少量碳酸盐岩(图3a~d,f~h);砂岩发育平行层理和斜层理,部分可见泥砾,粉砂岩中可见生物扰动和潜穴构造。纵向上,砂岩主要发育于沙三上亚段I油组下部;横向上,砂岩在研究区的北部和南部广泛发育,中部发育较少。

    Figure 3.  Types of carbonate rocks and mixed rocks of the upper Es 3I in the Dawangzhuang area

  • 大王庄地区古近系沙三上亚段I油组碳酸盐岩广泛发育,部分含陆源碎屑,成分不纯。以白云岩为主,包括鲕粒云岩、藻云岩、泥粉晶云岩等,可见灰质白云岩、含砂灰质白云岩和砂屑白云岩等;灰岩多为泥灰岩、白云质灰岩等。

  • 颗粒云岩包括鲕粒云岩、藻云岩和少量生物碎屑云岩(图3j~l)。鲕粒云岩多为灰色或浅灰色,鲕粒以内碎屑、生物介壳等为核心,同心层偏薄,鲕粒的圆度较好,部分呈长条状,分选中等,鲕粒的形成环境水体动荡。而藻云岩形成于藻类的粘结作用,多为树枝状或不规则状,内部粒内孔隙发育。研究区的生物碎屑云岩发育较少,生物碎屑以介形虫为主,多为破碎的生物介壳,水动力较强。颗粒云岩的测井曲线响应为低GR,SP呈负异常,低AC,低COND,曲线形态呈箱型,上下多为突变;纵向上发育厚度较大,横向上分布较为局限。

  • 泥晶白云岩基本呈灰色,多数成分较纯,部分含砂屑、泥质或者凝块、介形虫碎片等(图3m),白云石平均含量高于80%(表2),水动力偏弱,水体相对稳定。

    井号 深度/m 岩石定名 碳酸盐成分/% 基质/%
    白云石 方解石 泥质 泥晶 细晶
    L70⁃50 3 600 泥晶云岩 97 3 100
    L70⁃50 3 611 泥晶云岩 96 4 100
    L70⁃50 3 637 泥晶云岩 94 2 4 100
    L70⁃57 3 607 泥晶云岩 94 4 2 100
    L494 3 686 泥粉晶云岩 96 4 95 5

    Table 2.  Identification of micrite dolomite of the upper Es 3I in the Dawangzhuang area

  • 灰质白云岩多以浅灰色和灰褐色为主,厚层灰质白云岩多数具有含油性,呈油浸或油斑,为良好的储集体,水体能量偏强;薄层灰质云岩常与泥岩互层,水体能量弱。

  • 泥灰岩以灰褐色和浅灰色为主,部分可见荧光;常呈薄层,局部发育厚层泥灰岩,薄层泥灰岩测井曲线与泥岩类似,厚层泥灰岩测井曲线与颗粒灰岩相似,但齿化很严重,水体能量弱,不稳定。

  • 大王庄地区古近系沙三上亚段的混积岩分为(含)陆源碎屑质—碳酸盐岩、(含)碳酸盐—陆源碎屑岩两大类。混合沉积的成因类型包括原地混合、相源混合、间断混合和母源混合,其中以原地混合和相源混合最为常见。大王庄地区古近系沙三上亚段的主要沉积环境为滨浅湖,而混积岩的沉积相多为滩坝沉积,如砂质混积滩坝和碳酸盐混积滩坝,还包含少数滨浅湖泥混积。

  • 混积岩指在同一沉积环境中,陆源碎屑岩和碳酸盐岩混合沉积于同一岩层所形成的岩石类型[4]。对于混积岩的分类,Mount[11]采用砂、异化粒、灰泥和泥质黏土四端元进行分类,将混积岩分为亮晶灰质砂岩、泥灰质砂岩、亮晶灰质泥岩、泥灰质泥岩、砂质亮晶灰岩、泥质亮晶灰岩、砂质泥晶灰岩和泥质泥晶灰岩8类,杨朝青等[4]、叶茂松等[12]和张雄华[13]采用黏土、陆源碎屑和碳酸盐三端元进行分类,董桂玉等[14,33]考虑碳酸盐岩和陆源碎屑岩这两类主要的岩石成分。

    本文根据研究区混积岩的发育和研究情况,对Mount的划分方案进行简化,以碳酸盐(包括亮晶和泥晶)、陆源碎屑(包括砂质和泥质)两大类为端元,碳酸盐或陆源碎屑成分大于50%,确定基础名称,次要成分作为前缀修饰词(以参考沉积岩岩石命名原则),即可分为(含)陆源碎屑质—碳酸盐岩、(含)碳酸盐质—陆源碎屑岩两大类(表3)。

    成分含量/% 命名 示例
    陆源碎屑 碳酸盐
    0~10 90~100 碳酸盐岩 亮晶灰岩、泥晶白云岩
    10~50 50~90 (含)陆源碎屑质—碳酸盐岩 砂质云岩、含泥灰岩
    50~90 10~50 (含)碳酸盐质—陆源碎屑岩 云质砂岩、含灰泥岩
    90~100 0~10 陆源碎屑岩 砂岩、泥岩

    Table 3.  Classification and names of the mixed rocks (modified from Mount, 1985[11])

  • (含)碳酸盐质—陆源碎屑岩以陆源碎屑为主,主要为含云(钙)砂岩、云(钙)质砂岩,以粉砂岩和细砂岩为主,少数为中砂岩(图3a~d,f~h)。该类混积岩的石英、长石和岩屑总量均大于50%,平均占70%,最高可超过80%。若白云石或方解石含量大于25%,则为云质或钙质砂岩,该类岩石一般碳酸盐含量介于25%~40%;若碳酸盐含量小于25%,则为含云或含钙砂岩,该类岩石碳酸盐含量一般介于10%~25%(表4)。部分以陆源碎屑为主的混积岩在沉积过程中可能混入鲕粒等盆内颗粒(图3f~h),如留70⁃145井的含钙鲕粒长石粗粉细砂岩,混入薄皮鲕等盆内颗粒(表4)。

    井名 井深/m 岩石定名 陆源碎屑成分总量/% 碳酸盐成分/% 胶结物/% 盆内颗粒/%
    白云石 方解石 泥质 硅质 铁白云石 薄皮鲕
    L63 3 490 含云岩屑长石细砂质中砂岩 69 2 5 4 10
    L494 3 689 含云质长石粗粉—细砂岩 79 12 7 2
    L488 3 623 含钙质粗粉砂岩 77.5 0.5 22
    L70⁃114 3 735 含泥钙质长石细粉砂岩 67 3 15 15
    L70⁃135 3 521 含钙质长石粗粉—细砂岩 84 12 4
    L70⁃145 3 391 含钙质鲕粒长石粗粉细砂岩 60 10 20 40
    L70⁃114 3 732 钙质长石细粉砂岩 58 42
    L70⁃135 3 512 钙质长石粗粉砂岩 73 25 2

    Table 4.  Identification of mixed rocks dominated by terrigenous detritus of the upper Es 3I in the Dawangzhuang area

  • (含)陆源碎屑质—碳酸盐岩以碳酸盐为主,其碳酸盐含量介于60%~90%,以细粉晶白云石为主,部分发育泥晶白云石和细晶方解石;其次发育粒屑和砂屑,含量与其沉积环境相关,同时部分发育少量的生物屑,如介形虫等(表5)。陆源碎屑组分多为粉细砂或者泥质等(图3e,i,m),含量通常在4%~40%之间,粒度偏细,如留494井的细粉砂质泥灰岩、留70⁃135井的含砂质砂屑泥晶云岩等(表5)。

    井名 井深/m 岩石定名 陆源碎屑成分总量/% 碳酸盐成分/% 基质/% 盆内颗粒/%
    白云石 方解石 泥质 泥晶 细粉晶 细晶 砂屑 生物屑 粒屑 砂屑 介形虫
    L63 3 496 含粒屑泥晶云岩 10 90 78 6 10 2
    L70⁃50 3 636 粒屑含灰质云岩 87 10 3 3 87
    L70⁃114 3 727 泥晶细砂屑云岩 92 8 12 8 80
    L70⁃135 3 514 含砂质砂屑泥晶云岩 10 73 15 2 65 15 10
    L70⁃145 3 452 含细砂屑含云质灰岩 15 15 70 50 35
    L494 3 698 细粉砂质泥灰岩 25 75

    Table 5.  Identification of carbonate⁃dominated mixed rocks of the upper Es 3I in the Dawangzhuang area

  • 不同学者都对混积岩的混合沉积成因类型进行了划分,根据Mount[1]对混合沉积的成因分类,可将混合沉积的成因分为间断混合、相源混合、原地混合和母源混合。间断混合受控于少见的高强度事件,包括风暴作用和重力流等;而相源混合的主要原因是相与相之间的过渡;原地混合则是指在陆源碎屑沉积物中,生成了碳酸盐,导致了混合沉积;至于母源混合是指受多物源的影响,包括陆源碎屑的物源和碳酸盐的物源,形成了陆源碎屑和碳酸盐的混合沉积(图4)。大王庄地区发育的混积岩主要形成于相源混合和原地混合,少数形成于母源混合,少见间断混合。

    Figure 4.  Schematic diagram of genetic types of mixed sedimentation

    原地混合沉积是未固结的陆源碎屑与原生的碳酸盐混合沉积的过程,其形成的混积岩与上下岩石为岩性突变接触(图4c),主要沉积于水动力条件突变的环境[1,13,33]。在大王庄地区北部和中部,如宁39井附近发育的厚层砂质云岩,其后期沉积碳酸盐岩,说明砂质云岩中的碳酸盐极大可能为原地生成,与陆源碎屑混合,形成原地混合沉积,后期随着湖平面上升,碳酸盐产率增大,形成较纯的碳酸盐岩,沉积于混积岩之上(图5)。

    Figure 5.  Well connection profiles of the upper Es 3I in the Dawangzhuang area

    由于湖平面的缓慢变化,沉积环境发生缓慢变化,形成不同的沉积相带,且根据瓦尔特相律,相邻相之间是存在过渡带的,而相源混合沉积就位于过渡带。因此,相源混合沉积形成的混积岩与上下地层的岩石类型不论在成分、结构、构造等方面都为渐变的过渡关系(图4d),未出现任何突变现象[1,13,33]。相源混合在研究区最为常见,主要位于中间层位,相源混合形成的混积岩上下地层或者附近均发育碳酸盐岩和陆源碎屑岩,为碳酸盐岩和陆源碎屑岩的过渡区域(图5)。

    间断混合是指高强度事件包括风暴、重力流等,把碳酸盐和陆源碎屑搬运并混合沉积形成混积岩。该类混积岩中常见滑塌构造等,且与上下岩层为突变接触(图4b)。而饶阳凹陷整体上为陆相湖盆沉积,且大王庄地区位于缓坡带,受风暴作用的可能性小,也极少出现浊流沉积,所以研究区间断混合极少出现[1,13,33]

    母源混合需要陆源碎屑和碳酸盐两类物源。在古近系沙河街组沙三段的沉积早期,不发育碳酸盐岩,沙三上亚段发育大量碳酸盐岩,若后期湖平面下降,碳酸盐岩沉积暴露,后期被剥蚀,形成碳酸盐碎屑,与陆源碎屑混合沉积,则为母源混合[1]。故母源混合多出现于大量碳酸盐岩沉积之后,即目的层系的顶部和上覆地层可能发育母源混合(图4a)。大王庄地区留70井区附近,古近系沙三上亚段的沉积晚期,发育中薄层混积岩,下部岩层发育厚层碳酸盐岩(图5),极有可能为母源混合成因。

  • 纯砂质滩坝发育于近岸、水体较浅、水动力较强的滨浅湖地区,以中厚层的细砂岩为主,测井曲线一般呈箱型和漏斗型,具有向上变粗的反韵律。以砂质为主的混积滩坝发育于纯砂质滩坝靠湖一侧,区内较为发育,混积岩岩石类型以含钙或钙质砂岩为主,主要为原地混合沉积。纯砂质滩坝以L70⁃143X井附近为典型代表,砂质混积滩坝以L70⁃123井附近的Es 3 I⁃4、5小层为典型代表。

  • 碳酸盐岩混积滩坝一般发育于靠湖一侧,多数在古隆起的高点处发育,水动力较强,陆源碎屑供给偏少,主要为纯碳酸盐岩(藻云岩、鲕粒云岩、白云岩、灰岩等)与泥岩的夹互层,少数为砂屑白云岩与泥岩互层,混合沉积成因类型以相源混合沉积为主。该微相以大王庄地区古近系的Es 3 I⁃2、3小层为典型代表。

  • 滨浅湖泥一般由灰黑色泥岩、泥质灰(云)岩以及泥灰岩组成,位于滨浅湖发育的滩坝之间的低能区域。混合沉积以泥岩与泥质灰(云)岩、泥灰岩夹互层为主,部分为泥岩夹泥质灰(云)岩或灰质泥岩,以相源混合和原地混合为主。该微相以L70⁃25NX井附近的Es 3 I⁃4、5小层为典型代表,GR测井曲线呈弱齿化,整体呈箱型,部分呈指型。

  • 半深湖—深湖亚相一般发育灰黑色泥岩、灰褐色页岩,部分可见泥质灰(云)岩,一般发育于东部低洼区。

  • 从剖面和平面沉积微相来看(图56),沙三上亚段I油组沉积早期以砂岩为主,混合沉积程度偏低,发育纯砂质滩坝和砂质混积滩坝,之后混合沉积增多,到2、3小层沉积时期,水动力偏强,碳酸盐岩混积滩坝最为发育;晚期水体略微下降,广泛发育薄层混积岩。研究区中部主要发育颗粒碳酸盐岩,以碳酸盐岩混积滩坝为主,北部一般都发育以砂质为主的混积岩,以砂质混积滩坝为主,南部以混积岩和砂岩为主,物源同时来自西部和西南部,中部偏西以砂岩为主,东部为半深湖—深湖沉积。

    Figure 6.  Distribution of sedimentary microfacies map of the upper Es 3I in the Dawangzhuang area

    大王庄地区古近系沙三上亚段I油组沉积微相展布及沉积演化表明研究区该时期经历缓慢沉降过程,气候由干热变为温暖湿润,沉积环境由辫状河三角洲—滨浅湖沉积环境变为滨浅湖—半深湖沉积环境。大王庄地区古近系沙河街组的沉积环境主要为滨浅湖,是混合沉积最为发育的区域。在滨浅湖局部隆起或者高地处,受波浪作用及湖流作用影响强烈,水体动荡,多发育滩坝沉积[34],主要为相源混合沉积和原地混合沉积;地势低洼区域,水动力弱,为滨浅湖泥沉积,主要发育灰黑色泥岩,夹杂薄层泥灰岩或者泥质灰岩,构成原地混合沉积。滩坝沉积可分为砂质混积滩坝与碳酸盐岩混积滩坝,也可见纯砂质滩坝和纯碳酸盐岩滩坝。多数砂质滩坝发育的位置更靠岸一侧,鲕粒云岩滩和藻云岩滩坝离岸较远,混积滩坝发育于两者之间,或发育范围更广。半深湖往往发育薄层泥灰岩或泥质云岩等与泥页岩互层。

    沉积演化除了受物源、古气候和古地貌等的控制外,湖平面变化的影响也很重要。当湖盆为枯水期时,主要发育辫状河三角洲前缘沉积;当湖平面上升,水体偏浅,水动力条件强,波浪和湖流均对河口坝沉积进行改造和迁移,陆源碎屑供给充足,在古地貌高部位,形成纯砂质滩坝,无混合沉积(图7a);水位持续上升,在砂质滩坝的附近水体相对较深且动荡,原地生成碳酸盐,砂质与碳酸盐混合沉积,主要表现为原地混合沉积(图7b);当湖平面继续上升,且达到一定高度,物源离湖盆较远,主要沉积碳酸盐岩滩坝,坝边缘沉积碳酸盐与前期的砂质发生混合沉积,表现为相源混合沉积(图7c);当湖平面下降,碳酸盐岩滩坝部分暴露,被剥蚀,形成碳酸盐碎屑,与陆源碎屑共同沉积,表现为母源混合沉积(图7d)。

    Figure 7.  Sedimentary model map of lacustrine carbonate rocks of oil group I of the upper third member,Shahejie Formation, Dawangzhuang area

  • (1) 饶阳凹陷大王庄地区发育陆源碎屑岩和碳酸盐岩,陆源碎屑岩以砂岩、灰(云)质砂岩和泥页岩为主,碳酸盐岩以鲕粒云岩、藻云岩、泥晶白云岩和泥灰岩等为主。研究区中部以碳酸盐岩为主,其中I油组2、3小层较为发育;西部以砂岩为主,其中I油组4、5小层较为发育。

    (2) 混积岩分为(含)陆源碎屑质—碳酸盐岩和(含)碳酸盐质—陆源碎屑岩两大类,以灰(云)质砂岩、砂屑泥晶云岩为主。混合沉积成因类型主要为相源混合沉积和原地混合沉积,少量母源混合沉积,而间断混合沉积极少见。研究区古近系沙三上亚段主要为滨浅湖沉积,局部为半深湖沉积,其中滨浅湖沉积包括砂质混积滩坝、碳酸盐岩混积滩坝和滨浅湖泥沉积。

    (3) 根据混积岩的纵向和平面分布特征,结合构造地质、物源、古地貌、古气候和湖平面变化等资料,建立湖平面先稳定上升后下降的混积岩沉积模式。当湖平面较低时,研究区主要沉积河口坝和砂质滩坝;随着水位的上升,碳酸盐与陆源碎屑发生原地混合沉积;当湖平面达到一定高度时,以碳酸盐岩及其混积滩坝为主,沉积的碳酸盐与陆源碎屑形成相源混合沉积;后期,湖平面下降,可能形成母源混合沉积。

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return