Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

JIN ShuChen, LI YongHua, WEI DongLan, LI XinRui. Development Characteristics and Regional Comparison of Loess⁃covered Red Weathering Crust in Southern Liaoning[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1006-1015. doi: 10.14027/j.issn.1000-0550.2019.091
Citation: JIN ShuChen, LI YongHua, WEI DongLan, LI XinRui. Development Characteristics and Regional Comparison of Loess⁃covered Red Weathering Crust in Southern Liaoning[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1006-1015. doi: 10.14027/j.issn.1000-0550.2019.091

Development Characteristics and Regional Comparison of Loess⁃covered Red Weathering Crust in Southern Liaoning

doi: 10.14027/j.issn.1000-0550.2019.091
Funds:

Natural Science Foundation Project of Liaoning Province, No.2019⁃ZD⁃0475] 2019⁃ZD⁃0475

  • Received Date: 2019-07-24
  • Rev Recd Date: 2019-11-11
  • Publish Date: 2020-10-28
  • By analyzing the geochemical characteristics of the loess⁃covered red weathering crust in the Qidingshan area of southern Liaoning, the development characteristics are studied and compared with those of red weathering crust in Hunan, Guangxi, Guizhou, Yunnan, Tibet, Shanxi, and Gansu in order to understand the development characteristics of loess⁃covered red weathering crust and provide a preliminary basis of the spatial difference of its development characteristics in different regions. The chemical element experiments show that the average distribution of the main elements for the red weathering crust in the Qidingshan section experiences the following trend: SiO2 > Al2O3 > Fe2O3 > K2O > CaO > MgO > Na2O. CIA is between 83.19⁃86.89, Ba is between 0.26⁃0.35, A/NK is between 6.10 and 7.47, A/CNK is between 3.93 and 4.99, S/A is between 5.24 and 6.47, and S/R is between 4.53 and 5.50. The conclusion shows that the red weathering crust from the Qidingshan section has a positive weathering sequence, which is the product of weathering the underlying bedrock. The chemical composition is mainly composed of SiO2, Al2O3, and Fe2O3. The sum of the three is more than 86%, which constitutes a reductive environment, indicating desiliconization and deironing. This stage develops in a subtropical climate with a high level of chemical weathering. The climatic conditions of the red weathering crust development are provided in Liaoning Province from 116.13 Ma to 90.48 Ma and from 17.70 Ma. to 9.44 Ma, combined with the residual red weathering crust and stone bud, and can be considered to be from the mid⁃Miocene or earlier. The red weathering crust of southern Liaoning was a two⁃stage development process before the Quaternary, namely, the flattening⁃shelling, cutting⁃reddening period. The Quaternary has only had a cutting⁃reddening period. The element characteristics of the red weathering crust of Hunan, Guangxi, Guizhou, Yunnan, Tibet, Shanxi, Gansu, and Liaoning are highly consistent. The weathering intensity and direction in each region are similar. Except for the weak desiliconization, deironing, and aluminum⁃rich trend in southern Liaoning, other regions indicate a trend of desiliconization and aluminum⁃rich ironification, which suggests that the loess⁃covered red weathering crust is in a reductive environment. The latitude and longitude factors have similar effects on the desiliconization and aluminum⁃rich ironation process of red weathering crust. Compared with the longitude factors, the latitude factors have a greater influence on the alkali metal and alkali metal leaching of red weathering crust. In general, under the premise of less influence from the parent rock, the climatic factors under latitude control are the main factors determining the development of red weathering crust.
  • [1] 席承藩. 论华南红色风化壳[J]. 第四纪研究,1991,11(1):1-8.

    Xi Chengfan. On the red weathering crusts of southern China[J]. Quaternary Sciences, 1991, 11(1): 1-8.
    [2] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州:兰州大学出版社,1997:243-277.

    Zhang Hucai. Supergene geochemical character and theoryof elements[M]. Lanzhou: Lanzhou University Press, 1997: 243-277.
    [3] 郭媛媛,莫多闻,毛龙江,等. 澧阳平原岩板垱剖面地球化学特征与风化强度研究[J]. 地理科学,2013,33(3):335-341.

    Guo Yuanyuan, Mo Duowen, Mao Longjiang, et al. Geochemical characteristics and weathering intensity of the Yanbandang profile in Liyang Plain, the middle reach of the Changjiang River[J]. Scientia Geographica Sinica, 2013, 33(3): 335-341.
    [4] 舒强,赵志军,陈晔,等. 江苏兴化DS浅孔沉积物地球化学元素与粒度所揭示的古环境意义[J]. 地理科学,2009,29(6):923-928.

    Shu Qiang, Zhao Zhijun, Chen Ye, et al. Palaeoenvironmental significance of geochemistry elements and grain size of DS core sediments in Xinghua, Jiangsu province[J]. Scientia Geographica Sinica, 2009, 29(6): 923-928.
    [5] 崔之久,李德文,冯金良,等. 覆盖型岩溶、风化壳与岩溶(双层)夷平面[J]. 中国科学(D辑):地球科学,2001,31(6):510-519.

    Cui Zhijiu, Li Dewen, Feng Jinliang, et al. The covered karst, weathering crust and karst (double-level) planation surface[J]. Science China (Seri. D): Earth Sciences, 2001, 31(6): 510-519.
    [6] 李德文,崔之久,刘耕年. 湘桂黔滇藏一线覆盖型岩溶地貌特征与岩溶(双层)夷平面[J]. 山地学报,2000,18(4):289-295.

    Li Dewen, Cui Zhijiu, Liu Gengnian. Feature and origin of covered karst on Hunan, Guangxi, Guizhou, Yunnan and Tibet[J]. Journal of Mountain Science, 2000, 18(4): 289-295.
    [7] 黄英,符必昌,付君蕖,等. 昆明玄武岩红土物质组成的剖面特征[J]. 昆明理工大学学报,2000,25(4):88-92.

    Huang Ying, Fu Bichang, Fu Junqu, et al. The section properties of the substance composition of the basalt laterite in Kunming area[J]. Journal of Kunming University of Science and Technology, 2000, 25(4): 88-92.
    [8] 朱显谟. 中国南方的红土与红色风化壳[J]. 第四纪研究,1993(1):75-84.

    Zhu Xianmo. Red clay and red residuum in south China[J]. Quaternary Sciences, 1993(1): 75-84.
    [9] 冯志刚,王世杰,周德全,等. 黔北新蒲红色风化壳剖面的粒度分布特征:兼论岩溶区上覆土层的物质来源[J]. 地质科学,2004,39(3):440-451.

    Feng Zhigang, Wang Shijie, Zhou Dequan, et al. Grain size distribution characters of the red weathering crust at Xinpu, North Guizhou: Discussion on provenance of overlying weathering crusts in karst areas[J]. Chinese Journal of Geology, 2004, 39(3): 440-451.
    [10] 孙承兴,王世杰,周德全,等. 碳酸盐岩酸不溶物作为贵州岩溶区红色风化壳主要物质来源的证据[J]. 矿物学报,2002,22(3):235-242.

    Sun Chengxing, Wang Shijie, Zhou Dequan, et al. Insoluble residues of carbonate rocks as source material for red weathering crusts in karst regions of Guizhou province, China[J]. Acta Mineralogica Sinica, 2002, 22(3): 235-242.
    [11] 任雪梅,陈忠,罗丽霞,等. 夷平面研究综述[J]. 地理科学,2003,23(1):107-111.

    Ren Xuemei, Chen Zhong, Luo Lixia, et al. Summary on the study of Planation Surface[J]. Scientia Geographica Sinica, 2003, 23(1): 107-111.
    [12] 朱丽东,叶玮,周尚哲,等. 中亚热带第四纪红粘土的粒度特征[J]. 地理科学,2006,26(5):586-591.

    Zhu Lidong, Ye Wei, Zhou Shangzhe, et al. Grain-size features of red earth in mid-subtropics[J]. Scientia Geographica Sinica, 2006, 26(5): 586-591.
    [13] 魏东岚,沈俊杰,李永化. 红色风化壳地球化学特征及对古气候演变的响应:以辽南石槽剖面为例[J]. 地理科学,2018,38(2):307-313.

    Wei Donglan, Shen Junjie, Li Yonghua. Geochemical characteristics of red weathering crust from Shicao profile in southern Liaoning province and the response of paleoclimate evolution[J]. Scientia Geographica Sinica, 2018, 38(2): 307-313.
    [14] 蒋伟,李永化,魏东岚,等. 辽南地区晚第三纪红色风化壳及更新世高海面问题探讨[J]. 地理科学,2018,38(8):1391-1396.

    Jiang Wei, Li Yonghua, Wei Donglan, et al. Neogene red weathering crusts in the southern Liaoning province and the discussion of high sea level[J]. Scientia Geographica Sinica, 2018, 38(8): 1391-1396.
    [15] 曹万杰,季宏兵,朱先芳,等. 贵州高原地区典型风化剖面地球化学特征及其对比研究[J]. 中国岩溶,2012,31(2):131-138.

    Cao Wanjie, Ji Hongbing, Zhu Xianfang, et al. Contrast of geochemical features of the typical weathered profiles in Guizhou Plateau[J]. Carsologica Sinica, 2012, 31(2): 131-138.
    [16] 高全洲,崔之久,陶贞,等. 青藏高原古岩溶的性质、发育时代和环境特征[J]. 地理学报,2002,57(3):267-274.

    Gao Quanzhou, Cui Zhijiu, Tao Zhen, et al. The nature, Formation age and genetic environment of the palaeokarst on the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 2002, 57(3): 267-274.
    [17] 王世杰,孙承兴,冯志刚,等. 发育完整的灰岩风化壳及其矿物学与地球化学特征[J]. 矿物学报,2002,22(1):19-29.

    Wang Shijie, Sun Chengxing, Feng Zhigang, et al. Mineralogical and geochemical characteristics of the limestone weathering profile in Jishou, western Hunan province, China[J]. Acta Mineralogica Sinica, 2002, 22(1): 19-29.
    [18] 崔之久,洪云,高全洲,等. 青藏高原东北部古喀斯特过程与环境[J]. 地理学报,1996,51(5):408-417.

    Cui Zhijiu, Hong Yun, Gao Quanzhou, et al. The process and environment of polaeokarst in the northeast area of Qinghai-Xizang Platear[J]. Acta Geographica Sinica, 1996, 51(5): 408-417.
    [19] 张涛,季宏兵,温月花,等. 昆明石林碳酸盐岩红色风化壳元素地球化学特征[J]. 高校地质学报,2017,23(3):465-477.

    Zhang Tao, Ji Hongbing, Wen Yuehua, et al. Geochemical characteristics of red weathering cruston carbonate rocks in Shilin county, Kunming[J]. Geological Journal of China Universities, 2017, 23(3): 465-477.
    [20] 郑应顺. 辽东半岛自然地理[M]. 沈阳:辽宁教育出版社,1987:1-14.

    Zheng Yingshun. The physical geography of Liaodong Peninsula[M]. Shenyang: Liaoning Education Press, 1987: 1-14.
    [21] 辽宁省地质矿产局. 辽宁省区域地质志[M]. 北京:地质出版社:1989:5-7.

    Resources Liaoning Provincial Bureau of Geology. Regional geology in Liaoning province[M]. Beijing: Geological Publishing House, 1989: 5-7.
    [22] 符文侠,何宝林,刘伟. 辽东半岛沿海第四纪地层特征及其分布[J]. 海洋通报,1992,11(4):58-64.

    Fu Wenxia, He Baolin, Liu Wei. Characteristics and distribution of quaternary strata along coast of Liaodong Peninsula[J]. Marine Science Bulletin, 1992, 11(4): 58-64.
    [23] 肖荣寰,唐成田. 辽东半岛沿海成层地貌的分异[J]. 东北师大学报(自然科学版),1981(4):83-90.

    Xiao Ronghuan, Tang Chengtian. The stratigraphic division of Liaodong Peninsula[J]. Journal of Northeast Normal University (Natural Science Edition), 1981(4): 83-90.
    [24] 大连市计划委员会. 大连国土资源[M]. 大连:大连出版社,1990: 5-14.

    The planning committee in Dalian. Land resources in Dalian[M]. Dalian: Dalian Publishing House, 1990: 5-14.
    [25] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell, 1985.
    [26] 冯连君,储雪蕾,张启锐,等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,2003,10(4):539-544.

    Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical Index of Alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.
    [27] Brimhall G H, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 567-587.
    [28] 耿安松,文启忠. 陕西洛川黄土中碳酸盐的某些地球化学特征[J]. 地球化学,1988(3):267-275.

    Geng Ansong, Wen Qizhong. Some geochemical characteristics of carbonates in Luochuan loess, Shaanxi province[J]. Geochimica, 1988(3): 267-275.
    [29] 李锐,高杰,张莉,等. 黔北白云岩红色风化壳元素地球化学特征[J]. 中国岩溶,2014,33(4):396-404.

    Li Rui, Gao Jie, Zhang Li, et al. Element geochemical characteristics of red weathering crust from dolomite, North Guizhou, China[J]. Carsologica Sinica, 2014, 33(4): 396-404.
    [30] 刘安娜. 渭河流域全新世剖面元素地球化学特征与成壤环境变化研究[D]. 西安:陕西师范大学,2006.

    Liu Anna. Study on the relationship between the elemental geochemical characteristics and the Pedogenetic environment changes at the Holocene profiles in the Weihe Valley[D]. Xi’an: Shaanxi Normal University, 2006.
    [31] Schellmann W. Consideration on the definition and classification of laterites[C]//Proceedings of the international seminar on lateritisation processes. Trivandrum, India: Oxford & IBH Publishing Company, 1981: 1-10.
    [32] Marker M E, McFarlane M J, Wormald R J. A laterite profile near Albertinia, southern Cape, South Africa: Its significance in the evolution of the African surface[J]. South African Journal of Geology, 2002, 105(1): 67-74.
    [33] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
    [34] 李德文,崔之久,刘耕年. 湘桂黔滇藏红色岩溶风化壳发育模式[J]. 地理学报,2002,57(3):293-300.

    Li Dewen, Cui Zhijiu, Liu Gengnian. A development model of red weathering crust on limestones: An example from Hunan, Guangxi, Guizhou, Yunnan and Tibet[J]. Acta Geographica Sinica, 2002, 57(3): 293-300.
    [35] 林进峰,陈雪,汤贤赞. 从东亚大陆中、新生代的运动探讨南海的形成演化[J]. 热带海洋,1994,13(4):73-80.

    Lin Jinfeng, Chen Xue, Tang Xianzan. An inquiry into the evolution of South China Sea from movements of the East Asian continent during Mesozoic and Cenozoic[J]. Tropic Oceanology, 1994, 13(4): 73-80.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article Metrics

Article views(498) PDF downloads(84) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-07-24
  • Revised:  2019-11-11
  • Published:  2020-10-28

Development Characteristics and Regional Comparison of Loess⁃covered Red Weathering Crust in Southern Liaoning

doi: 10.14027/j.issn.1000-0550.2019.091
Funds:

Natural Science Foundation Project of Liaoning Province, No.2019⁃ZD⁃0475] 2019⁃ZD⁃0475

Abstract: By analyzing the geochemical characteristics of the loess⁃covered red weathering crust in the Qidingshan area of southern Liaoning, the development characteristics are studied and compared with those of red weathering crust in Hunan, Guangxi, Guizhou, Yunnan, Tibet, Shanxi, and Gansu in order to understand the development characteristics of loess⁃covered red weathering crust and provide a preliminary basis of the spatial difference of its development characteristics in different regions. The chemical element experiments show that the average distribution of the main elements for the red weathering crust in the Qidingshan section experiences the following trend: SiO2 > Al2O3 > Fe2O3 > K2O > CaO > MgO > Na2O. CIA is between 83.19⁃86.89, Ba is between 0.26⁃0.35, A/NK is between 6.10 and 7.47, A/CNK is between 3.93 and 4.99, S/A is between 5.24 and 6.47, and S/R is between 4.53 and 5.50. The conclusion shows that the red weathering crust from the Qidingshan section has a positive weathering sequence, which is the product of weathering the underlying bedrock. The chemical composition is mainly composed of SiO2, Al2O3, and Fe2O3. The sum of the three is more than 86%, which constitutes a reductive environment, indicating desiliconization and deironing. This stage develops in a subtropical climate with a high level of chemical weathering. The climatic conditions of the red weathering crust development are provided in Liaoning Province from 116.13 Ma to 90.48 Ma and from 17.70 Ma. to 9.44 Ma, combined with the residual red weathering crust and stone bud, and can be considered to be from the mid⁃Miocene or earlier. The red weathering crust of southern Liaoning was a two⁃stage development process before the Quaternary, namely, the flattening⁃shelling, cutting⁃reddening period. The Quaternary has only had a cutting⁃reddening period. The element characteristics of the red weathering crust of Hunan, Guangxi, Guizhou, Yunnan, Tibet, Shanxi, Gansu, and Liaoning are highly consistent. The weathering intensity and direction in each region are similar. Except for the weak desiliconization, deironing, and aluminum⁃rich trend in southern Liaoning, other regions indicate a trend of desiliconization and aluminum⁃rich ironification, which suggests that the loess⁃covered red weathering crust is in a reductive environment. The latitude and longitude factors have similar effects on the desiliconization and aluminum⁃rich ironation process of red weathering crust. Compared with the longitude factors, the latitude factors have a greater influence on the alkali metal and alkali metal leaching of red weathering crust. In general, under the premise of less influence from the parent rock, the climatic factors under latitude control are the main factors determining the development of red weathering crust.

JIN ShuChen, LI YongHua, WEI DongLan, LI XinRui. Development Characteristics and Regional Comparison of Loess⁃covered Red Weathering Crust in Southern Liaoning[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1006-1015. doi: 10.14027/j.issn.1000-0550.2019.091
Citation: JIN ShuChen, LI YongHua, WEI DongLan, LI XinRui. Development Characteristics and Regional Comparison of Loess⁃covered Red Weathering Crust in Southern Liaoning[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1006-1015. doi: 10.14027/j.issn.1000-0550.2019.091
  • 红色风化壳是地球表层岩石经物理、化学和生物作用风化后,由残余物质与新生物质构成的地表岩石圈表层,其形成于亚热带高温多雨,年均温度16 ℃~25 ℃,年均降水量>1 500 mm的高温高湿环境[1]。在化学风化过程中,红色风化壳的风化速率和发育强度主要受母岩控制,在母岩和构造等条件影响较小的前提下,气候因素是控制红色风化壳发育强度的主要因素[24]。中国红色风化壳分布面积达2.2×106 km2,主要分布于中国南方地区,中国学者对其进行了大量研究[512],并取得显著成果。相较而言,对北方红色风化壳的研究尚处于初级阶段[1314],北方地区的红色风化壳大都被厚层黄土覆盖,席承藩[1]认为其与南方红色风化壳属于不同范畴,这类红色风化壳主量元素地球化学特征如何?与其他区域同类基岩红色风化壳主量元素地球化学特征差异如何?这些问题对于理解中国不同区域碳酸盐岩红色风化壳发育特征的空间差异规律具有重要意义。

    本文通过大量野外调查,选取厚层黄土覆盖的七顶山剖面红色风化壳为研究对象,其基岩为碳酸盐岩,通过分析剖面主量元素和地球化学指标变化特征,研究剖面地球化学特征,并与湘桂黔滇青藏陕甘碳酸盐岩风化壳地球化学特征进行对比[1519],旨在阐明辽南黄土覆盖下的红色风化壳地球化学特征和风化强度变化,并为认识不同地区碳酸盐岩红色风化壳发育特征的空间差异规律提供初步依据。此外,大连地区位于辽宁省南部,七顶山剖面红色风化壳的发现,为将中国碳酸盐岩红色风化壳的分布范围扩展到39° N进一步提供了依据。

  • 大连地区位于辽宁省南部,气候条件为海洋性暖温带季风气候,多年平均气温在10 ℃左右,年均降水量550~950 mm,由东北向西南递减,降水多集中于夏季,以暴雨为主[14]。本区以太古界和下元古界地层为基底,是亚洲最古老的地块之一[20],大地构造位于中朝准地台上,自新构造运动以来,构造运动长期表现为间歇性差异抬升状态[2123],区内绝大部分为山地经剥蚀而成的低缓丘陵,岩溶地貌发育广泛,南部地区以喀斯特侵蚀及侵蚀剥蚀形成的低山区丘陵为主,中部和北部以受侵蚀剥蚀影响的山区为主,东南部的黄海沿岸和西部的渤海沿岸则以侵蚀剥蚀丘陵及堆积、侵蚀平原为主[24]

  • 七顶山剖面位于辽宁省大连市金州区七顶山乡东部(图1a),经纬度为121°41′02″ E,39°16′10″ N,海拔约50 m,基岩为震旦系碳酸盐岩。该剖面(图1b)厚度超过7 m,自下而上依次为碳酸盐岩,4 m厚的风化壳,1.5 m厚的黄土。样品取自中部风化壳,自下而上按间距20 cm连续取样20个。自上而下按编号QDS⁃1~QDS⁃20,基岩样品1个。

    Figure 1.  Location and sampling of the Qidingshan section

  • 化学元素实验在辽宁师范大学实验中心光谱色谱实验室完成,采用日本理学公司生产的ZSX PrinmusⅡ型X射线荧光光谱仪进行化学元素测试,测试量程0~100%,主量元素的误差为1%~2%,测试结果见表1

    名称 埋深/m SiO2/% Al2O3/% Fe2O3/% K2O/% CaO/% Na2O/% MgO/% TiO2/%
    QDS1 2.4 63.13 18.56 4.62 2.26 0.88 0.24 0.45 0.67
    QDS4 3.0 61.42 19.59 5.14 2.34 0.77 0.16 0.51 0.69
    QDS7 3.6 63.28 18.73 4.69 2.18 0.75 0.20 0.43 0.64
    QDS10 4.2 64.89 17.97 4.25 2.03 0.85 0.27 0.42 0.56
    QDS13 4.8 63.39 18.62 4.85 2.06 0.76 0.24 0.47 0.64
    QDS16 5.4 63.10 18.66 4.58 2.07 0.80 0.28 0.53 0.65
    QDS19 6.0 64.44 16.93 4.70 1.97 0.82 0.37 0.58 0.61
    QDS20 6.2 63.28 17.58 4.43 2.04 0.87 0.41 0.67 0.61
    平均值 63.45 18.40 4.68 2.13 0.80 0.25 0.49 0.64
    标准差 1.04 0.71 0.27 0.11 0.06 0.07 0.07 0.04
    QDS基岩 2.55 0.57 0.30 0.07 42.15 0.01 13.45 0.02
    UCC[25] 66.00 15.20 5.00 3.40 4.20 3.90 2.20 0.50
    广西大化[16] 48.97 34.13 10.03 0.55 0.28 0.10 2.06
    云南昆明[19] 58.10 17.61 11.28 0.49 0.27 0.03 0.37 1.58
    云南昆明基岩[19] 0.33 0.09 0.09 0.02 55.71 0.01 0.34 0.01
    贵州平坝[15] 35.06 28.61 16.52 2.07 0.36 0.13 1.10 1.26
    贵州平坝基岩[15] 3.00 1.36 0.87 0.15 30.29 0.18 18.07 0.17
    湖南吉首[17] 50.90 21.82 7.52 7.04 0.47 0.34 1.39 0.72
    湖南吉首基岩[17] 18.95 7.56 2.18 3.50 34.60 0.28 1.00 0.25
    西藏安多北山[16] 46.04 22.51 13.36 3.40 0.13 0.17 1.82
    陕西黑沟[18] 48.98 24.28 12.12 3.05 0.08 0.24 2.31
    青海玉树[16] 50.04 23.13 11.09 4.28 0.17 0.26 2.72
    甘肃武都[16] 48.75 23.73 11.90 3.71 0.10 0.35 2.45

    Table 1.  Main element contents in the red weathering crust from the Qidingshan section

    实验方法:1)样品自然风干后通过2 mm孔径的筛子,放入已编号的烧杯。2)将样品放入温度设置为100 ℃的烘箱中烘干,冷却后放入SM⁃1型研磨机中,研磨约30 s。3)将样品均匀放入聚乙烯环中,用BP⁃1型压样机压制成型。4)将压制好的样品按照编号次序放入仪器,进行化学元素测量。

  • 表1可知,七顶山剖面红色风化壳的主要化学成分为SiO2、Al2O3、Fe2O3,三者之和超过86%。SiO2、Fe2O3平均值分别为63.45%、4.68%,均低于上陆壳(UCC)平均值66.00%、5.00%;Al2O3平均值为18.40%,高于UCC的平均值15.20%。除K2O这类易被黏土矿物吸附的元素含量超过2.00%外,CaO、Na2O、MgO这类易溶元素含量均低于1.00%。主量元素含量顺序特征呈现(表1):SiO2>Al2O3> Fe2O3 > K2O > CaO > MgO > Na2O的趋势。作为碳酸盐岩最重要元素的Ca因方解石的充分淋失而迅速降低,从基岩到半风化带,自42.15%减至0.87%,减少了近98%,符合碳酸盐岩风化壳的发育特征。

  • 地球化学指标可以用于判断红色风化壳的风化强度(图2),常用的地球化学指标有:A/NK=Al2O3/(Na2O+K2O);A/CNK=Al2O3/(CaO+Na2O+K2O);S/A=SiO2/Al2O3;S/R=SiO2/(Al2O3+Fe2O3);CIA=[Al2O3/(Al2O3+K2O+CaO*+Na2O)]×100;ba=(Na2O+K2O+CaO+MgO)/Al2O3等,它们从不同角度反映红色风化壳风化强度。各地球化学参数均为摩尔分数比,式中CaO*为存在于硅酸盐中的CaO,CIA的计算方法参考文献[13]。

    Figure 2.  Geochemical index for the Qidingshan red weathering crust section with a depth curve

    七顶山红色风化壳的CIA、A/NK、A/CNK自基岩向上呈现增加趋势,ba、S/A、S/R自基岩向上呈现减少趋势,表明该剖面风化壳自下而上脱硅富铝化和碱金属元素淋失程度越来越高,成熟度越来越高,呈现出正风化序列,这符合红色风化壳自下而上发育成熟度越来越高的特点。CIA值在不同范围表示的气候环境意义不同,其介于85~100说明气候近似亚热带气候,风化作用为高度化学风化[26]。七顶山剖面CIA介于83.19 ~ 86.89,平均值为85.38,表明其发育于近似亚热带的气候条件,处于高等化学风化水平。

  • 目前对元素迁移特征的研究主要采用Brimhall和Dietrich的研究,某元素j在残积层的质量迁移系数可定义为:τ j.w=(Cj.w/Cj.p)/(Ci.w/Ci.p)-1,τ j.w的具体计算方法及意义参考文献[27]。在七顶山剖面中,以极难迁移的Ti元素(标准差为0.04)作为参比元素i,计算剖面中各取样点的迁移系数。

    图3中可以看出,相对于Ti来说,Al2O3、K2O的质量迁移系数呈现较弱的富集趋势,SiO2、Na2O、Fe2O3呈现较弱的淋失特征,MgO、CaO几乎全部淋失。主量元素迁移系数呈现Al2O3=K2O > SiO2 > Na2O > Fe2O3 > MgO = CaO的变化规律(图3)。碳酸盐岩风化壳形成过程中会淋失大量碳酸盐类物质,Ca、Mg主要存在于碳酸盐矿物中,该种矿物的淋失与降水量、气候有明显关系,耿安松等[28]认为Ca、Mg的亏损程度与当时的平均降水量成正比,剖面中Ca、Mg几乎全部淋失,说明形成时期气候湿热,降水量较高,这与CIA值表明七顶山剖面形成于近似亚热带气候条件相吻合。通常,Fe在风化过程中属于不活化元素,容易发生相对积聚,但该剖面风化壳中Fe2O3表现为亏损特征,Fe在酸性介质、还原环境中容易迁移,在碱性介质、氧化环境中容易聚积[29],说明该剖面处于还原环境,这可能与该剖面被厚层黄土覆盖,黄土阻隔了风化壳与O2的接触,使该剖面处于还原环境,阻碍了碳酸盐岩风化壳的化学风化进程有关。Na的淋失、K的富集代表了相对暖湿的气候条件[30]。主量元素迁移特征表明该剖面处于脱硅脱铁富铝阶段。

    Figure 3.  Mean migration coefficient of major elements in the weathering crust of Hunan, Guangxi, Guizhou, and Liaoning

  • SiO2 Al2O3 Fe2O3三角图用于反应风化壳红土化进程(图4a)[3132],与基岩相比七顶山剖面红色风化壳呈现出脱硅脱铁富铝的趋势,这与主量元素迁移特征有着相同的变化特点。ACNK[Al2O3-(CaO*+Na2O)-K2O]三角图用于反映化学风化趋势及风化过程中主要成分、矿物的变化[33]图4b),相对于上陆壳UCC剖面中Ca、Na大量流失,K、Al富集,风化趋势指向平行于ACN且接近于AK连线,表明该剖面中蒙脱石逐渐消耗殆尽,属于强烈风化阶段。

    Figure 4.  Weathering trend in the Qidingshan section

  • 将基岩均为碳酸盐岩的辽南红色风化壳与湘桂黔滇青藏甘陕红色风化壳进行对比,明显看出各区域碳酸盐岩红色风化壳主量元素组成具有高度相似性,主要表现为:1)化学元素组成以SiO2、Al2O3、Fe2O3为主,三者之和均大于80%,但不同区域红色风化壳这三种元素总含量存在微弱差异(表1),这可能与不同区域红色风化壳发育条件存在差异有关。2)不同区域红色风化壳主量元素UCC标准化曲线变化趋势大体相同(图5),说明各区域碳酸盐岩红色风化壳发育程度接近,SiO2变化于0.53 ~ 0.96,Al2O3变化于1.16 ~ 2.25,Fe2O3变化于0.94 ~ 3.30,K2O变化于0.16 ~ 2.07,CaO变化于0.02 ~ 0.19,Na2O变化于0.01 ~ 0.09,MgO变化于0.17 ~ 1.24。3)不同地区红色风化壳的风化方向接近,除辽南呈现较弱的脱硅脱铁富铝趋势外,均表现为脱硅富铝铁化趋势,CaO、Na2O这类易淋失元素均位于UCC下方,表现为明显的亏损特征,K2O、MgO则在不同区域呈现出不同的状态,可能与不同地区淋溶作用强弱不同有关。

    Figure 5.  Standard element UCC normalization curve from the area where the weathering shell is located

  • 因仅湘滇黔辽红色风化壳有基岩主量元素数据,故对这四个地区主量元素迁移系数平均值进行研究(图3),以极难迁移的Ti元素作为参比元素i,计算各剖面中迁移指数平均值。τ j.w介于- 0.22 ~ 0.35时属于守恒元素,相对于Ti来说,各区域Si的τ j.w介于- 0.06 ~ 0.58,Al介于0.02 ~ 1.84,Fe介于- 0.39 ~ 1.56,K介于- 0.85 ~ 0.86,Ca均为-1,Na2O介于- 0.23 ~ - 1.00,MgO介于- 0.50 ~ - 1.00。Si在各区域并未表现出明显的淋失趋势,反而有一定的富集趋势,可能与吸附于黏土矿物表面的Si在机械淋溶作用下随黏土矿物被淋溶出来,出现石英的富集,导致比率增大有关。Al在各个区域表现为不同程度的富集趋势,Fe除在辽南呈现微弱迁出趋势外,在其他区域表现为守恒或富集状态,这可能与七顶山剖面被厚层黄土覆盖,使得红色风化壳处于还原环境有关。K在不同区域呈现不同的淋失或富集状态,这可能与不同地区淋溶作用不同有关。Ca、Na、Mg这类元素在不同区域红色风化壳中均表现为淋失状态。

  • 地球化学指标可以反映风化壳的发育成熟度及风化作用强弱(表2)。硅铝铁率S/R、硅铁比S/F、硅铝比S/A用来说明风化壳脱硅富铝化程度,其值越小,表明风化壳的化学风化程度越大,铁铝富集程度越高,风化壳越成熟。贵州平坝、广西大化地区这三项指标最小,其次为陕西黑沟、西藏安多北山、甘肃武都、青海玉树、湖南吉首地区,云南昆明、辽南风化壳脱硅富铝化程度最低。A/NK、A/CNK表示碱金属和碱土金属盐基的淋失程度,其值越大表明碱金属淋失程度越高,K、Na等元素大量淋失,Al元素大量富集。广西大化地区A/NK、A/CNK值最高,其次为云南昆明、贵州平坝地区,其他区域A/NK、A/CNK数值接近。CIA可以用于反映化学风化强度。广西大化、云南昆明、贵州平坝、陕西黑沟、辽南地区为高等化学风化,其他区域为中等化学风化。盐基淋溶率ba是判断淋溶程度最常用的指标,其值越小,表明风化壳的发育程度越高,风化作用越强。云南昆明、广西大化、贵州平坝淋溶程度最高,其次为辽南地区,湖南吉首地区淋溶程度最低。总体来看,红色风化壳化学风化(除湖南吉首外)呈现出明显的随纬度增加风化强度减小趋势。

    区域名称 北纬/° 东经/° S/A S/F S/R A/CNK A/NK CIA ba
    广西大化 23 107 2.44 13.02 2.05 26.85 44.83 97.36 0.19
    云南昆明 24 103 5.61 13.74 3.98 16.26 30.03 94.21 0.12
    贵州平坝 26 105 2.08 5.66 1.52 9.16 11.62 91.44 0.21
    湖南吉首 28 109 3.97 18.05 3.25 2.41 2.66 71.37 0.58
    西藏安多北山 32 91 3.48 9.19 2.52 5.37 5.68 84.31 0.39
    陕西黑沟 33 109 3.43 10.77 2.60 6.31 6.55 86.32 0.40
    青海玉树 33 97 3.68 12.03 2.82 4.30 4.56 81.12 0.53
    甘肃武都 33 105 3.49 10.92 2.65 4.96 5.16 83.22 0.46
    辽南七顶山 39 121 5.88 36.12 5.05 4.41 6.75 85.38 0.30

    Table 2.  Geochemical indicator average in area where the weathering crust is located

    地球化学指标与纬度因素和经度因素的相关性分析(表3)。CIA、A/NK、A/CNK与经度因素几乎不相关,相较于经度因素其与纬度因素的关系更为密切,呈明显负相关(R分别为- 0.85、- 0.81、- 0.83),即随纬度增加CIA、A/NK、A/CNK值变小。经度因素和纬度因素对S/A、S/F、S/R的影响程度接近,均呈正相关,即随经度和纬度增加S/A、S/F、S/R值有增大趋势。ba与纬度因素呈正相关(R 2 = 0.68),与经度因素呈负相关(R 2 = -0.28),即随纬度增加ba有增加趋势,随经度增加ba有减小趋势。相关性分析表明纬度因素和经度因素对脱硅富铝铁化进程影响程度接近,相较于经度因素,纬度因素对红色风化壳碱金属及碱金属盐基淋溶作用影响程度更大。

    相关性分析 S/A S/F S/R A/CNK A/NK CIA ba
    纬度 0.41 0.58 0.50 -0.83 -0.81 -0.85 0.68
    经度 0.37 0.74 0.51 0.05 0.08 0.18 -0.28

    Table 3.  Correlation analysis between geochemical indicators of the weathering crust and longitude and latitude

  • 如A⁃CN⁃K三角图所示(图6),各地区除湖南吉首外均位于Sm—ILL连线之上,表明伊利石开始风化,高岭石等黏土矿物开始生成,呈现出自青海玉树、甘肃武都、西藏安多北山、辽南七顶山、陕西黑沟、贵州平坝、云南昆明、广西大化,化学风化强度逐渐增加的趋势。此外,这些区域红色风化壳数据点集中在一个狭小的范围内,其连线近似平行于A⁃K连线并向A点靠近,基本呈现出随纬度变小化学风化强度增大趋势,表明在母岩因素影响较小的情况下,纬度控制的气候因素是决定红色风化壳风化强度和风化方向的主要因素。

    Figure 6.  A⁃CN⁃K triangle diagram for weathering crust in each region

  • 李德文等[34]认为对大区域来讲,只有侵蚀基准面下降(主要指构造隆升)才能改变近地表水文结构,为风化壳的淋溶作用创造条件,中国南方地区位于地表以下人工开挖剖面上的风化壳主体仍呈灰色,而上层风化壳却呈红色,从地貌演化角度将红色风化壳的发育分为两个阶段,即夷平—成壳期、切割—红化期。

    辽东半岛新构造运动长期处于差异性构造抬升状态,导致侵蚀基准面相对下降,为风化淋溶作用创造了条件,使得风化壳的红化得以进行。本区尚未发现灰色风化壳,可能由于风化壳主要形成于湿热气候条件,研究区第四纪时期进入冰期,风化壳近乎停止发育,而构造继续抬升,淋溶作用依然存在,经过260万年左右的抬升、淋溶,新近纪时期形成的灰色风化壳几乎全部抬升于侵蚀基准面以上,形成红色风化壳。

    辽东半岛风化壳的发育过程与南方同类风化壳的发育过程近似,即红色风化壳的形成经历夷平—成壳、切割—红化期两个阶段。但南方风化壳至今仍处于发育阶段,而本区风化壳为古风化壳,其形成具有地域特色,应将其发育过程按照从古至今分为第四纪之前发育过程和第四纪之后发育过程两部分叙述。第四纪以前为二阶段发育过程,即夷平—成壳、切割—红化期,第四纪至今为切割—红化期。

  • 关于辽南这套红色风化壳的形成年代问题,蒋伟等[14]根据曹家欣教授对山东庙岛群岛红色风化壳剖面测量的古地磁结果及石灰岩溶蚀作用速率推测其形成于中新世中期或更早,本文尝试从大陆漂移这一角度探讨辽南红色风化壳的形成年代问题。

    古地磁记录表明东亚大陆自晚侏罗纪至渐新世初由北向南漂移了8°~15°,自渐新世初至今由南向北回漂了相同的纬度[35],现今辽南纬度为39° N左右,根据东亚大陆上述移动情况,推测辽南在渐新世初的纬度约为24°~31° N,侏罗纪的纬度约为39° N。地球化学特征表明辽南红色风化壳形成于近似亚热带的气候条件,现今亚热带气候分布区的北界为35 °N,按照将今论古的研究思想,只有当辽南漂移至35° N附近时,才能获得地球化学指标所揭示的近似亚热带气候条件。根据上述古地磁记录表明的东亚大陆漂移纬度,推测辽南自侏罗纪至渐新世初向南漂移的速率约为0.072 7~0.136 2 °/Ma,到达35° N的时间约为116.13~90.48 Ma B.P.,渐新世初至今向北漂移的速率约为0.226 0~0.423 7 °/Ma,辽南到达35° N的年代约为17.70~9.44 Ma B.P.,表明辽南地区在116.13~90.48 Ma B.P.至17.70~9.44 Ma B.P.时具备地球化学指标所揭示的近似亚热带气候条件,考虑到红色风化壳的形成受母岩、气候和构造等因素的影响且研究区内红色风化壳的厚度仅为4 m,残存石芽最高为15 m,推测辽南红色风化壳形成于东亚大陆由南向北回漂到达35° N附近时,形成时代应为中新世中期或早期。

  • (1) 七顶山剖面黄土覆盖的红色风化壳化学组成以SiO2、Al2O3、Fe2O3为主,三者之和超过86%,主量元素变化特征呈现SiO2 > Al2O3 > Fe2O3 > K2O > CaO > MgO > Na2O的变化规律。剖面发育于近似亚热带的气候条件,处于高等化学风化水平,呈正风化序列,是下伏基岩原地风化的产物。风化过程中CaO、MgO、Na2O、SiO2、Fe2O3发生不同程度迁移淋失,K2O、Al2O3呈现富集状态,说明剖面风化壳处于还原环境中,属于脱硅脱铁富铝阶段。

    (2) 辽南在116.13~90.48 Ma B.P.至17.70 ~ 9.44 Ma B.P.时具备地球化学指标所揭示的近似亚热带气候条件,根据残存红色风化壳厚度及石芽情况,推测这套红色风化壳形成于中新世中期或早期,第四纪以前为二阶段发育过程,即夷平—成壳、切割—红化期,第四纪至今仅有切割—红化期。

    (3) 湘桂黔滇青藏陕甘辽红色风化壳常量元素分布高度一致,均以SiO2、Al2O3、Fe2O3为主,三者之和均大于80%,各区域红色风化壳风化强度、风化方向接近,除辽南呈现较弱的脱硅脱铁富铝趋势外,其他区域均表现为脱硅富铝铁化趋势,这暗示了黄土覆盖下的红色风化壳处于还原环境。纬度因素和经度因素对红色风化壳脱硅富铝铁化进程影响程度接近,相较于经度因素,纬度因素对红色风化壳碱金属及碱金属盐基淋溶作用影响程度更大,总体来看,在母岩影响较小的前提下,纬度控制下的气候因素是决定红色风化壳发育强度和风化方向的主要因素。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return