Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

LIU DaWei, JI YouLiang, GAO ChongLong, JIN Jun, YANG Zhao, DUAN XiaoBing, HUAN ZhiJun, ZHANG Yue, JI MengYao. Research on the Sheetflow Zone and Frame⁃support Conglomerate in a Braided⁃river Alluvial Fan: Case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1026-1036. doi: 10.14027/j.issn.1000-0550.2019.083
Citation: LIU DaWei, JI YouLiang, GAO ChongLong, JIN Jun, YANG Zhao, DUAN XiaoBing, HUAN ZhiJun, ZHANG Yue, JI MengYao. Research on the Sheetflow Zone and Frame⁃support Conglomerate in a Braided⁃river Alluvial Fan: Case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1026-1036. doi: 10.14027/j.issn.1000-0550.2019.083

Research on the Sheetflow Zone and Frame⁃support Conglomerate in a Braided⁃river Alluvial Fan: Case study of the modern Poplar River alluvial fan, northwestern Junggar Basin

doi: 10.14027/j.issn.1000-0550.2019.083
Funds:

National Natural Science Foundation of China 41672098, 41602133

  • Received Date: 2019-05-20
  • Rev Recd Date: 2019-08-24
  • Publish Date: 2020-10-28
  • Alluvial fan conglomerate reservoirs have always been the main reservoir type in the Junggar Basin. In particular, the discovery of an extra⁃large type of conglomerate reservoir in the Mahu Sag highlights the need for a study of gravel alluvial fan reservoirs. This article is based on a large amount of field data and literature reports in China and abroad. The Poplar River gravelly alluvial fan was selected for research into this type of deposit. The study focused on the sedimentary characteristics and distribution of the sheetflow of frame⁃support conglomerates. It was found that: (1) The sheetflow within the belt of sediments between the root feeder channel and the braided channel in the central part, and the transition of the two lithofacies. The sheetflow zone is kilometers in extent, and the internal frame⁃support conglomerates improve reservoir properties. (2) Three types of frame⁃support conglomerates were identified: the frame⁃support conglomerate in the sheetflow, the frame⁃support conglomerate developed along the bedding planes and the frame⁃support conglomerate at the bottom of the channel. (3) The frame⁃support conglomerate in the sheetflow occurs in sheetflow zone deposits, with good stratification and high linear density. The frame⁃support conglomerate developed along the bedding planes formed in the braided channel sedimentary environment. The limits of development and the scale of the channel matches the cross⁃bedding conglomerate to form large⁃scale, high⁃quality lithofacies assemblages. The frame⁃support conglomerates developed at the bottom of both the channel and the braided channel are small but well⁃connected. In conclusion, this study of the sheetflow zone and frame⁃support conglomerate has provided theoretical support for the development of glutenite oil reservoirs in alluvial fans.
  • [1] Waters J V, Jones S J, Armstrong H A. Climatic controls on Late Pleistocene alluvial fans, Cyprus[J]. Geomorphology, 2010, 115(3/4): 228-251.
    [2] Decelles P G, Gray M B, Ridgway K D, et al. Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana[J]. Sedimentology, 1991, 38(4): 567-590.
    [3] Fidolini F, Ghinassi M, Aldinucci M, et al. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)[J]. Sedimentary Geology, 2013, 289: 19-39.
    [4] Clarke L E. Experimental alluvial fans: Advances in understanding of fan dynamics and processes[J]. Geomorphology, 2015, 244: 135-145.
    [5] Harvey A M. The role of base-level change in the dissection of alluvial fans: Case studies from southeast Spain and Nevada[J]. Geomorphology, 2002, 45(1/2): 67-87.
    [6] Hornung J, Pflanz D, Hechler A, et al. 3-D architecture, depositional patterns and climate triggered sediment fluxes of an alpine alluvial fan (Samedan, Switzerland)[J]. Geomorphology, 2010, 115(3/4): 202-214.
    [7] de Haas T, Braat L, Leuven J R F W, et al. Effects of debris flow composition on Runout, depositional mechanisms, and deposit morphology in laboratory experiments[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1949-1972.
    [8] 刘大卫,纪友亮,高崇龙,等. 砾质辫状河型冲积扇沉积微相及沉积模式:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 古地理学报,2018,20(3):435-451.

    Liu Dawei, Ji Youliang, Gao Chonglong, et al. Microfacies and sedimentary models of gravelly braided-river alluvial fan: A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(3): 435-451.
    [9] 靳军,刘大卫,纪友亮,等. 砾质辫状河型冲积扇岩相类型、成因及分布规律:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 沉积学报,2019,37(2):254-267.

    Jin Jun, Liu Dawei, Ji Youliang, et al. Research on lithofacies types, cause mechanisms and distribution of a gravel braided-river alluvial fan: A case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 254-267.
    [10] 印森林,吴胜和,冯文杰,等. 冲积扇储集层内部隔夹层样式:以克拉玛依油田一中区克下组为例[J]. 石油勘探与开发,2013,40(6):757-763.

    Yin Senlin, Wu Shenghe, Feng Wenjie, et al. Patterns of inter-layers in the alluvial fan reservoirs: A case study on Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Petroleum Exploration and Development, 2013, 40(6): 757-763.
    [11] 吴胜和,范铮,许长福,等. 新疆克拉玛依油田三叠系克下组冲积扇内部构型[J]. 古地理学报,2012,14(3):331-340.

    Wu Shenghe, Fan Zheng, Xu Changfu, et al. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay oilfield, Xinjiang[J]. Journal of Palaeogeography, 2012, 14(3): 331-340.
    [12] 冯文杰,吴胜和,徐长福,等. 冲积扇储层窜流通道及其控制的剩余油分布模式:以克拉玛依油田一中区下克拉玛依组为例[J]. 石油学报,2015,36(7):858-870.

    Feng Wenjie, Wu Shenghe, Xu Changfu, et al. Water flooding channel of alluvial fan reservoir and its controlling distribution pattern of remaining oil: A case study of Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Acta Petrolei Sinica, 2015, 36(7): 858-870.
    [13] de Haas T, Ventra D, Carbonneau P E, et al. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering[J]. Geomorphology, 2014, 217: 165-181.
    [14] Neton M J, Dorsch J, Olson C D, et al. Architecture and directional scales of heterogeneity in alluvial-fan aquifers[J]. Journal of Sedimentary Research, 1994, 64(2b): 245-257.
    [15] Blair T C. Alluvial fan and catchment initiation by rock avalanching, Owens Valley, California[J]. Geomorphology, 1999, 28(3/4): 201-221.
    [16] Kim B C, Lowe D R. Depositional processes of the gravelly debris flow deposits, South Dolomite alluvial fan, Owens Valley, California[J]. Geosciences Journal, 2004, 8(2): 153-170.
    [17] Calvo R, Ramos E. Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain)[J]. Geosphere, 2015, 11(5): 1507-1529.
    [18] 靳军,康逊,胡文瑄,等. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响[J]. 石油与天然气地质,2017,38(2):323-333,406.

    Jin Jun, Kang Xun, Hu Wenxuan, et al. Diagenesis and its influence on coarse clastic reservoirs in the Baikouquan Formation of western slope of the Mahu Depression, Junngar Basin[J]. Oil & Gas Geology, 2017, 38(2): 323-333, 406.
    [19] 操应长,燕苗苗,葸克来,等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报,2019,37(5): 945-956.

    Cao Yingchang, Yan Miaomiao, Xi Kelai, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956.
    [20] 张纪易. 粗碎屑洪积扇的某些沉积特征和微相划分[J]. 沉积学报,1985,3(3):75-85.

    Zhang Jiyi. Some depositional characteristics and microfacies subdivision of coarse clastic alluvial fans[J]. Acta Sedimentologica Sinica, 1985, 3(3): 75-85.
    [21] 胡杨,夏斌,郭峰,等. 新疆和什托洛盖盆地构造演化特征及其对油气成藏的影响[J]. 地质与资源,2012,21(4):380-385.

    Hu Yang, Xia Bin, Guo Feng, et al. Tectonic evolution and its influence on hydrocarbon accumulation of Heshituoluogai Basin in Northwest Xinjiang[J]. Geology and Resources, 2012, 21(4): 380-385.
    [22] 吕辉河. 新疆西准噶尔白杨河流域地貌特征及演化分析[D]. 济南:鲁东大学,2013.

    Huihe Lü. Analysis of geomorphic features and evolution of Baiyanghe River in West Junggar, Xinjiang, China[D]. Jinan: Ludong University, 2013.
    [23] Blair T C. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California[J]. Sedimentary Geology, 2000, 132(3/4): 233-262.
    [24] 高崇龙. 长源河流型冲积扇沉积特征及其沉积模式:以和什托洛盖盆地北缘现代白杨河冲积扇为例[D]. 北京:中国石油大学(北京),2018.

    Gao Chonglong. Sedimentary characteristics and depositional model of fluvial fan with far provenances — a case study of modern Baiyanghe alluvial fan in northern margin of Heishituoluogai Basin[D]. Beijing: China University of Petroleum(Beijing), 2018.
    [25] 张月, 纪友亮, 高崇龙, 等. 冲积扇“颗粒支撑砾岩”的成因和分布及其油气地质意义[J]. 中国矿业大学学报, 2020, 49(2): 332-346.

    Zhang Yue, Ji Youliang, Gao Chonglong, et al. Genetic mechanism, distribution and significance for hydrocarbon exploration of the grain-supported conglomerate in alluvial fan[J]. Journal of China University of Mining & Technology, 2020, 49(2): 332-346.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(1242) PDF downloads(178) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-05-20
  • Revised:  2019-08-24
  • Published:  2020-10-28

Research on the Sheetflow Zone and Frame⁃support Conglomerate in a Braided⁃river Alluvial Fan: Case study of the modern Poplar River alluvial fan, northwestern Junggar Basin

doi: 10.14027/j.issn.1000-0550.2019.083
Funds:

National Natural Science Foundation of China 41672098, 41602133

Abstract: Alluvial fan conglomerate reservoirs have always been the main reservoir type in the Junggar Basin. In particular, the discovery of an extra⁃large type of conglomerate reservoir in the Mahu Sag highlights the need for a study of gravel alluvial fan reservoirs. This article is based on a large amount of field data and literature reports in China and abroad. The Poplar River gravelly alluvial fan was selected for research into this type of deposit. The study focused on the sedimentary characteristics and distribution of the sheetflow of frame⁃support conglomerates. It was found that: (1) The sheetflow within the belt of sediments between the root feeder channel and the braided channel in the central part, and the transition of the two lithofacies. The sheetflow zone is kilometers in extent, and the internal frame⁃support conglomerates improve reservoir properties. (2) Three types of frame⁃support conglomerates were identified: the frame⁃support conglomerate in the sheetflow, the frame⁃support conglomerate developed along the bedding planes and the frame⁃support conglomerate at the bottom of the channel. (3) The frame⁃support conglomerate in the sheetflow occurs in sheetflow zone deposits, with good stratification and high linear density. The frame⁃support conglomerate developed along the bedding planes formed in the braided channel sedimentary environment. The limits of development and the scale of the channel matches the cross⁃bedding conglomerate to form large⁃scale, high⁃quality lithofacies assemblages. The frame⁃support conglomerates developed at the bottom of both the channel and the braided channel are small but well⁃connected. In conclusion, this study of the sheetflow zone and frame⁃support conglomerate has provided theoretical support for the development of glutenite oil reservoirs in alluvial fans.

LIU DaWei, JI YouLiang, GAO ChongLong, JIN Jun, YANG Zhao, DUAN XiaoBing, HUAN ZhiJun, ZHANG Yue, JI MengYao. Research on the Sheetflow Zone and Frame⁃support Conglomerate in a Braided⁃river Alluvial Fan: Case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1026-1036. doi: 10.14027/j.issn.1000-0550.2019.083
Citation: LIU DaWei, JI YouLiang, GAO ChongLong, JIN Jun, YANG Zhao, DUAN XiaoBing, HUAN ZhiJun, ZHANG Yue, JI MengYao. Research on the Sheetflow Zone and Frame⁃support Conglomerate in a Braided⁃river Alluvial Fan: Case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1026-1036. doi: 10.14027/j.issn.1000-0550.2019.083
  • 冲积扇处于源—汇体系的近源区,对源区母岩类型、物源供给速率、气候变化[1]、地貌以及构造运动[23]等因素响应敏感,使得冲积扇类型繁多,主控机制复杂。相比河流相、三角洲等其他沉积相,冲积扇内因相变规律复杂、储层展布特征难以刻画,是沉积学研究的难点。近几年,随着研究手段的丰富(探地雷达、水槽实验模拟[4]等)以及能源勘探的需求(玛湖特大型砾岩油藏的发现等),使得对冲积扇成因机制[59]、储层构型建模[1012]等方面的研究日益深入,极大推动了冲积扇的研究进展。

    现今国内外主流的冲积扇划分依据是按沉积机制将冲积扇划分为流水参与为主的河流型冲积扇[8,1314](可进一步划分为辫状河型冲积扇、曲流河型冲积扇以及网状河型冲积扇)、少量流水参与的重力流型冲积扇[1517](例如泥石流/碎屑流型冲积扇)以及基本无流水参与的岩崩型冲积扇[7](雪崩/塌积扇)。片流带是冲积扇沉积内特有的相带类型,形成于很强的水动力条件以及较高的砾泥比,Blair[15]曾对片流形成的沉积环境进行了详细地描述,并探讨了其成因机制。国内外学者一般认为片流带主要发育于重力流型冲积扇内,孔渗性很差,在河流型冲积扇内基本不发育或者局部发育片流带,但油田生产和野外踏勘发现河流型冲积扇片流带分布广泛且内部存在高渗透层(即颗粒支撑砾岩层)[1820],是井下流体运移的优势通道,这更加表明大型砾质冲积扇片流带以及高渗透岩相研究的必要。本文选取准噶尔盆地西北缘的白杨河冲积扇,基于大量野外踏勘资料,含108个采样点位,26条野外纵横剖面的刻画(含8条横向探槽)以及380余个样品粒度测试,旨在厘定砾质辫状河型冲积扇片流带的沉积特征以及展布规律,并进一步细化片流带内优势岩相(即支撑砾岩岩相)的岩石学特征以及支撑砾岩岩相在各沉积环境中发育程度,为井下砂砾岩油藏的开发预测提供依据。

  • 研究目的扇体白杨河冲积扇,位于新疆准噶尔盆地的西北缘,扇体规模巨大(横向展布约36~38 km,轴向长度约19~27 km),坡度平缓(坡角约0.3°~0.5°)。冲积扇供源区多为火山岩系和变质岩系地层,沉积物以砂—砾级为主,砾石经二次搬运而显示很好的磨圆,扇内少见细粒漫洪沉积物反应沉积时期水动力条件很强。综合国内外调研,白杨河冲积扇为典型的砾质辫状河型冲积扇(图1),沉积物为第四纪沉积,北侧谢米斯台山持续隆升为冲积扇供源,现今扇体因构造抬升不再发育,扇面上可见明显断层活动,供源河流受构造抬升的影响下切形成山区河流(即白杨河谷),其中白杨河谷的发育为冲积扇轴向观测提供了良好的条件[2122]

    Figure 1.  Regional geology of Baiyanghe alluvial fan

  • 片流带内岩相类型以块状砾岩岩相、颗粒支撑砾岩岩相以及交错层理砾岩为主。经野外观察,片流沉积内砾石以颗粒支撑为主,砾级以细—中砾级为主,磨圆中等,砾石多为次棱角状—次圆状,沉积物分选差,砾间杂基多为中—粗粒级砂岩。片流带整体呈正粒序,由多期片流沉积叠覆组成,单期底部可见低角度排列的砾石(< 2°~5°)。片流沉积物是高流态水动力条件下(V ≈ 3~6 m/s)的河道内或非限制河道内片洪沉积物,是在超临界扩散水流条件下,由片状洪流沉积形成的[9,23]。片流带整体呈厚层席状展布,是非限制性河道内的片洪沉积物,内部可见多套正韵律薄层砂砾岩互层叠置,根据野外露头观测,片流带厚度大于6 m,横向延伸距离大于3 km(图2)。

    Figure 2.  Outcrop photographs of sheetflow zone

    片流沉积物概率累积曲线呈平滑上拱形,曲线低斜率(图3a);C⁃M图平行于C=M基线(图3b);频率分布直方图显示粒度分布区间较宽,频率曲线呈锯齿状,具有多个峰,标准偏差为1.65~2.42(平均1.88),峰度较平坦(0.16~0.46,平均0.32),偏度为正偏态(0.68~1.13,平均0.98)(图3c、表1)。片流沉积物主体为跳跃组分,主要有两个跳跃主体,占比约80%~90%。总体看来,片流带沉积时水动力很强,沉积物分选较差。

    Figure 3.  Grain⁃size characteristics of sheetflow sediments

    样号 岩石定名 平均值Mz/cm 标准偏差/σ 1 偏度/Sk I 峰度/Kg
    12 含砂中砾岩 -3.23 1.69 0.46 1.13
    52 砂质砾岩 -1.43 1.65 0.27 1.12
    93 砂质砾岩 -0.97 2.42 0.16 0.78
    96 含砂中砾岩 -2.62 2.09 0.34 0.68
    99 含砂中砾岩 -3.30 1.75 0.39 1.10
    119 含砂中砾岩 -2.25 1.95 0.45 1.01
    247 含砂中砾岩 -2.80 1.70 0.35 0.92
    2016⁃35 含砂中砾岩 -2.11 1.77 0.17 1.12

    Table 1.  Grain⁃size properties of sheetflow conglomerate samples

  • 扇根片流带位发育于补给水道外侧(向扇缘方向),是洪水期非限制发散洪流所携粗碎屑沉积物快速沉降形成。单期洪流沉积在平面上是一个朵叶体[23](发散角约120°),整套片流沉积由多个朵叶相互叠加形成。片流沉积内部可见呈孤立发育大型补给水道。扇根片流微相主要发育块状砾岩、递变层理砾岩以及少量支撑砾岩岩相(图4a)。由图4c所示,从扇根向扇缘方向,扇根片流砾岩所占比例持续增大(占比可达50 %)。

    Figure 4.  Lithofacies associations and distribution of sheetflow facies

  • 扇中片流带是扇根片流带向下延伸的沉积区,与扇中辫状水道沉积环境交互接触。扇中片流在沉积时期受地形影响增强,在局部汇聚成辫状水道沉积。垂向上可见扇中片流带与辫状水道相互转化。扇中片流带内主要的岩相类型有块状层理砾岩、交错层理砾岩、片流砾岩以及少量的交错层理砂岩、颗粒支撑砾岩(图4b)。扇中片流带的沉积特征整体与扇根片流带相似,但单期片流厚度相对较小(10~20 cm),粒度降低,片流带延伸较远,向扇缘方向片流沉积占比降低,直至不发育(图4c)。

  • 片流沉积中的支撑砾岩岩相是一类特殊的岩相单元,野外可见很高的砾间孔隙,在油田生产实际中发现支撑砾岩岩相不仅是高渗层而且具有一定的延伸。经野外踏勘,发现三类支撑砾岩,分别为发育于片流带内的支撑砾岩、辫状沟槽内的沿层理面发育的支撑砾岩以及发育于辫状水道的沟槽底部支撑砾岩(图2图5)。

    Figure 5.  Sedimentary characteristics and grain⁃size of frame⁃support conglomerate

    支撑砾岩(Gco)岩相为颗粒支撑(骨架支撑),砾石主要为细—中砾级,少见粗砾级,颗粒磨圆中等,多为次棱角状—次圆状,粒间杂基含量极少(图2i,l)。单套砾岩为正粒序,孔隙度高,且有一定的规模与延伸,是优质储层岩相类型。依据支撑砾岩形成的沉积环境和分布样式的差异,将支撑砾岩岩相划分为片流带内分布支撑砾岩、沿层理面分布支撑砾岩以及沿沟槽底部分布支撑砾岩(图2c,g,l、图5)。其中片流带内支撑砾岩主要沿片流层面分布,支撑砾岩成套出露且线密度较大,单层厚度2~5 cm,长度4~8 m。沿层理面分布支撑多发育于辫状沟槽中,呈多套分布,且发育密度大,单层厚度5~10 cm,长度0.5~1 m。沿沟槽底部分布支撑砾岩发育于辫状水道中,常呈单套分布,厚度10~20 cm,延伸长度可达4~5 m。

    支撑砾岩粒度概率曲线呈“高截点两段式”,曲线包括快速上升段和缓慢上升段,其中沿沟槽底部分布的支撑砾岩高斜率上升段斜率明显大于沿层面和片流内部分布的支撑砾岩,快速上升段粒径-6~1 ϕ,其成分占总成分的95%以上,沿层面和片流内部支撑砾岩快速上升段成分含量占总含量的90%以上(图6a),其中4 ϕ以上(即粒径小于0.06 mm)含量占比小于0.01 %,显示颗粒支撑砾岩砾间杂基含量极少(图5);频率分布直方图区间较窄,频率曲线少峰,反映了支撑砾岩分选较好(图5)。各类支撑砾岩C⁃M图皆平行于C=M基线(图6b),指示支撑砾岩形成水动力条件有别于牵引流。对比沿层理面分布支撑砾岩与沟槽底部分布支撑砾岩,发现沿沟槽底部分布的支撑砾岩砾石直径更大,分选更好,这可能是后期径流改造的结果。

    Figure 6.  Granularity characteristics of various frame⁃support conglomerates

  • 颗粒支撑砾岩中内杂基极少,是冲积扇内优质的岩相类型。基于井下高渗透支撑砾岩层对油田生产意义,进一步探讨支撑砾岩的分布规律,由扇根至扇缘可见:

    扇根内带(2号点位)仅可见极少沿沟槽底部发育支撑砾岩,且零星分布,多为间洪期径流改造成因。沿沟槽底部支撑砾岩砾石平均直径约2 cm,支撑砾岩层厚约4.2 cm,长约1.33 m,线密度为0.66条/m(图7a)。

    Figure 7.  Distributions of various frame⁃support conglomerates

    扇根外带(17号点位)的主槽微相中主要发育沿层理界面的支撑砾岩以及沟槽底部的支撑砾岩。其中沟槽底部支撑砾岩平均长度约3.36 m,厚度也相对较厚,平均厚度约为8 cm,砾石直径较大(约6 cm)。辫状沟槽内沿层系界面发育的支撑砾岩长度约1 m,平均厚度约3.5 cm,砾石直径均相对较小(约2.9 cm)。整体上辫状沟槽内支撑砾岩占据剖面的67%,而沟槽底部支撑砾岩只占据33%(图7a)。

    扇根外带(18号点位)的片流沉积区主要发育片流支撑砾岩、沿层理界面发育的支撑砾岩和以及少量沟槽底部发育的支撑砾岩。其中片流带内支撑砾岩占比65.3%,延伸较远,平均长度为5 m,厚度为5 cm,平均砾石直径3.3 cm;沟槽内层理底部占比27.6%,平均长度为1.9 m,它与沟槽底部支撑砾岩相比在于其厚度相对较薄,平均厚度为5 cm,砾石直径较小,平均砾石直径为3 cm;沟槽底部支撑砾岩占比6.9%,平均长度为2 m,但其相对较厚,平均厚度在10 cm左右,内部砾石粒径较大,平均砾石直径为8.5 cm(图7a)。

    扇中区域(21号点位)主要发育辫状沟槽内沿层理发育的支撑砾岩、沟槽底部支撑砾岩以及部分片流支撑砾岩。片流内部支撑砾岩延伸较远(占比35.3%),厚度较薄,平均长度约6 m,平均厚度约5 cm,内部平均砾石直径约5.9 cm。而沟槽底部层理(占比19.6%)长1.5 m,厚度8 cm,平均粒径约7 cm;沟槽内层理支撑砾岩(占比45.1%),长约1.4 m,厚度约3 cm,平均粒径约3.2 cm(图7a)。

    扇中区域(59号点位)剖面仅发育少量片流支撑砾岩,主要为沟槽底部支撑砾岩和沟槽内层理底部支撑砾岩。在该剖面上,沟槽底部支撑砾岩占比约55%,支撑砾岩平均长度约1.6 m,平均厚度约6 cm,砾石平均直径约1.3 cm;沿层理发育支撑砾岩占比约45%,支撑砾岩平均长度约0.9 m,平均厚度约4 cm,砾石平均直径约2.3 cm(图7a)。

    扇缘区域无颗粒支撑砾岩发育。

    通过统计21个点位不同类型支撑砾岩的粒径、长宽以及出露频率,得出以下认识:片流支撑砾岩主要发育于扇根外带以及扇中内带;沿层理发育的支撑砾岩主要发育于扇根外带以及扇中区域,整体分布范围较片流支撑砾岩向扇缘偏移;沟槽底部支撑砾岩在整个扇根以及扇中均有发育。片流支撑砾岩的厚度、平均砾石直径以及发育的线密度随与扇根的距离变化不大,指示不同位置片流支撑砾岩的形成所需水动力条件具有相似性,支撑砾岩的长度则随着与扇根的距离增加而减小;沿层理界面分布的支撑砾岩的厚度、平均砾石直径以及支撑砾岩的长度随与扇根的距离的增大而减小,而出露的线密度则随着距离的增大而增大;沟槽底部出露的支撑砾岩出露范围较广,在近扇根区域发育受限,随着与扇根距离的增加,支撑砾岩的砾石直径逐渐降低,而支撑砾岩的长度以及线密度则缓慢增加(图7b)。总的来说,三类支撑砾岩的发育受沉积环境的控制,展布规律各有特点。

  • 结合前人的研究成果和实际野外资料,推断以上三类支撑砾主要形成于两种成因机制。

  • 片流支撑砾岩以及沿层理界面发育的支撑砾岩的形成需要很强的水动力条件,Fr介于1.4~2.8。在片状洪流或者湍流的水动力条件下,底型砂床迁移形成的逆行沙丘被驻波打碎淘洗,滞留较粗的沉积组分,并带走砾间细粒沉积,形成颗粒支撑砾岩,随后水动力条件减弱,在之前骨架砾岩层上又沉积了杂基支撑的杂乱砂砾岩沉积物,多次水动力波动则形成多套支撑砾岩叠置(图8a)。其中片流支撑砾岩形成于非限制的片状漫洪沉积,延伸较长;沿层理界面发育的支撑砾岩形成于辫状沟槽内的湍流条件下,发育受到沟槽形态控制。

    Figure 8.  Mechanisms of three types of frame⁃support conglomerates (modified from references [23⁃25])

  • 冲积扇洪水期流体携带了大量沉积物,沉积形成了大量杂基支撑分选很差的沉积物,而间洪期水流则携带较少的沉积物,在辫状沟槽沉积的低洼区流经,带走相对细粒的沉积物,形成径流改造的支撑砾岩,下次洪水期,洪水携带大量沉积物杂乱堆积在支撑砾岩之上,形成了这类沟槽底部发育的支撑砾岩(图8b),为径流改造成因[8,20]。控制该类支撑砾岩发育主要因素有:1)间洪期流水改造的时间。时间越长则对先期沉积淘洗越干净,改造区域越大,支撑砾岩规模越大;2)洪水期沉积物沉积速率。下一期洪水期沉积物沉积速率越快,则支撑砾岩保存越好,沉积速率越小,细粒沉积物会充填底部滞留砾石层,使得支撑砾岩越不易保存,规模减小;3)沟槽规模。古地貌控制着径流的改造区域,在较大的沟槽中更容易汇聚流量更大的径流,形成规模更大的径流淘洗支撑砾岩。

  • 砾质辫状河型冲积扇(以白杨河冲积扇为例)内片流带发育,纵向延伸可达千米级,片流带的发育介于扇根补给水道沉积环境以及扇中辫状沟槽沉积环境之间,其中扇根区域的片流带呈厚层沉积,内部块状砾岩、递变层理砾岩发育,并发育占比较少的片流支撑砾岩,扇中区域的片流带呈一定的成层延伸性,内部具递变层理砾岩、块状砾岩以及支撑砾岩岩相,单期片流底部可见支撑砾岩发育,支撑砾岩线密度平均可达4条/m,并具有一定的延展性(平均长度可达5 m),支撑砾岩的发育可有效地改善片流带物性。在扇中辫状沟槽微相中可见沿层理界面发育的支撑砾岩,其分布规模受控于沟槽的规模以及沉积水动力条件,支撑砾岩线密度约6条/m,长度约1.5 m,扇中辫状沟槽微相与扇中片流带微相呈过渡接触。间洪期流水改造扇根/扇中片流带以及扇中辫状沟槽微相,在水道底部可发育流水冲刷形成的沟槽底部支撑砾岩,此类支撑砾岩整体规模较小,线密度低,但具有一定的连通性(图7图9)。

    Figure 9.  Sheetflow patterns in gravel braided⁃fluvial alluvial fan deposits, and distribution of frame⁃support conglomerates

    综上,片流带沉积物与扇根补给水道微相和扇中辫状沟槽微相呈过渡相变接触,在内部存在可改善储层物性的支撑砾岩岩相。其中片流支撑砾岩限制于片流沉积环境,整体规模极大,非均质性较强,相对来说扇中片流带要优于扇根片流带;沿层理界面发育的支撑砾岩形成于辫状沟槽,发育受水动力条件的限制,规模大,可与辫状沟槽内交错层理砾岩等优质岩相匹配,使得辫状沟槽微相储层非均质性降低。沟槽底部支撑砾岩发育于辫状水道底部,规模较小,连通性好,在扇中区域较为发育。

  • (1) 白杨河冲积扇为砾质辫状河型冲积扇,其中片流带沉积规模可达千米级,内部可识别出高孔渗的支撑砾岩岩相,总体来说扇中片流带的成层性以及储层均质性要优于扇根片流带。

    (2) 支撑砾岩大致可划分为三类,片流支撑砾岩、沿层理面发育支撑砾岩以及沟槽底部发育支撑砾岩。片流支撑砾岩主要发育于扇根外带以及扇中内带;沿层理发育的支撑砾岩主要发育于扇根外带以及扇中区域,整体分布范围较片流支撑砾岩向扇缘方向偏移;沟槽底部支撑砾岩在整个扇根以及扇中均有发育。片流支撑砾岩和沿层理面发育支撑砾岩形成是超临界水流的淘洗成因,而沟槽底部支撑砾岩的形成则多为径流改造成因。

    (3) 片流带内支撑砾岩改善了片流带的物性,相对来说扇中片流带要优于扇根片流带,规模也相对最大;沿层理界面发育的支撑砾岩主要发育于辫状沟槽,可与辫状沟槽内交错层理砾岩岩相匹配,组成优势相带,总体规模很大。沟槽底部支撑砾岩发育于辫状水道底部,具有很好的连通性,规模相对最小。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return