Advanced Search
Volume 38 Issue 4
Sep.  2020
Turn off MathJax
Article Contents

ZHU ZhiCai, ZHAI QingGuo, HU PeiYuan, TANG Yue, WANG HaiTao, WANG Wei, WU Hao, HUANG ZhiQiang. Timing of the Lhasa⁃Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone[J]. Acta Sedimentologica Sinica, 2020, 38(4): 712-726. doi: 10.14027/j.issn.1000-0550.2019.081
Citation: ZHU ZhiCai, ZHAI QingGuo, HU PeiYuan, TANG Yue, WANG HaiTao, WANG Wei, WU Hao, HUANG ZhiQiang. Timing of the Lhasa⁃Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone[J]. Acta Sedimentologica Sinica, 2020, 38(4): 712-726. doi: 10.14027/j.issn.1000-0550.2019.081

Timing of the Lhasa⁃Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone

doi: 10.14027/j.issn.1000-0550.2019.081
Funds:

National Natural Science Foundation of China 91755103, 41874040

The Ministry of Science and Technology of China 2016YFC060 0304

the Second Tibetan Plateau Scientific Expedition and Research (STEP) 2019QZKK0703

The Institute of Geology of the Chinese Academy of Geological Sciences Research Fund YYWF201704, J1705

The Chinese Geological Survey Project DD20190060, DD20190370

  • Received Date: 2019-06-13
  • Publish Date: 2020-09-02
  • The Lower Cretaceous Duoni Formation is widely distributed along the Bangong⁃Nujiang suture zone in northern Tibet. The sedimentary environment, clastic composition and sediment provenance records the Lhasa⁃Qiangtang collision following the closure of the Bangong⁃Nujiang Tethys Ocean. The Duoni Formation in the Baingoin area angular⁃unconformably overlies Jurassic marine flysch deposits consisting of conglomerate, sandstone, siltstone and mudstone, with a minor andesite interlayer. Trough⁃, planar⁃and wedge⁃cross⁃beddings are common in the sandstone. Mudcracks are visible in the mudstone. The conglomerate is mostly lenticular with an imbricated structure, indicating that the Duoni Formation was formed in a fluvial⁃delta environment that shows a generally thickening⁃upwards sequence. Zircon LA⁃ICP⁃MS U⁃Pb dating for the andesite interlayer sample obtained a 206U/238Pb weighted mean age of 114 ± 0.4 Ma. Composition analysis of the conglomerate gravel and sandstone clastics shows that the provenance of the Duoni Formation was mainly from ophiolite, intermediate⁃felsic magmatic rock, sedimentary rock and a small amount of metamorphic rock. Analysis of detrital heavy mineral assemblage in the sandstones together with paleocurrent analysis show that the sediment source areas of the Duoni Formation were the Lhasa and Qiangtang terranes on the northern and southern sides and its underlying ophiolite. Combined with regional geological data, the Lower Cretaceous Duoni Formation in the Bangoin area is the product of the Lhasa⁃Qiangtang collision in the closure process of the Bangon⁃Nujiang Tethys Ocean.
  • [1] Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins[J]. Earth-Science Reviews, 2006, 74(1/2): 1-72.
    [2] Hu X M, Garzanti E, Wang J G, et al. The timing of India-Asia collision onset - Facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299.
    [3] Yan Z, Fu C L, Wang Z Q, et al. Late Paleozoic subduction-accretion along the southern margin of the North Qinling terrane, central China: Evidence from zircon U-Pb dating and geochemistry of the Wuguan Complex[J]. Gondwana Research, 2016, 30: 97-111.
    [4] 闫臻,王宗起,付长垒,等. 混杂岩基本特征与专题地质填图[J]. 地质通报,2018,37(2/3):167-191.

    Yan Zhen, Wang Zongqi, Fu Changlei, et al. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 2018, 37(2/3): 167-191.
    [5] 闫臻,王宗起,闫全人,等. 造山带汇聚板块边缘沉积盆地的鉴别与恢复[J]. 岩石学报,2018,34(7):1943-1958.

    Yan Zhen, Wang Zongqi, Yan Quanren, et al. Identification and reconstruction of tectonic archetype of the sedimentary basin within the orogenic belt developed along convergent margin[J]. Acta Petrologica Sinica, 2018, 34(7): 1943-1958.
    [6] 李继亮,孙枢,郝杰,等. 碰撞造山带的碰撞事件时限的确定[J]. 岩石学报,1999,15(2):315-320.

    Li Jiliang, Sun Shu, Hao Jie, et al. Time limit of collision event of collision orogens[J]. Acta Petrologica Sinica, 1999, 15(2): 315-320.
    [7] 胡修棉,王建刚,安慰,等. 利用沉积记录精确约束印度—亚洲大陆碰撞时间与过程[J]. 中国科学(D辑):地球科学,2017,47(3):261-283.

    Hu Xiumian, Wang Jiangang, An wei. et al. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Science China (Seri.D): Earth Sciences, 2017, 47(3): 261-283.
    [8] 侯泉林,郭谦谦,方爱民. 造山带研究中有关复理石和磨拉石的几个问题[J]. 岩石学报,2018,34(7):1885-1896.

    Hou Quanlin, Guo Qianqian, Fang Aimin. Discussions on some basic problems in the research of orogenic belts concerning on flysch and molasse[J]. Acta Petrologica Sinica, 2018, 34(7): 1885-1896.
    [9] Dickinson W S, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.
    [10] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of Arenites. Dordrecht: Springer, 1985: 333-361.
    [11] Sinclair H D, Coakley B J, Allen P A, et al. Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the central Alps, Switzerland[J]. Tectonics, 1991, 10(3): 599-620.
    [12] Decelles P G. Sedimentation in a tectonically partitioned, nonmarine foreland basin: The Lower Cretaceous Kootenai Formation, southwestern Montana[J]. Geological Society of America Bulletin, 1986, 97(8): 911-931.
    [13] DeCelles P G, Giles K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123.
    [14] Henderson A L, Najman Y, Parrish R, et al. Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision[J]. Tectonics, 2010, 29(6): TC6015.
    [15] Garzanti E, Resentini A, Vezzoli G, et al. Forward compositional modelling of Alpine orogenic sediments[J]. Sedimentary Geology, 2012, 280: 149-164.
    [16] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878.
    [17] Lai W, Hu X M, Eduardo G, et al. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. GSA Bulletin, 2019, doi:  10.1130/B35124.1.
    [18] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
    [19] 潘桂棠,李兴振,王立全,等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报,2002,21(11):701-707.

    Pan Guitang, Li Xingzhen, Wang Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21(11): 701-707.
    [20] Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.
    [21] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and Pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454.
    [22] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722.
    [23] Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research, 2010, 115(B12): B12416.
    [24] Hu P Y, Zhai Q G, Jahn B M, et al. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination[J]. Gondwana Research, 2017, 44: 116-138.
    [25] Girardeau J, Marcoux J, Allègre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang Suture Zone, Tibet[J]. Nature, 1984, 307(5964): 27-31.
    [26] Schneider W, Mattern F, Wang P J, et al. Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone (Tibet): A reading cycle[J]. International Journal of Earth Sciences, 2003, 92(2): 228-254.
    [27] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.
    [28] Leier A L, DeCelles P G, Kapp P, et al. The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin[J]. Geological Society of America Bulletin, 2007, 119(1/2): 31-48.
    [29] Chen S S, Shi R D, Gong X H, et al. A syn-collisional model for Early Cretaceous magmatism in the northern and central Lhasa subterranes[J]. Gondwana Research, 2017, 41: 93-109.
    [30] Ma A L, Hu X M, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang Basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research, 2017, 122(7): 4790-4813.
    [31] Liu D L, Shi R D, Ding L, et al. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet[J]. Lithos, 2018, 296-299: 452-470.
    [32] Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227: 148-160.
    [33] Fan J J, Li C, Xu J X, et al. Petrology, geochemistry, and geological significance of the Nadong ocean island, Banggongco-Nujiang suture, Tibetan Plateau[J]. International Geology Review, 2014, 56(8): 915-928.
    [34] Fan J J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107(1): 231-249.
    [35] 雍永源,贾宝江. 板块剪式汇聚加地体拼贴:中特提斯消亡的新模式[J]. 沉积与特提斯地质,2000,20(1):85-89.

    Yong Yongyuan, Jia Baojiang. Shear convergence of plates and suturing of terranes: A new model for the comsumption of the Meso-Tethys[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(1): 85-89.
    [36] Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168-169: 144-159.
    [37] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17.
    [38] Chen Y, Zhu D C, Zhao Z D, et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2): 449-463.
    [39] 潘桂棠,肖庆辉,陆松年,等. 大地构造相的定义、划分、特征及其鉴别标志[J]. 地质通报,2008,27(10):1613-1637.

    Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Definition, classification, characteristics and diagnostic indications of tectonic facies[J]. Geological Bulletin of China, 2008, 27(10): 1613-1637.
    [40] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1-28.

    Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28.
    [41] 李才. 龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 长春地质学院学报,1987,17(2):155-166.

    Li Cai. The Longmucuo-Shuanghu-Lancangjiang Plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in northern Xizang, China[J]. Journal of Changchun College of Geology, 1987, 17(2): 155-166.
    [42] 李才,翟庆国,董永胜,等. 冈瓦纳大陆北缘早期的洋壳信息:来自青藏高原羌塘中部早古生代蛇绿岩的依据[J]. 地质通报,2008,27(10):1605-1612.

    Li Cai, Zhai Qingguo, Dong Yongsheng, et al. Oceanic crust on the northern margin of Gondwana: Evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2008, 27(10): 1605-1612.
    [43] 李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J]. 地质论评,2008,54(1):105-119.

    Li Cai. A review on 20 years’ study of the Longmu Co-Shuanghu-Lancang River suture zone in Qinghai-Xizang(Tibet) Plateau[J]. Geological Review, 2008, 54(1): 105-119.
    [44] Zhai Q G, Jahn B M, Wang J, et al. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4): 355-373.
    [45] Zhu Z C, Zhai Q G, Hu P Y, et al. Closure of the Bangong-Nujiang tethyan ocean in the central Tibet: Results from the provenance of the Duoni Formation[J]. Journal of Sedimentary Research, 2019, 89: 1039-1054.
    [46] Tang Y, Zhai Q G, Hu P Y, et al. Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet: New insights into the formation of ophiolite-related rodingite[J]. Lithos, 2018, 316-317: 33-47.
    [47] Zhong Y, Liu W L, Xia B, et al. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution[J]. Lithos, 2017, 292-293: 111-131.
    [48] 西藏自治区地质矿产局. 西藏自治区区域地质志[M]. 北京:地质出版社,1993:1-140.

    Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR). Regional geology of Xizang (Tibet) autonomous region[M]. Beijing: Geological Publishing House, 1993: 1-140.
    [49] 潘桂棠,莫宣学,侯增谦,等. 冈底斯造山带的时空结构及演化[J]. 岩石学报,2006, 22(3):521-533.

    Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica2006, 22(3): 521-533.
    [50] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3/4): 281-302.
    [51] Pearce J A, Houjun M. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1988, 327(1594): 169-201.
    [52] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878.
    [53] 李世民. 西藏班公湖—怒江特提斯洋的俯冲极性和过程:岩浆岩和碎屑锆石记录[D]. 北京:中国地质大学(北京),2018.

    Li Shimin. Subduction polarity and processes of the Bangong-Nujiang Tethys: Insights from igneous rocks and detrial zircons[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [54] Fu C L, Yan Z, Wang Z Q, et al. Lajishankou ophiolite Complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt[J]. Tectonics, 2018, 37(5): 1321-1346.
    [55] 李璞. 西藏东部地质的初步认识[J]. 科学通报,1955(7):62-71,52.

    Li Pu. Preliminary geological understanding in eastern Tibet[J]. Chinese Science Bulletin, 1955(7): 62-71, 52.
    [56] 杨遵仪,聂泽同,吴顺宝,等. 西藏阿里地区白垩纪固着蛤类及其地质意义[J]. 地质学报,1982,56(4):293-301.

    Yang Zunyi, Nie Zetong, Wu Shunbao, et al. Cretaceous rudists from Ngari, Xizang (Tibet), Autonomous Region, China and their geologic significance[J]. Acta Geological Sinica, 1982, 56(4): 293-301.
    [57] Rao X, Skelton P W, Sha J G, et al. Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet[J]. Papers in Palaeontology, 2015, 1(4): 401-424.
    [58] 王冠民. 西藏措勤盆地郎山组沉积特征及其石油地质条件[J]. 地球学报,2001,22(1):39-42.

    Wang Guanmin. Depositional features and petroleum geological conditions of Langshan Formation in Coqen Basin, Tibet[J]. Acta Geoscientia Sinica, 2001, 22(1): 39-42.
    [59] Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9/10): 1202-1222.
    [60] 孙高远,胡修棉. 拉萨地体中部上白垩统达雄组的建立及构造隆升意义[J]. 地质学报, 2017,91(12):2623-2637.

    Sun Gaoyuan, Hu Xiumian. The establishment of the Upper Cretaceous Daxiong Formation in the central Lhasa Terrane and its implications for tectonic uplifting[J]. Acta Geologica Sinica, 2017, 91(12): 2623-2637.
    [61] Miall A D. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 1977, 13(1): 1-62.
    [62] Xu H, Liu Y Q, Kuang H W, et al. Sedimentary response to the intracontinental orogenic process: Insight from the anatomy of a small Mesozoic basin in western Yanshan, northern North China[J]. International Geology Review, 2016, 58(12): 1528-1556.
    [63] Smith N D. Sedimentology and Bar Formation in the Upper Kicking Horse River, a braided outwash stream[J]. The Journal of Geology, 1974, 82(2): 205-223.
    [64] Miall A D. Lithofacies types and vertical profile models in braided river deposits: A summary[M]//Miall A D. Fluvial Sedimentology. Calgary: Canadian Society of Petroleum Geologists Memoir, 1978: 597-604.
    [65] Postma G. Mass-flow conglomerates in a submarine canyon: Abrioja Fan-Delta, Pliocene, southeast Spain[M]//Koster E H, Steel R J. Sedimentology of Gravels and Conglomerates. Calgary: Canadian Society of Petroleum Geologists, 1984: 237-258.
    [66] Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Research, 1970, 40(2): 695-707.
    [67] Yan Z, Guo X Q, Fu C L, et al. Detrital heavy mineral constraints on the Triassic Tectonic Evolution of the West Qinling Terrane, NW China: Implications for understanding subduction of the Paleotethyan Ocean[J]. The Journal of Geology, 2014, 122(5): 591-608.
    [68] Morton A C, Meinhold G, Howard J P, et al. A heavy mineral study of sandstones from the eastern Murzuq Basin, Libya: Constraints on provenance and stratigraphic correlation[J]. Journal of African Earth Sciences, 2011, 61(4): 308-330.
    [69] Zhai Q G, Zhang R Y, Jahn B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125(1/2): 173-189.
    [70] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
    [71] 侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质,2009,28(4):481-492.

    Hou Kejun, Li Yanhe, Tian Yourong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.
    [72] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [73] Ludwig K R. User’s manual for isoplot/Ex, Version 3.00, a geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-70.
    [74] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
    [75] 康志强,许继峰,王保弟,等. 拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J]. 地球科学——中国地质大学学报,2009,34(1):89-104.

    Kang Zhiqiang, Xu Jifeng, Wang Baodi, et al. Geochemistry of Cretaceous volcanic rocks of Duoni Formation in northern Lhasa block: Discussion of tectonic setting[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(1): 89-104.
    [76] 白志达,徐德斌,陈梦军,等. 西藏安多地区粗面岩的特征及其锆石SHRIMP U-Pb定年[J]. 地质通报,2009,28(9):1229-1235.

    Bai Zhida, Xu Debin, Chen Mengjun, et al. Characteristics and zircon SHRIMP U-Pb dating of the Amduo trachyte, Tibet, China[J]. Geological Bulletin of China, 2009, 28(9): 1229-1235.
    [77] Fan J J, Li C, Sun Z M, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154: 187-201.
    [78] Otofuji Y I, Mu C L, Tanaka K, et al. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 581-593.
    [79] Chen W W, Zhang S H, Ding J K, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41: 373-389.
    [80] Li Z Y, Ding L, Song P P, et al. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous: Implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia[J]. Gondwana Research, 2017, 41: 352-372.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(1)

Article Metrics

Article views(665) PDF downloads(206) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-06-13
  • Published:  2020-09-02

Timing of the Lhasa⁃Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone

doi: 10.14027/j.issn.1000-0550.2019.081
Funds:

National Natural Science Foundation of China 91755103, 41874040

The Ministry of Science and Technology of China 2016YFC060 0304

the Second Tibetan Plateau Scientific Expedition and Research (STEP) 2019QZKK0703

The Institute of Geology of the Chinese Academy of Geological Sciences Research Fund YYWF201704, J1705

The Chinese Geological Survey Project DD20190060, DD20190370

Abstract: The Lower Cretaceous Duoni Formation is widely distributed along the Bangong⁃Nujiang suture zone in northern Tibet. The sedimentary environment, clastic composition and sediment provenance records the Lhasa⁃Qiangtang collision following the closure of the Bangong⁃Nujiang Tethys Ocean. The Duoni Formation in the Baingoin area angular⁃unconformably overlies Jurassic marine flysch deposits consisting of conglomerate, sandstone, siltstone and mudstone, with a minor andesite interlayer. Trough⁃, planar⁃and wedge⁃cross⁃beddings are common in the sandstone. Mudcracks are visible in the mudstone. The conglomerate is mostly lenticular with an imbricated structure, indicating that the Duoni Formation was formed in a fluvial⁃delta environment that shows a generally thickening⁃upwards sequence. Zircon LA⁃ICP⁃MS U⁃Pb dating for the andesite interlayer sample obtained a 206U/238Pb weighted mean age of 114 ± 0.4 Ma. Composition analysis of the conglomerate gravel and sandstone clastics shows that the provenance of the Duoni Formation was mainly from ophiolite, intermediate⁃felsic magmatic rock, sedimentary rock and a small amount of metamorphic rock. Analysis of detrital heavy mineral assemblage in the sandstones together with paleocurrent analysis show that the sediment source areas of the Duoni Formation were the Lhasa and Qiangtang terranes on the northern and southern sides and its underlying ophiolite. Combined with regional geological data, the Lower Cretaceous Duoni Formation in the Bangoin area is the product of the Lhasa⁃Qiangtang collision in the closure process of the Bangon⁃Nujiang Tethys Ocean.

ZHU ZhiCai, ZHAI QingGuo, HU PeiYuan, TANG Yue, WANG HaiTao, WANG Wei, WU Hao, HUANG ZhiQiang. Timing of the Lhasa⁃Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone[J]. Acta Sedimentologica Sinica, 2020, 38(4): 712-726. doi: 10.14027/j.issn.1000-0550.2019.081
Citation: ZHU ZhiCai, ZHAI QingGuo, HU PeiYuan, TANG Yue, WANG HaiTao, WANG Wei, WU Hao, HUANG ZhiQiang. Timing of the Lhasa⁃Qiangtang Collision: Constraints from the sedimentary records of the Duoni Formation from the middle segment of the Bangong⁃Nujiang suture zone[J]. Acta Sedimentologica Sinica, 2020, 38(4): 712-726. doi: 10.14027/j.issn.1000-0550.2019.081
  • 板块缝合带内部及其相邻地区的沉积地层通常保存了古大洋演化的相关信息[13]。对这些沉积地层的详细研究,可为古洋盆的形成、演化及随后的弧—弧、弧—陆和/或陆—陆碰撞过程的重建提供直接证据[45]。弧—弧、弧—陆和/或陆—陆碰撞阶段形成的陆相磨拉石沉积,通常以角度不整合覆于海相复理石之上,被认为是洋—陆转换的重要标志之一[58]。因此,对造山带古缝合带及邻区陆相沉积组合开展沉积环境、组成序列及沉积物源区等方面的系统研究[917],可为重塑洋盆闭合消亡过程、重建板块构造演化历史提供沉积学的约束。班公湖—怒江缝合带是青藏高原内部最为重要的缝合带之一[1819],该缝合带横跨青藏高原中部,近东西向展布,是班公湖—怒江中特提斯洋闭合及拉萨—羌塘地体碰撞的产物[20]图1a)。同时,班公湖—怒江缝合带构造演化的重建对于深入理解该缝合带沿线发育的多龙、雄梅、尼雄—舍索等大型、超大型金属矿床的形成具有重要意义。然而,目前对于拉萨—羌塘地体碰撞时限仍然存在争议,进而制约着对班公湖—怒江缝合带构造演化过程的深入研究[18,2126]

    Figure 1.  Structural geological map of the Tibetan Plateau and geological map of the study area

    对于班公湖—怒江缝合的构造演化,大多数学者依据区域性角度不整合、区域构造缩短、碰撞型岩浆岩等的研究,认为班公湖—怒江特提斯洋在晚侏罗世—早白垩世就伴随着拉萨—羌塘地体的碰撞而闭合[22,2730];另外一部分学者则基于班公湖—怒江缝合带内的早白垩世蛇绿岩、洋岛玄武岩及与俯冲相关的岩浆岩等的研究,认为班公湖—怒江特提斯洋在晚白垩世并未发生闭合,且拉萨与羌塘地体之间并未发生碰撞[3133]。同时,一些学者依据碰撞型岩浆岩及陆相沉积地层的时空发育特征综合分析结果认为班公湖—怒江特提斯洋闭合过程总体呈现东早西晚的“剪刀式”闭合特点,即东段洋盆在早白垩世发生闭合,而中西段则持续到晚白垩世才发生洋盆闭合及拉萨—羌塘地体碰撞[18,3435]。总体上这些认识多数是针对班公湖—怒江缝合带及其两侧大面积分布的岩浆岩的研究基础上得出的[33,3637],而对于缝合带及其两侧广泛分布的白垩纪陆相沉积岩的研究相对较薄弱。

    为此,本研究在系统野外地质调查的基础上,重点对班戈地区多尼组开展了沉积环境、岩石组合序列、古水流及碎屑组成等的综合对比研究,进而结合安山岩夹层同位素测年结果以及区域资料,约束班公湖—怒江特提斯洋闭合及拉萨—羌塘地体碰撞的时限。

  • 青藏高原主要由一系列近东西向展布的缝合带及其围限的地体组成。由北向南分别以金沙江、龙木错—双湖—澜沧江、班公湖—怒江和雅鲁藏布江缝合带为界,青藏高原可以进一步划分为松潘—甘孜、北羌塘、南羌塘和拉萨地体以及喜马拉雅地区[1819,3844]图1a)。拉萨地体进一步划分为北拉萨、中拉萨和南拉萨次一级地体(图1a)[21]。班公湖—怒江缝合带是分割拉萨地体和羌塘地体的边界,它西起西藏阿里地区的班公湖,经改则、东巧至丁青,转向东南沿怒江延伸到缅甸,在我国境内长达2 000多千米[18]

    研究区位于班公湖—怒江缝合带中段班戈县东部北拉镇和那么切乡一带,区内除了出露侏罗纪蛇绿岩外,还广泛出露侏罗系、下白垩统以及古近系和第四系[45]图1b、图2)。其中蛇绿岩,主要出露于班戈县北拉镇,呈近东西向长条状展布,岩石组合主要包括蛇纹岩、橄榄岩、枕状玄武岩、堆晶辉长岩、斜长花岗岩、异剥钙榴岩和放射虫硅质岩等。同位素年龄研究结果[4647]表明,北拉蛇绿岩的形成时代为中侏罗世。区域上,北拉蛇绿岩与相邻海相地层之间均为断层接触,并与上覆多尼组呈角度不整合接触。

    Figure 2.  Generalized columnar section of Jurassic⁃Cretaceous geological structure in Baingoin county, Tibet

    侏罗纪地层主要包括木嘎岗日岩群、接奴群、希湖群和拉贡塘组等(图2),它们具有相似的岩石组合特征,彼此间呈构造接触关系接触,并与上覆多尼组角度不整合或平行不整合接触(图3)。木嘎岗日岩群表现为整体有序、局部无序的地层分布特征,其中含有大量原地或外来玄武岩和灰岩块体(图4a)。班戈县希湖群和接奴群是在1∶25万区域地质调查的基础上从木嘎岗日岩群解体而来,将木嘎岗日岩群的有序部分解体为希湖群和接奴群,无序部分仍为木嘎岗日岩群[4849]。区域地质调查结果表明,希湖群和接奴群主要由挤压变形的灰黑色板岩和页岩组成,接奴群整合覆盖在希湖群之上或与其呈断层接触关系。接奴群由一套杂色砂岩、粉砂质板岩、泥质板岩组成,其上部见大量火山岩夹层(安山岩、英安岩等)。前人在班戈吕日地区接奴群下部获得了中侏罗世双壳类化石,上部获得了晚侏罗世珊瑚类化石[50];措勤地区接奴群火山—沉积地层中也发现了中—晚侏罗世双壳类化石[5152];李世民[53]在班戈县接奴群中获得最年轻碎屑锆石年龄为晚侏罗世(169 Ma),表明接奴群地沉积时代很可能为中—晚侏罗世。拉贡塘组大面积出露于拉萨地体及班公湖—怒江缝合带,主要由一套灰色、深灰色页岩、粉砂质页岩夹长石石英砂岩、石英砂岩、粉砂岩和凸镜状灰岩组成,并被最老时代为124 Ma的班戈复式岩体侵位,区域上与上覆早白垩世多尼组不整合接触[5152]。由此可见,拉贡塘组沉积时代为中—晚侏罗世,与接奴群相当。整体上来说,木嘎岗日岩群和接奴群均以含有大量原地或外来玄武岩和灰岩块体为特征,但木嘎岗日岩群包含相对较多的无序地层。除拉贡塘组和希湖群较发育灰色板岩、页岩外,班戈县境内的侏罗纪海相地层普遍发育沟模及鲍马序列沉积构造,具有典型的海相复理石的沉积特征[49,54]。这些侏罗系海相地层大多遭受强烈挤压变形,表现出典型的海相增生杂岩的特征。它们很可能沉积于班公湖—怒江特提斯洋洋壳俯冲背景下的海沟附近,并在其顶部记录了拉萨—羌塘地体的初始碰撞信息。

    Figure 3.  Measured column section of the Duoni Formation, eastern Baingoin county, Tibet (modified from reference [45])

    Figure 4.  Outcrop photographs of Jurassic⁃Lower Cretaceous strata, eastern Baingoin county, Tibet

    在班戈县地区的白垩纪地层包括早白垩世则弄群、去申拉组、多尼组、郎山组和晚白垩世竟柱山组[45]。其中下白垩统多尼组、则弄群和去申拉组的岩性组合类似,以发育红色砂砾岩及火山岩夹层为特征,河流相或同沉积火山作用为主,其中则弄群和去申拉组中的火山岩和火山碎屑岩成分较多[49]。多尼组最初被命名为“多尼煤系”,由李璞[55]在洛隆县多尼村建立,随后被重新定义为早白垩世浅海—非海相地层,主要由碎屑岩和少量安山岩夹层组成,并认为这套地层记录了班公湖—怒江缝合带的洋—陆转换过程。随着研究工作的不断深入,越来越多的证据表明,班公湖—怒江缝合带中东段的多尼组以一套白垩纪陆相红层为特征,含有少量双壳类和植物化石[49]。研究区多尼组主要由一套交错层理特别发育的红色粉砂岩、砂岩及砾岩组成,其中发育了多层安山岩夹层(图3)。郎山组是整合于多尼组之上的一套灰色或灰黑色厚层状泥晶灰岩、泥质灰岩及粉砂岩/泥岩薄层,其中保存了大量的圆笠虫、腹足类、双壳类(固着蛤类)等化石,是一套沉积于早白垩世晚期—晚白垩世早期的浅海相沉积[4950,5658]。郎山组主要分布于班戈县南侧,前人研究认为它代表了早白垩世晚期的一次由北向南的海侵事件[59]。竟柱山组由西藏第四地质队(1973)创名于班戈县竟柱山,它以角度不整合覆盖在郎山组或多尼组之上,主要由紫红色中层状细粒岩屑石英砂岩、含砾粗砂岩及砾岩组成,是一套典型的晚白垩世山间磨拉石建造[4950,60]

  • 为了查明多尼组的沉积环境,本项研究对班戈县东部多尼组开展了详细的野外地质调查和剖面测制(图3)。根据岩性与相关沉积构造组合空间变化特征,多尼组在剖面上由底到顶部呈现出粒度逐渐变粗,并且砂岩和砾岩层逐渐增多的特征。

    那么切乡多尼组剖面(图1剖面①)底部由暗红色、红褐色泥岩、泥质粉砂岩夹少量薄层状细砂岩组成(图4b,c),在走向上延伸相对稳定。其中泥岩层单层厚度小于2 cm,发育水平层理,层系组厚度0.5~5 m不等。粉砂岩层厚度多为1~3 cm,发育水平层理,少量细砂岩厚度1~5 cm不等,它们形成于浅湖环境。此外,剖面①底部出现一套厚约20 m的安山岩夹层,显示出同沉积火山作用的特征(图4d)。色尔孔村(图1剖面③)多尼组的底部以一套中粗砂岩—粉砂岩韵律(二者厚度比近1∶1)为特征,砂岩底部常发育不平整底冲刷面,向上发育丰富的槽状、板状交错层理和平行层理;粉砂岩中水平层理发育,它们形成于曲流河环境。木隆村多尼组剖面(图1剖面②)底部以一套交错层理特别发育的透镜状含砾粗砂岩为特征,细粒沉积层薄且较为少,大型槽状、板状交错层理发育且相变较大,很可能沉积于辫状河环境。砾岩中的薄层状细砂岩或泥岩通常是由辫状河道中的低水分吸积引起的[61]。剖面②的底部出现一套厚度较大的复成分砾岩。砾石呈棱角状—次棱角状,分选差,颗粒支撑,成分由安山岩、玄武岩、灰岩、花岗岩及少量石英岩等组成。

    在多尼组剖面的中部以一套交错层理特别发育的砂砾岩、砂岩与暗红色粉砂岩、泥岩韵律为特征。以不平整底冲刷面为界,呈正粒序递变的细砾岩—粗中砂岩中发育向上规模逐渐变小的槽状、板状、楔状交错层理及平行层理,粉砂岩、泥岩中则发育水平层理(图35)。在这些地层序列中,砂岩常发育递变层理、大—中型板状/楔状交错层理,叠瓦状砾石则呈透镜状聚集在不平整底冲刷面的底部,并且常在横向和纵向上的相互切割,这些特征指示了河道沉积环境[61]图5a,b)。丰富的交错层理记录了这些古河道中水下沙丘的迁移,而砂岩中发育的槽状交错层理可能是由于新月形沙丘向下游迁移形成,板状交错层理则通常由河流斜坡或横向砂坝的崩塌形成[6162]图5)。具有大型不平整底冲刷表面,并且上部被厚层泥岩或粉砂岩覆盖的交错层理可能沉积于点砂坝环境中[63]。多尼组也常见中厚层状中粗砂岩与薄层状泥岩、粉砂岩的高频韵律,它们可能沉积在泛滥平原环境中。剖面①的中部还出现一套发育双向交错层理的砂岩(图4e,f),其厚度约50 m,地层序列向上逐渐变薄,砂岩粒度变细,交错层理规模向上不断减小,很可能沉积于三角洲平原环境。

    Figure 5.  Outcrop photographs of fluvial⁃delta deposits in the Duoni Formation, eastern Baingoin county, Tibet

    多尼组实测剖面①的顶部,岩性组合以大套厚的不显层理或局部发育微弱层理的细—中砾岩、含砾粗砂岩为特征(图5d~f)。砾岩呈透镜状无序分布,分选较差—中等,次棱角状—次圆状,杂基支撑,可能沉积于冲积扇泥石流环境[64],主要由碎屑流和片流所致[65]。较粗的粒度以及不显层理的杂乱充填表明,多尼组顶部这些粗碎屑物可能是在冲积扇环境下由高密度流的快速沉积形成。剖面b的上部层位与其他剖面中部相当,主要发育砂岩和粉砂岩/泥岩互层的层序,并与丰富的交错层理及不平整侵蚀冲刷面相伴生,可能沉积于曲流河环境[61]。剖面③和④的上部表现为砂岩层厚且交错层理特别发育、粉砂岩/泥岩层薄或不发育的特征,结合其在横向、纵向上的快速变化,其沉积环境可能以辫状河横向砂坝及纵向砂坝为主。

    总之,基于沉积构造组合和地层序列特征的沉积相研究,班戈县东部的多尼组主要发育湖泊、河流—三角洲相沉积,剖面底部与下伏侏罗纪海相复理石(希湖群、木嘎岗日岩群及接奴群)或蛇绿岩之间呈角度不整合接触(图1,剖面①,②,③)。班戈县多尼组是具有碰撞型前陆盆地的陆相沉积特征,其底部与侏罗系海相地层之间的区域性角度不整合关系表明洋—陆转换很可能在多尼组底部已经完成,随即进入陆相磨拉石阶段,这很可能与拉萨—羌塘地体碰撞构造背景下的地表急剧抬升密切相关。此外,在拉隆村和色尔孔村剖面③和④中,多尼组顶部向厚层紫红色泥岩层过渡,局部出现薄灰岩夹层,它们沉积于曲流河溢岸湖泊或滨浅湖环境,可能与区域范围内的海侵作用有关[59]

  • 为了查明多尼组沉积物源区相对位置与区域古地理格局变化,我们分别对班戈地区多尼组剖面中的交错层理、波痕和叠瓦状砾石进行了详细测量和统计。由于缺乏区域性地层旋转的信息,本研究对古流向数据参照当地的地层倾角进行了校正,并制作了玫瑰花图(图3)。统计结果显示多尼组古水流方向主体指向北侧,意味着其沉积物源区主要位于其南部。然而,多尼组地层剖面顶部的古水流主要表现为向南方向,说明多尼组沉积晚期碎屑组成主要来自其北侧沉积物源区。

  • 砾岩和含砾砂岩是多尼组的重要岩石类型,常见于多尼组剖面的中部和上部。其中含砾砂岩主要见于剖面中部,而砾岩主要见于剖面上部。砾石成分复杂,大小混杂,分选差,磨圆中等—差,表现为砾质支撑和砂质胶结两类。本文共统计砾石约2 500个,含砾粗砂岩中砾石主要是由安山岩、花岗岩及部分石英岩组成,砾石呈次棱角状—次圆状,砾径以0.2~2 cm为主。砾岩中砾石主要以分选差、棱角状—次棱角状、砾径2~8 cm不等的安山岩及蛇绿岩基性、超基性岩石单元(如:橄榄岩、辉长岩、玄武岩等)为主,并含有少量花岗岩砾石。它们的结构成熟度和成分成熟度都很低,显示出明显的近源搬运的特征(图6)。其物源可能主要来自早白垩世喷发的火山岩及北拉蛇绿岩。部分沉积岩碎屑,如燧石、灰岩、砂岩和硅质岩等,可能来自多尼组下伏的海相增生杂岩(如:木嘎岗日岩群、希湖群、接奴群和拉贡塘组等)。同时,还存在比例较小、成分以石英岩为主的砾岩,其砾石分选中等、多呈次圆状,具有较高的结构成熟度和成分成熟度,指示其物源区可能来自拉萨地体和/或南羌塘地体的变质基底(图6c)。

    Figure 6.  Photographs of conglomerates in the Duoni Formation, eastern Baingoin county, Tibet

  • 砂岩碎屑颗粒统计采用Gazzi⁃Dickinson方法[9]进行。通过对符合统计要求的59个砂岩薄片进行统计分析,结果表明多尼组砂岩可分为岩屑杂砂岩(>90%)和岩屑净砂岩(<10%)两类(图78)。岩屑净砂岩以夹层产出,在多尼组顶部有增多的趋势。岩屑杂砂岩中的碎屑颗粒占90%,主要由石英及岩屑组成,并有少量斜长石。岩屑主要包括安山岩、玄武岩和花岗岩等岩浆岩碎屑,部分燧石、粉砂岩、泥岩、灰岩等沉积岩碎屑,少量云母片岩或花岗片麻岩等变质岩碎屑。填隙物较少,其中杂基常以薄膜形式分布于碎屑石英及岩屑之间,以褐色泥岩为主,部分铁质含量较高。胶结物以钙质胶结为主。砂岩颗粒中石英多呈次圆状,并且整体表现出波状消光,表明这些石英颗粒来源于变质岩区或经历了变质作用[66]图7)。部分单晶石英颗粒清晰且无包裹体,均质消光,可能来自长英质侵入岩或火山岩[66],可能与研究区广泛分布的早白垩世花岗岩、火山岩等有关;多晶石英颗粒主要由变质的燧石和石英岩组成,呈次棱角状,具波状消光(图7),部分多晶颗粒被定向拉长,发育锯齿状缝合线构造,表明其可能来源于变质岩或经历过变质作用的海相增生杂岩,与区内侏罗纪海相增生杂岩密切相关。杂砂岩岩屑成分以火山岩为主,沉积岩次之,变质岩最少。砂岩薄片特征与野外砾石统计结果相一致,指示其物源可能主要来自同期喷发的早白垩世火山岩,部分来自侏罗纪蛇绿岩和下伏海相增生杂岩,少量变质岩则来自缝合带两侧地体内部的变质基底。对砂岩薄片统计结果进行的砂岩构造判别图显示,多尼组物源区主要为大陆弧和混合造山区。

    Figure 7.  Typical microphotographs of sandstones from the Duoni Formation, eastern Baingoin county, Tibet

    Figure 8.  QFL diagram of sandstones in the Duoni Formation, eastern Baingoin county, Tibet[9]

  • 本研究从多尼组中共采集了6个砂岩样品进行重矿物分析。重矿物主要呈次棱角状—次圆状。其中包括赤铁矿、褐铁矿和磁铁矿在内的铁氧化物在样品中占最大比例(超过80%,图9,剔除赤褐铁矿),主要来自蛇绿岩碎片和火山岩源区[67]。铬铁矿、钛铁矿(图9)、单斜辉石、绿帘石和角闪石,可能来自于蛇绿岩。锆石、重晶石、金红石和电气石占所比例大(图9),可能来自中酸性岩浆岩(如区内广泛分布的早白垩安山岩、花岗岩等)和一些变质岩单元(如念青唐古拉群)[68]。此外,样品中的次棱角状、环带发育的自形锆石,表面裂缝上具有溶解和磨损的痕迹,可能是中酸性火山岩近源搬运的结果(安山岩);次圆状锆石可能来自于远源搬运磨蚀后的沉积和变质岩石(如念青唐古拉群)。石榴石可能来自与蛇绿岩相关的含石榴石斜长角闪岩[25]、南羌塘变质基底的片麻岩和片岩(如戈木日群[69])、北拉萨地体变质基底等(如:念青唐古拉群[70])。

    Figure 9.  Heavy⁃mineral assemblages, Duoni Formation, eastern Baingoin county, Tibet

  • 为了准确确定多尼组的形成时代,我们对采自那么切乡多尼组底部的安山岩夹层样品18T101(GPS位置:31°34′51.289″ N; 91°20′35.727″ E)进行了LA⁃ICP⁃MS锆石U⁃Pb测年。锆石的分选在河北省区域地质调查院完成,采用常规的重液和磁选方法进行分选,最后在双目显微镜下挑纯。将锆石晶体制成样品靶,打磨和抛光后进行反射光、透射光和阴极发光(CL)图像拍摄,CL图像在中国地质科学院地质研究所HITACH S⁃3000 N扫描电镜上完成。锆石U⁃Pb测年在北京科汇测试技术有限公司完成,利用LA⁃ICP⁃MS方法完成。使用ESI NWR 193 nm激光融蚀系统进行激光采样,利用AnlyitikJena PQMS Elite ICP⁃MS分析仪器获取离子信号强度。采用单点剥蚀模式,束斑固定为25 μm,重复频率为10 Hz,能量为4 J/cm2。详细仪器操作步骤参照文献[71]。离线原始数据背景值、分析物信号、时间漂移校正和U⁃Pb定年的定量校准利用ICPMSDataCal软件完成[72]。所有锆石U⁃Pb测试点的误差均为1σ,加权平均值误差为95%置信度,平均年龄值选用206Pb/238U年龄,加权平均年龄的计算和谐和图的绘制采用ISOPLOT3.0程序完成[73]

    样品18T101锆石颗粒为无色、透明的自形晶,长轴为50~150 μm,长轴/短轴比为2~3(图10)。锆石阴极发光图像显示,所有锆石均具有清晰地岩浆振荡环带[74]。13粒锆石的206Pb/238U表面年龄变化于113~116 Ma之间,Th/U比值为0.43~0.8,其加权平均年龄为114 ± 0.4 Ma(n=13; MSWD=0.3)(图10表1),代表了安山岩的结晶年龄。这一结果与在拉隆村一带多尼组安山岩夹层获得的年龄结果一致[45],指示班戈地区多尼组的沉积时代为早白垩世晚期。

    Figure 10.  Zircon U⁃Pb Concordia diagram, mean age diagram and CL images for andesite interlayer samples, Duoni Formation, eastern Baingoin county, Tibet

    Spot Pb/×10-6 Th/×10-6 U/×10-6 Th/U 同位素比值 年龄/Ma
    207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
    1 30.83 283.97 353.47 0.80 0.048 6 0.002 4 0.118 7 0.006 2 0.017 7 0.000 3 128 -79 114 6 113 2
    2 18.14 151.02 259.33 0.58 0.047 7 0.002 7 0.118 0.007 2 0.017 8 0.000 3 83 130 113 7 114 2
    3 35.35 265.6 619.57 0.43 0.049 2 0.001 4 0.120 5 0.003 6 0.017 8 0.000 2 167 73 116 3 114 1
    4 33.87 288.6 437.34 0.66 0.048 9 0.002 5 0.118 7 0.005 6 0.017 7 0.000 3 143 120 114 5 113 2
    5 27.82 236.81 336.49 0.70 0.047 9 0.002 1 0.117 1 0.005 3 0.017 8 0.000 2 100 94 112 5 113 2
    6 13.7 101.85 185.54 0.55 0.049 3 0.002 9 0.118 5 0.006 8 0.017 7 0.000 2 167 142 114 6 113 2
    7 13.98 101.75 178.48 0.57 0.048 3 0.002 9 0.118 7 0.007 1 0.018 0.000 3 122 133 114 6 115 2
    8 15.43 121.45 240.23 0.51 0.047 9 0.002 9 0.118 8 0.007 1 0.017 7 0.000 3 95 137 114 6 113 2
    9 14.8 117.54 234.14 0.50 0.048 8 0.002 7 0.120 2 0.006 9 0.017 9 0.000 2 200 65 115 6 114 2
    10 29.38 252.37 360.35 0.70 0.050 6 0.002 9 0.119 6 0.005 8 0.017 8 0.000 3 233 131 115 5 114 2
    11 30.08 280.45 344.29 0.81 0.047 8 0.002 5 0.120 6 0.009 3 0.018 0.000 4 100 109 116 8 115 3
    12 20.3 174.62 261.74 0.67 0.048 6 0.002 2 0.119 8 0.005 5 0.017 9 0.000 3 132 107 115 5 115 2
    13 33.84 282.45 440.7 0.64 0.0487 0.001 8 0.122 3 0.004 9 0.018 2 0.000 2 132 89 117 4 116 1
    14 8.66 76.95 115.73 0.66 0.049 4 0.005 4 0.112 3 0.015 1 0.017 2 0.000 3 108 14 110 2 102 8
    15 933.65 537.34 479.48 1.12 0.111 3 0.002 2 5.170 5 0.166 1 0.333 9 0.005 9 1848 27 1857 29 1622 61

    Table 1.  LA⁃ICP⁃MS zircon U⁃Pb data for the andesite interlayer (18T101) in the Duoni Formation, eastern Baingoin county, Tibet

  • 多尼组的初始定义是一套在青藏高原中部广泛发育的海陆交互相地层[48,75]。而本次班戈县东部的研究表明,班公湖—怒江缝合带中段的多尼组发育一套滨浅湖泊、河流—三角洲相占主导的陆相沉积。其底部呈角度不整合覆盖在侏罗纪蛇绿岩和海相地层之上,记录了该地区洋—陆转换发生在多尼组底部沉积之前。类似的不整合界线在东巧、安多和尼玛等地也得到证实[52,76]。截至目前,对于班公湖—怒江特提斯洋的闭合消亡过程及拉萨—羌塘地体的碰撞时限研究,尚没有统一的认识,班公湖—怒江缝合带中段地区是研究这一科学问题的关键[18,30,34,77]

    本项研究通过对班戈县多尼组的沉积学及综合物源分析,确认了多尼组的陆相沉积环境,其物源主要来自班公湖—怒江缝合带内及南北两侧的地体。多尼组具有由底到顶逐渐变粗和变厚的地层序列,是一套形成于碰撞型前陆盆地的前隆和前渊沉积背景下的陆相浅水湖泊、河流—三角洲相沉积。其顶部可能已经进入楔顶沉积阶段[1213],与拉萨—羌塘地体碰撞后期抬升紧密相关。多尼组具有南北向的双向古水流,其物源区主要来自南部,但在靠近顶部来自北部的物源增多。多尼组砾岩砾石统计及砂岩成分自底部向上存在明显变化,不整合界线之下的蛇绿岩/海相增生杂岩提供物源的比例逐渐减少;火山岩组分在整个剖面中所占比例都较大,这与班公湖—怒江缝合带沿线广泛分布的早白垩世火山岩相关;可能来自陆内的变质岩和石英砂岩在多尼组顶部的比例逐渐增大。新近研究表明,班公湖—怒江缝合带及其两侧呈区域性分布的早白垩世火山岩是拉萨—羌塘地体碰撞的产物[24,29,37]。尽管对于这套早白垩世岩浆岩是后碰撞阶段地壳拆沉作用的结果[24],还是属于俯冲到羌塘地体之下的班公湖—怒江特提斯洋洋壳板片断离作用所导致[37],仍然存在一定争议,但不可否认的是,在班公湖—怒江缝合带中段班戈县地区早白垩世岩浆岩的研究均支持此时拉萨和羌塘地体已经发生了碰撞[24,29,37]。此外,拉萨—羌塘地体在早白垩世发生碰撞也得到了古地磁[7879]、区域地质[18,25]及构造地质[22,27,80]等多方面证据的支持。

    综上所述,班公湖—怒江缝合带中段班戈县东部多尼组可能沉积于与拉萨—羌塘地体碰撞相关的碰撞型周缘前陆盆地环境,它指示班公湖—怒江缝合带中段在早白垩世晚期(~114 Ma)就已经发生了洋盆闭合及拉萨—羌塘地体的碰撞。同期大面积喷发的火山岩、蛇绿岩以及海相增生杂岩为班戈盆地中的多尼组提供了主要物源。同时,来自拉萨地体和羌塘地体内部的物质也为多尼组提供了部分物源,并通过河流搬运至缝合带附近沉积。

  • (1) 班公湖—怒江缝合带中段班戈县东部多尼组是一套早白垩世陆相滨浅湖泊相、河流—三角洲相及冲积扇相沉积,早白垩世火山岩、北拉蛇绿岩及侏罗纪海相增生杂岩为多尼组提供了主要物源。同时其南、北两侧的拉萨地体和羌塘地体也是多尼组的重要物源区之一。

    (2) 班公湖—怒江缝合带中段班戈县早白垩世(~114 Ma)多尼组沉积于拉萨—羌塘地体碰撞相关的碰撞型周缘前陆盆地环境,是拉萨—羌塘地体碰撞的沉积响应;此时班公湖—怒江特提斯洋中段已经发生闭合。

Reference (80)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return