Advanced Search
Volume 38 Issue 4
Sep.  2020
Turn off MathJax
Article Contents

QIN JianMing, CHEN JiQuan, GAO Yuan, XI DangPeng, WANG ChengShan. Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core[J]. Acta Sedimentologica Sinica, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079
Citation: QIN JianMing, CHEN JiQuan, GAO Yuan, XI DangPeng, WANG ChengShan. Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core[J]. Acta Sedimentologica Sinica, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079

Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core

doi: 10.14027/j.issn.1000-0550.2019.079
Funds:

National Natural Science Foundation of China 41790450

Project of Excellent Teachers Fund for Fundamental Research Business Fees in Central Colleges and Universities 2652018119

Innovation and Entrepreneurship Training Program for Undergra duates of China University of Geosciences (Beijing) 2018AB004

  • Received Date: 2019-06-24
  • Publish Date: 2020-09-02
  • The Nenjiang Formation Members 1+2 (K2n1+2), which formed during the Late Cretaceous in the Songliao Basin, is a lacustrine mudstone deposition, on which abundant terrestrial paleoclimate information is preserved. This study examined mineralogy, as well as the major elemental and trace elemental geochemistry, of K2n1+2 and attempted to reconstruct the terrestrial paleotemperature quantitatively. Results show that the bulk rock mineralogy is mainly composed of clay mineralogy (46.2% average), minor quartz (21.7% average). and negligible plagioclase and K⁃feldspar. Values of the Chemical Index of Alteration (CIA, 63 average), Mafic Index of Alteration for Oxidative condition (MIA⁃O, > 64), Plagioclase Index of Alteration (PIA, > 53), and Weathering Index of Parker (PIA, > 44) indicate medium chemical weathering intensity of K2n1+2. The analysis of the sediment chemical composition by provenance, transportation, and diagenesis satisfies the precondition of calculating the annual mean temperature (MAT) by element geochemistry: (1) High annual precipitation rate (> 400 mm/yr), (2) moderate physical erosion rate, (3) no significant sedimentary sorting and recycling, (4) weak diagenesis, and (5) Chinese acid rock as the protolith. This study suggests a MAT of ~14.19 °C based on the τNa-MAT transfer function from K2n1+2 of the LD6⁃7 core in Songliao Basin. This estimated MAT is consistent with previous research results, which is a subtropical climate. It is proven that the method of reconstructing paleotemperature by means of element geochemistry is feasible for K2n1+2 of the LD6⁃7 core in Songliao Basin, which can provide a reference for the quantitative study of the terrestrial paleoclimate concerning "deep time" in the future.
  • [1] 汪品先. 气候演变中的冰和碳[J]. 地学前缘,2002,9(1):85-93.

    Wang Pinxian. Ice and carbon in climate evolution[J]. Earth Science Frontiers, 2002, 9(1): 85-93.
    [2] Frakes L A, Francis J E, Syktus J I. Climate modes of the Phanerozoic[M]. Cambridge: Cambridge University Press, 1992.
    [3] Huber B T, Norris R D, MacLeod K G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous[J]. Geology, 2002, 30(2): 123-126.
    [4] Skelton P W, Spicer R A, Kelley S P, et al. The Cretaceous world[M]. Cambridge: Cambridge University Press, 2003.
    [5] 胡修棉. 白垩纪“温室”气候与海洋[J]. 中国地质,2004,31(4):442-448.

    Hu Xiumian. Greenhouse climate and ocean during the Cretaceous[J]. Geology in China, 2004, 31(4): 442-448.
    [6] Friedrich O, Norris R D, Erbacher J. Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle[J]. Geology, 2012, 40(2): 107-110.
    [7] Barron E J. A warm, equable Cretaceous: The nature of the problem[J]. Earth-Science Reviews, 1983, 19(4): 305-338.
    [8] Bice K L, Norris R D. Possible atmospheric CO2 extremes of the Middle Cretaceous (Late Albian–Turonian)[J]. Paleoceanography, 2002, 17(4): 1070.
    [9] Takashima R, Nishi H, Huber B T, et al. Greenhouse world and the Mesozoic Ocean[J]. Oceanography, 2006, 19(4): 82-92.
    [10] Hay W W. Evolving ideas about the Cretaceous climate and ocean circulation[J]. Cretaceous Research, 2008, 29(5/6): 725-753.
    [11] Chen P J, Chang Z L. Nonmarine Cretaceous stratigraphy of eastern China[J]. Cretaceous Research, 1994, 15(3): 245-257.
    [12] Sha J G. Cretaceous stratigraphy of Northeast China: Non-marine and marine correlation[J]. Cretaceous Research, 2007, 28(2): 146-170.
    [13] Wang C S, Feng Z Q, Zhang L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
    [14] 侯启军,冯志强,冯子辉,等. 松辽盆地陆相石油地质学[M]. 北京:石油工业出版社,2009.

    Hou Qijun, Feng Zhiqiang, Feng Zihui, et al. Terrestrial petroleum geology of Songliao Basin[M]. Beijing: Petroleum Industry Press, 2009.
    [15] 高瑞祺,赵传本,乔秀云,等. 松辽盆地白垩纪石油地层孢粉学[M]. 北京:地质出版社,1999.

    Gao Ruiqi, Zhao Chuanben, Qiao Xiuyun, et al. Cretaceous oil strata palynology from Songliao Basin[M]. Beijing: Geological Publishing House, 1999.
    [16] 陈积权,高远,秦健铭,等. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质,2017,29(8):17-24.

    Chen Jiquan, Gao Yuan, Qin Jianming, et al. Clay mineral and major element geochemical features and their paleoclimate significance in Nenjiang Formation 1st and 2nd members, eastern margin of Songliao Basin[J]. Coal Geology of China, 2017, 29(8): 17-24.
    [17] Ghosh P, Adkins J, Affek H, et al. 13C–18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1439-1456.
    [18] Dennis K J, Cochran J K, Landman N H, et al. The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to western Interior Seaway macrofossil[J]. Earth and Planetary Science Letters, 2013, 362: 51-65.
    [19] Came R E, Brand U, Affek H P. Clumped isotope signatures in modern brachiopod carbonate[J]. Chemical Geology, 2014, 377: 20-30.
    [20] Robinson S A, Ruhl M, Astley D L, et al. Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry[J]. Sedimentology, 2017, 64(1): 215-230.
    [21] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265-274.
    [22] Yang J H, Cawood P A, Du Y S, et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. Geological Society of America Bulletin, 2016, 128(5/6): 739-751.
    [23] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
    [24] 孟凡超,刘嘉麒,崔岩,等. 中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J]. 岩石学报,2014,30(12):3569-3586.

    Meng Fanchao, Liu Jiaqi, Cui Yan, et al. Mesozoic tectonic regimes transition in the Northeast China: Constriants from temporal-spatial distribution and associations of volcanic rocks[J]. Acta Petrologica Sinica, 2014, 30(12): 3569-3586.
    [25] Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China[J]. Basin Research, 2010, 22(1): 79-95.
    [26] 莫午零,吴朝东,张顺,等. 松辽盆地北部上白垩统嫩江组物源及古流向分析[J]. 石油实验地质,2012,34(1):40-46.

    Mo Wuling, Wu Chaodong, Zhang Shun, et al. Provenance and palaeocurrent direction of Upper Cretaceous Nenjiang Formation in northern Songliao Basin[J]. Petroleum Geology & Experiment, 2012, 34(1): 40-46.
    [27] 王东坡,刘招君,刘立. 松辽盆地演化与海平面升降[M]. 北京:地质出版社,1994.

    Wang Dongpo, Liu Zhaojun, Liu Li. Evolution and sea level elevation of Songliao Basin[M]. Beijing: Geological Publishing House, 1994.
    [28] Feng Z Q, Wang C S, Graham S, et al. Continental scientific drilling project of Cretaceous Songliao Basin: Scientific objectives and drilling technology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 6-16.
    [29] Gao Y, Xi D P, Qin Z H, et al. Clay mineralogy of the first and second members of the Nenjiang Formation, Songliao Basin: Implications for paleoenvironment in the Late Cretaceous[J]. Science China Earth Sciences, 2018, 61(3): 327-338.
    [30] Riebe C S, Kirchner J W, Finkel R C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4411-4427.
    [31] Dixon J L, Hartshorn A S, Heimsath A M, et al. Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California[J]. Earth and Planetary Science Letters, 2012, 323-324: 40-49.
    [32] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

    Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
    [33] Rasmussen C, Brantley S, Richter D D, et al. Strong climate and tectonic control on plagioclase weathering in granitic terrain[J]. Earth and Planetary Science Letters, 2011, 301(3/4): 521-530.
    [34] Riebe C S, Kirchner J W, Granger D E, et al. Strong tectonic and weak climatic control of long-term chemical weathering rates[J]. Geology, 2001, 29(6): 511-514.
    [35] Riebe C S, Kirchner J W, Finkel R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 547-562.
    [36] Ferrier K L, Kirchner J W. Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes[J]. Earth and Planetary Science Letters, 2008, 272(3/4): 591-599.
    [37] Gabet E J, Mudd S M. A theoretical model coupling chemical weathering rates with denudation rates[J]. Geology, 2009, 37(2): 151-154.
    [38] 蒋浩, 徐志方, 赵童, 等. 青藏高原流域岩石风化速率及其控制机制:以贡嘎山地区典型地质背景小流域研究为例[J]. 第四纪研究,2018,38(1):278-286.

    Jiang Hao, Xu Zhifang, Zhao Tong, et a1. The weathering rates and controlling factors of the Tibetan Plateau: A case study of small catchments of typical lithology in Gongga Mountainous area[J]. Quaternary Sciences,2018, 38(1): 278-286.
    [39] West A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814.
    [40] 闫晶晶, 席党鹏, 于涛, 等. 松辽盆地青山口地区嫩江组下部生物地层及环境变化[J]. 地层学杂志, 2007, 31(3): 296-302.

    Yan Jingjing, Xi Dangpeng, Yu Tao, et al. Biostratigraphy and paleoenvironmental change of the lower Nenjiang Formation in the Qingshankou area, Songliao Basin[J]. Journal of Stratigraphy, 2007, 31(3): 296-302.
    [41] Klovan J E, Billings G K. Classification of geological samples by discriminant-function analysis[J]. Bulletin of Canadian Petroleum Geology, 1967, 15(3): 313-330.
    [42] Song Y, Ren J Y, Stepashko A A, et al. Post-rift geodynamics of the Songliao Basin, NE China: Origin and significance of T11 (Coniacian) unconformity[J]. Tectonophysics, 2014, 634: 1-18.
    [43] Wilkinson B H. Humans as geologic agents: A deep-time perspective[J]. Geology, 2005, 33(3): 161-164.
    [44] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [45] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
    [46] Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504.
    [47] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
    [48] Babechuk M G, Widdowson M, Kamber B S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India[J]. Chemical Geology, 2014, 363: 56-75.
    [49] Yang S, Ding F, Ding Z. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochimica Acta, 2006, 70(7):1695-1709.
    [50] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
    [51] Nesbitt H W, Wilson R E. Recent chemical weathering of Basalts[J]. American Journal of Science, 1992, 292(10): 740-777.
    [52] Maynard J B. Chemistry of modern soils as a guide to interpreting Precambrian Paleosols[J]. The Journal of Geology, 1993, 100(3): 279-289.
    [53] Nordt L C, Driese S D. New weathering index improves paleorainfall estimates from Vertisols[J]. Geology, 2010, 38(5): 407-410.
    [54] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
    [55] Gao Y, Wang C S, Liu Z F, et al. Diagenetic and paleoenvironmental controls on Late Cretaceous clay minerals in the Songliao Basin, Northeast China[J]. Clays and Clay Minerals, 2015, 63(6): 469-484.
    [56] 孙平昌,刘招君,李宝毅,等. 桦甸盆地桦甸组油页岩段地球化学特征及地质意义[J]. 吉林大学学报(地球科学版),2012,42(4):948-960.

    Sun Pingchang, Liu Zhaojun, Li Baoyi, et al. Geochemical characteristics and their geological implications of oil shale member of Huadian Formation, Huadian Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4): 948-960.
    [57] Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.
    [58] 迟清华,鄢明才. 应用地球化学元素丰度数据手册[M]. 北京:地质出版社,2007.

    Chi Qinghua, Yan Mingcai. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007.
    [59] Garzanti E, Padoan M, Andò S, et al. Weathering and relative durability of detrital minerals in Equatorial Climate: Sand petrology and geochemistry in the East African Rift[J]. The Journal of Geology, 2013, 121(6): 547-580.
    [60] Garzanti E, Padoan M, Setti M, et al. Provenance versus weathering control on the composition of tropical river mud (southern Africa)[J]. Chemical Geology, 2014, 366: 61-74.
    [61] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284:21-40.
    [62] 邓硕,刘招君,孙平昌. 松辽盆地东南隆起区上白垩统嫩江组泥页岩段地球化学特征与物源分析[J]. 世界地质,2016,35(1):108-122.

    Deng Shuo, Liu Zhaojun, Sun Pingchang. Geochemical characteristics and implications for provenance of shale from Upper Cretaceous Nenjiang Formation of southeastern uplifted area in Songliao Basin[J]. Global Geology, 2016, 35(1): 108-122.
    [63] Zakharov Y D, Boriskina N G, Ignatyev A V, et al. Palaeotemperature curve for the Late Cretaceous of the northwestern circum-Pacific[J]. Cretaceous Research, 1999, 20(6): 685-697.
    [64] Zakharov Y D, Shigeta Y, Popov A M, et al. Cretaceous climatic oscillations in the Bering area (Alaska and Koryak Upland): Isotopic and palaeontological evidence[J]. Sedimentary Geology, 2011, 235(1/2): 122-131.
    [65] Spicer R A, Herman A B. The Late Cretaceous environment of the Arctic: A quantitative reassessment based on plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(3/4): 423-442.
    [66] Wang C S, Scott R W, Wan X Q, et al. Late Cretaceous climate changes recorded in eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews, 2013, 126: 275-299.
    [67] Zhang L M, Wang C S, Cao K, et al. High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin[J]. Earth and Planetary Science Letters, 2016, 456: 112-123.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(2)

Article Metrics

Article views(1023) PDF downloads(192) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-06-24
  • Published:  2020-09-02

Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core

doi: 10.14027/j.issn.1000-0550.2019.079
Funds:

National Natural Science Foundation of China 41790450

Project of Excellent Teachers Fund for Fundamental Research Business Fees in Central Colleges and Universities 2652018119

Innovation and Entrepreneurship Training Program for Undergra duates of China University of Geosciences (Beijing) 2018AB004

Abstract: The Nenjiang Formation Members 1+2 (K2n1+2), which formed during the Late Cretaceous in the Songliao Basin, is a lacustrine mudstone deposition, on which abundant terrestrial paleoclimate information is preserved. This study examined mineralogy, as well as the major elemental and trace elemental geochemistry, of K2n1+2 and attempted to reconstruct the terrestrial paleotemperature quantitatively. Results show that the bulk rock mineralogy is mainly composed of clay mineralogy (46.2% average), minor quartz (21.7% average). and negligible plagioclase and K⁃feldspar. Values of the Chemical Index of Alteration (CIA, 63 average), Mafic Index of Alteration for Oxidative condition (MIA⁃O, > 64), Plagioclase Index of Alteration (PIA, > 53), and Weathering Index of Parker (PIA, > 44) indicate medium chemical weathering intensity of K2n1+2. The analysis of the sediment chemical composition by provenance, transportation, and diagenesis satisfies the precondition of calculating the annual mean temperature (MAT) by element geochemistry: (1) High annual precipitation rate (> 400 mm/yr), (2) moderate physical erosion rate, (3) no significant sedimentary sorting and recycling, (4) weak diagenesis, and (5) Chinese acid rock as the protolith. This study suggests a MAT of ~14.19 °C based on the τNa-MAT transfer function from K2n1+2 of the LD6⁃7 core in Songliao Basin. This estimated MAT is consistent with previous research results, which is a subtropical climate. It is proven that the method of reconstructing paleotemperature by means of element geochemistry is feasible for K2n1+2 of the LD6⁃7 core in Songliao Basin, which can provide a reference for the quantitative study of the terrestrial paleoclimate concerning "deep time" in the future.

QIN JianMing, CHEN JiQuan, GAO Yuan, XI DangPeng, WANG ChengShan. Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core[J]. Acta Sedimentologica Sinica, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079
Citation: QIN JianMing, CHEN JiQuan, GAO Yuan, XI DangPeng, WANG ChengShan. Quantitative Paleotemperature Reconstruction of Late Cretaceous Nenjiang Formation in Songliao Basin: A case study of the LD6⁃7 Core[J]. Acta Sedimentologica Sinica, 2020, 38(4): 759-770. doi: 10.14027/j.issn.1000-0550.2019.079
  • 地质历史时期的气候状态表现为“温室状态”和“冰室状态”交替出现的周期性动态变化[12],白垩纪是地质历史时期中地球“温室气候”的典型代表[36],地质记录的信息表明该时期大气CO2浓度、全球陆地和表层海水的温度都比现在更高,赤道—两极的纬度温度梯度更小,为一种更加温暖均衡的气候状态[3,710]。因此探索这一时期地球气候变化过程与机制,对于认识过去气候状态以及预测未来气候变暖的趋势都具有极其重要的意义。

    松辽盆地在白垩纪位于全世界面积最大陆块的东部,也是世界上发育时间最长的陆相湖盆,保存了一套完整的白垩纪陆相沉积地层[1113]。其中,嫩江组一段和二段形成于晚白垩世,主要是一套深湖相—半深湖相的暗色泥岩沉积,也是松辽盆地重要的烃源岩层位[1314]。目前,嫩江组沉积过程中的古环境和古气候已经通过沉积学、古生物学、稳定同位素和有机地球化学方法进行了定性重建。例如,已有孢粉组合与黏土矿物数据显示,嫩江组一段和二段沉积时期的松辽盆地处于温带—亚热带半湿润气候[1516]。然而,对于嫩江组定量计算古温度的研究并不多。前人对地球表层大气和水体温度的重建多采用古生物组合群落特征和转换函数、古生物碳酸盐壳体氧同位素、团簇同位素∆47指标[1719]和保存时代更久的古菌膜成分四醚膜类脂物的TEX86指标[2021]等。这些古温度重建方法在嫩江组研究中大多不适用或者受到很大限制,需要更多的气候定量信息来加强古气候认知。

    近年来,Yang et al. [22]提出的利用沉积物元素地球化学特征和τNa⁃MAT转换方程重建古温度的方法具有实验难度低、应用范围广的特点。这种方法重建古温度的原理是,物源区岩石在经历风化和剥蚀之后,物质有两种去向:一是通过物理风化作用使岩石破碎,破碎的物质通过介质搬运离开物源区;二是通过化学风化作用,使部分物质溶解在水中,随地表径流流失。化学风化作用受气候影响,气候主要表现为温度和降水,因此,排除循环、分选、成岩等过程的干扰,并且约束降雨对于化学风化作用的影响后,温度对于化学风化作用的影响就可以判断出来,即可根据Yang et al. [22]构建的年均温度(MAT)和钠亏损指数的相关性公式计算古温度的大小,本文使用“陆表古温度”指代由此得出的古温度数据。

    因此,本文尝试利用元素地球化学方法,结合已有经验公式,对松辽盆地嫩江组一、二段时期的陆表古温度进行定量还原。研究结果与已有资料的对比证明了方法的可靠性,为晚白垩世松辽盆地古气候研究提供了重要的定量古温度记录,同时为“深时”陆地定量古温度重建提供又一个实例。

  • 松辽盆地位于中国东北部,在黑龙江、吉林、辽宁均有分布,长约750 km,宽330~370 km,整体呈北东向展布,占地面积约26×104 km2。松辽盆地四周均有山脉分布,其东部为张广才岭,北部为小兴安岭,主要发育晚三叠世—中侏罗世岩浆岩[2324];西部是大兴安岭,主要发育早白垩世花岗岩和火山岩;南部为丘陵。松辽盆地内沉积物包含侏罗系、白垩系、古近系和新近系碎屑岩,其中白垩系沉积厚度最大,物源主要为盆地周边的山脉[2526]

    松辽盆地受太平洋板块向欧亚大陆俯冲和上地幔隆起引起陆壳张裂两种构造应力控制[1314],在整个盆地演化阶段可分为四步:中—晚侏罗世热隆张裂阶段、早白垩世早期伸展断陷阶段、白垩纪中期热沉降坳陷阶段和白垩纪末期构造反转阶段[25,27]。前人按照松辽盆地区域坳陷和隆起特征将盆地进一步划分为六个一级构造单位:分别为北部倾没区、中央坳陷区、东北隆起区、东南隆起区、西南隆起区和西部斜坡区[28]图1)。

    Figure 1.  A brief geographic map of Songliao Basin

    嫩江组一段和二段形成于盆地热沉降坳陷阶段,厚100~470 m,岩性主要为深湖相灰黑色泥岩、泥灰岩、介壳灰岩和油页岩,夹灰色粉砂岩和细砂岩[25,27]。嫩江组一段沉积时期,湖盆沉降速度加大,湖水迅速扩张,近乎覆盖全盆地,这是松辽古湖盆继青山口组一段之后发生的第二次大规模的湖侵,盆地中部广泛发育半深湖—深湖相;二段沉积时期,湖盆面积进一步扩大,并超出现今盆地边界,湖盆区范围内几乎全部为半深湖—深湖相,仅在盆地北部发育小范围的浅湖沉积,在盆地西部和东南近岸处发育滨浅湖相沉积[25,27]。对松辽盆地的物源和古流向分析显示,嫩江组一段和二段沉积物主要来自盆地东部和东北部地区[26]

    本文所研究的嫩江组样品来自LD6⁃7井,该井位于黑龙江省齐齐哈尔市。根据钻井岩芯,嫩江组一段和二段分别位于200.0~154.5 m和154.5~95.0 m。LD6⁃7井的嫩江组一段为灰色泥岩、粉砂质泥岩和灰色粉砂岩互层,以及钙质粉砂岩;嫩江组二段为深灰色泥岩和灰色粉砂质泥岩,岩性总体反应了深度逐渐增加的湖相环境[29]。嫩江组一段和二段的边界通过岩性突变(浅灰色砂岩到深灰色泥岩)、电阻率测井和地震数据可以分辨[29]

  • 本文所用的样品均取自LD6⁃7井,其中LD6⁃7⁃2~LD6⁃7⁃61取自嫩江组一、二段,LD6⁃7⁃65和LD6⁃7⁃73取自嫩江组二段底部和下伏地层界线附近,11个样品的岩性见图2。对以上样品均采取全岩主量元素和微量元素地球化学分析、全岩XRD分析。

    Figure 2.  Records of K2 n 1+2 in the LD6⁃7 core

    主量元素和微量元素测试在中国地质大学(北京)完成。样品研磨至200目,在烘箱中加热除水,之后放置于聚四氟乙烯容器,加偏硼酸锂试剂高温熔融,冷却后用硝酸提取,然后使用等离子光谱(ICP⁃OES)进行检测。

    全岩矿物含量根据XRD粉晶衍射法进行测定。全岩矿物分析测试工作在四川西冶地质测试技术有限公司完成。全岩矿物学分析采用全岩矿物X射线粉晶衍射法(XRD)。步骤是取少量样品研磨至粉末,使用PANalyticalX'Pert PRO衍射仪进行XRD分析,在分析过程中,采用Cu Ka辐射和Ni滤波器,管压为40 kV,管流为40 mA,扫描角度2θ为3°~70°。对全岩矿物的鉴定和含量计算采用的是特征衍射峰值和K值法。

  • 对LD6⁃7井样品的全岩主量测试结果显示(图3表1),主要元素为SiO2(57.19%~68.04%,平均62.62%)和Al2O3(13.08%~15.32%,平均14.21%);其次为TFe2O3(3.44%~5.29%,平均4.43%)、K2O(2.41%~3.23%,平均2.80%)、Na2O(1.08%~2.28%,平均1.50%)、CaO(0.8%~3.95%,平均1.83%)、MgO(1.05%~2.53%,平均1.64%),其含量之和超过10%;含量较少的元素为TiO2、P2O5、MnO,其含量总和不足2%,除SiO2外不同样品之间各主量元素含量变化幅度总体不大。

    Figure 3.  Major elemental composition (%) of K2 n 1+2 in the LD6⁃7 core

    样品号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOl
    LD6⁃7⁃2 64.50 0.55 14.48 4.44 0.02 1.34 0.89 1.42 2.68 0.08 8.92
    LD6⁃7⁃9 67.45 0.53 13.60 3.52 0.02 1.12 0.80 1.70 2.66 0.07 7.79
    LD6⁃7⁃30 61.30 0.59 14.13 4.69 0.04 1.61 2.52 1.60 2.50 0.17 10.33
    LD6⁃7⁃38 63.08 0.55 13.08 4.02 0.03 1.58 1.45 1.30 2.42 0.14 11.71
    LD6⁃7⁃50 68.04 0.59 13.25 3.44 0.07 1.05 1.39 2.28 3.02 0.22 5.98
    LD6⁃7⁃19 65.68 0.51 13.77 3.98 0.02 1.33 0.86 1.45 2.41 0.05 9.20
    LD6⁃7⁃52 58.90 0.64 15.12 5.15 0.07 1.94 2.10 1.12 2.71 0.08 11.65
    LD6⁃7⁃56 57.19 0.58 14.44 5.29 0.08 2.53 3.61 1.08 3.09 0.09 11.66
    LD6⁃7⁃61 63.49 0.63 15.32 4.21 0.12 1.42 0.99 1.67 3.23 0.06 8.25
    LD6⁃7⁃65 58.74 0.58 14.32 5.11 0.10 2.08 3.95 1.49 3.13 0.11 10.05
    LD6⁃7⁃73 60.41 0.73 14.78 4.85 0.06 2.07 1.53 1.41 2.99 0.10 10.53

    Table 1.  Major elemental composition (%) of K2 n 1+2 in the LD6⁃7 core (%)

    LD6⁃7井样品的全岩微量测试结果(图4)显示:Zr元素的含量介于140.48~220 g/t,平均值为180 g/t;Ti的含量介于3 174~4 652 g/t,平均值为3 646 g/t;Th元素的含量介于8.8~14.7 g/t,平均值为11.2 g/t;Sc元素的含量介于7.9~11.8 g/t,平均值为9.7 g/t。Sc和Th展现为下多上少的趋势,Ti和Zr的含量基本稳定。

    Figure 4.  Trace elemental composition (g/t) of K2 n 1+2 in the LD6⁃7 core (g/t)

  • 对LD6⁃7井11个样的全岩XRD分析结果显示(图5),主要矿物包括黏土矿物、石英、钾长石、斜长石,次要矿物为方解石、铁白云石、黄铁矿和菱铁矿。主要矿物在整个剖面含量基本稳定,其中黏土矿物含量最多(33.5%~56.9%,平均为46.2%),石英含量次之(16.3%~30.5%,平均为21.7%),斜长石和钾长石含量较低,分别为12.6%~23.1%(平均为18.3%)和5.5%~10.8%(平均为8.0%)。次要矿物中,方解石整体较少(0~7.7%,平均为2.6%),个别样品不含方解石。铁白云石在每个样品中均有发现但是含量很低(0.4%~3.0%),菱铁矿和黄铁矿仅在个别样品中被检测出,含量分别为0.3%~0.9%和0.5%~2.7%。

    Figure 5.  Bulk rock mineralogical composition (%) of K2 n 1+2 in the LD6⁃7 core (%)

  • 沉积物的物源主要来自源区的基岩,基岩会遭受物理剥蚀作用和化学风化作用,经过风化作用,基岩会转化为腐岩(saprolite),进一步转化为表层土壤(soil),土壤和腐岩一同组成了风化层(regolith)[3031]。化学风化作用常常溶解岩石中的易溶物质并通过地表流水将溶液带离源区。对于较稳定的元素,例如锆(Zr),化学风化作用常常难以溶解它们并造成流失[31]。因此,对于某元素(X)而言,其化学亏损比例(CDF)可以被定义为[32]

    CDFX=1-(X土壤/X基岩)×(Zr基岩/Zr土壤) (1)

    Rasmussen et al.[33]定义了某元素(X)的化学风化指数(τX):

    τX=-CDFX=(X土壤/X基岩)×(Zr基岩/Zr土壤)-1 (1)

    化学风化速率和物理剥蚀速率之间存在复杂的相互作用,形成供给限制型和动力限制型两种化学风化机制,受构造运动和气候的共同控制。在供给限制型风化机制下,土壤化学风化的进行受控于基岩向风化层的新鲜物质供给,化学风化速率和物理剥蚀速率呈正相关关系,化学亏损比例基本上不变[30,3435]。若剥蚀速率达到某一个阈值,会使基岩供给的新鲜物质在风化层的滞留时间大大缩短,化学风化作用就不能有效地进行,化学风化速率和强度均随着剥蚀速率的增加而降低,这种风化机制被定义为动力限制型[31,3639]。一般来说,干旱—半干旱气候区的化学风化机制在较低的剥蚀速率下即可表现出动力限制型风化特征,而降雨量较大或湿度较高的地区多表现为供给限制型风化特征,表层土壤的风化强度与陆表温度存在正相关关系[39]

    在花岗岩基岩土壤风化过程中,Na亏损指数是很好的陆表化学风化强度判断指标[39]。近代非冰川作用区的花岗岩基岩风化土壤的化学风化数据表明,在供给限制型的风化机制下,中—低侵蚀速率的表层土壤化学风化强度与陆表年均温度呈近似的正相关关系,年均温度(MAT)和钠亏损指数(τNa)之间的存在一个经验方程[22],即:

    MAT=-24.2τNa-0.9 (r 2=0.84, P<0.000 1) (3)

    该公式需要满足以下几个前提条件:1)干旱气候地区(年降雨量 < 400 mm/yr)的表层土壤化学风化受湿度控制,与陆表温度没有相关性,该公式需要在降水量大于400 mm/yr的条件下进行,但不要超过4 000 mm/yr;2)原岩为酸性岩;3)物理剥蚀速率介于2~100 m/m.y;4)搬运过程中分选作用和沉积再循环作用较弱;5)成岩作用较弱。

    因此,本文将从以上几个前提条件的角度对嫩江组一、二段进行逐一判断,在满足了这些前提条件后尝试对古温度进行计算,并通过温度对比来验证结果的可靠性。值得注意的是,Yang et al. [22]的公式为总结现有数据相关性得出的经验公式,并不能直接反映确凿的某一年的年均温度,因此本文使用“陆表古温度”来指代利用公式3计算出的古温度。

  • 气候由降水量和温度两方面因素控制,其中温度因素为本文探讨的重点,将在后续章节进行讨论。对于降水,现有研究表明松辽盆地在嫩江组一、二段沉积时期为温带—亚热带半湿润气候[16],其降水量大概在400~500 mm/yr或更高[15,40]。因此松辽盆地嫩江组陆表化学风化作用和温度的线性相关性并没有受到降雨量影响。

  • 沉积物的原岩类型会影响沉积物的成分,因此判断沉积物的物源十分必要。利用Klovan et al. [41]的F1⁃F2图解(公式4;图6),我们认为LD6⁃7井嫩江组一、二段的物源区为盆地周缘的酸性火山岩或成熟大陆石英质物源区。除此之外,在沉积过程中,下伏地层被剥蚀也会影响沉积物成分。嫩江组一、二段的下伏地层为姚家组,属于三角洲平原相,在嫩江组湖侵过程中逐渐被湖水淹没,从而终止剥蚀作用,不再为上覆地层提供物源。因此,嫩江组一、二段的物源主要来源于盆地周缘的酸性火山岩或成熟大陆石英质物源区。

    Figure 6.  F1⁃F2 diagram for the source of K2 n 1+2 (modified from Klovan et al.[41] )

    F1=-1.773TiO2+0.607Al2O3+0.76TFe2O3-1.5MgO +0.616CaO+0.509Na2O-1.224K2O-9.09
    F2=0.445TiO2+0.07Al2O3-0.25TFe2O3-1.142MgO +0.438CaO+1.475Na2O+1.426K2O+6.861 (4)
  • 风化作用分为物理风化作用和化学风化作用。物理风化作用受地貌及构造运动的影响较大。在山麓地带,构造运动强烈,导致地表剥蚀增强,增强了物理风化作用。松辽盆地地层不整合面研究表明在89~87 Ma(晚土伦期—康尼亚克期),西太平洋地区经历了广泛的火山活动并受力挤压隆起,经历了快速剥蚀,最快剥蚀速率达到80~100 cm/yr[42]。随着构造运动的逐渐停止,剥蚀速率逐渐减弱。我们假设在嫩江组一、二段时期松辽盆地物源区的平均物理剥蚀速率等于或者略高于晚白垩世全球平均估计值20~30 m/m.y[43]。源区供给的新鲜物质在风化层有足够的时间沉积,且嫩江组一、二段时期气候降雨量 > 400 mm/yr[15],我们判断风化机制应为供给限制型风化。

    化学风化作用常常受气候因素(温度、降水)影响,并且化学风化作用越强对应气候越湿热,化学风化作用越弱对应气候越干冷[44]。它将原生不稳定的硅酸盐矿物转化为次生黏土和氢氧化物矿物,从而改变了全岩元素的丰度[45]。因此可以通过全岩元素的丰度来还原化学风化作用的大小,进而分析古气候意义。

    对风化指数定量计算可以判断风化作用强弱,本文计算了LD6⁃7井嫩一、二段样品的多种风化指数,相关的计算公式列在表2 [44,4649]。表中的风化指数对不同元素的敏感程度不同,可以相互结合来讨论影响沉积物组成的因素。例如化学蚀变指数(the chemical index of alteration,CIA,以下称“CIA”[44])常用来判断碎屑沉积物的化学风化作用强度,其公式见表2,式中主要元素含量均为摩尔比,CaO*代表硅酸盐岩中的CaO含量。全岩矿物XRD结果检测到方解石,因此我们利用P2O5对CIA进行校正[5054]。CIA越大代表风化作用越强,CIA越小代表风化作用越弱。CIA是目前判断化学风化作用强弱运用最广的指数之一。

    名称 计算公式 来源
    CIA CIA = [Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100 Nesbitt et al. [44]
    WIP WIP = 100×[(2Na2O/0.35)+(MgO/0.9)+(2K2O/0.25)+(CaO*/0.7)] Parker[46]
    PIA PIA = 100×(Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O) Fedo et al. [47]
    MIA⁃O MIA⁃O = 100×(Al2O3+Fe2O3T)/(Al2O3+Fe2O3T+MgO+CaO*+Na2O+K2O) Babechuk et al. [48]
    LCWP LCWP = (CaO*+Na2O+MgO)/TiO2 Yang et al. [49]

    Table 2.  Chemical weathering indices and their computational formulas

    一般来说,CIA 值在45~55时表示无风化作用,小于60时表示弱的化学风化作用,60~80时代表中等化学风化作用,大于80 时表示强烈化学风化作用[55]。从LD6⁃7井采集的嫩江组一段和二段的11个样品CIA计算结果显示,CIA最大值为68.48,最小值为52.88,平均值为62.77,为一种中等偏弱的化学风化作用。

    一些化学风化指数如WIP(Weathering index of Parker,以下简称“WIP”[46])、斜长石蚀变指数(Plagioclase index of alteration,以下简称“PIA”[47])、氧化条件下镁铁质变化指数(Mafic index of alteration for oxidative condition,以下简称“MIA⁃O”[48])和化学风化亏损指数(Loss chemical weathering proxy ,以下简称“LCWP”[49])计算公式如表1,在嫩江组一、二段变化趋势如图7。中等偏高的值CIA(53~69,平均63)、MIA⁃O(>64)、PIA(>53)和WIP(44~62),是不同指标对中等强度风化作用的反映,并与CIA展现良好的相关性(图8)。总的来说,我们认为在供给限制型的风化机制下,化学风化作用强度显然可以响应松辽盆地的气候变化。

    Figure 7.  Statistical results for multiple weathering indices

    Figure 8.  Correlations of the Chemical Index of Alteration (CIA) with other weathering indices

  • 从物源区搬运至盆地沉积的过程中,沉积物的物理特征(粒度、磨圆度等)和化学成分会受到分选作用和沉积再循环作用影响。已有的研究表明,分选作用和沉积再循环作用倾向于在沉积物中富集重矿物[56]。准确地判断和分析分选作用和沉积再循环作用有利于更好地重建古气候条件。

  • 分选作用会使沉积物的粒度和成分更加均一,在较粗的颗粒物中积累石英和锆石,在较细的颗粒物中积累黏土矿物。而石英往往富Si和黏土矿物富Al,因此Si/Al值可以指示沉积物颗粒大小和水动力分选作用的强弱[57],随着分选作用的进行,石英/黏土矿物与Si/Al值应该展现良好的相关性。嫩江组一、二段样品的Si/Al比值在1.95~2.57之间,平均值为2.21。若以中国酸性岩[58]作为原岩,其Si/Al比值为2.49,与嫩江组样品的Si/Al比值相差不大,说明分选作用对碎屑的物质组成影响不大。将Si/Al与石英/黏土矿物作相关性图解(图8a),发现二者相关性极弱,仅为0.30,所以分选作用的影响很小。WIP对石英和锆石十分敏感,石英含量和WIP的相关性为0.25,为极低相关性(图8b);Ti/Zr与石英/黏土矿物的相关性为0.44,为较弱的相关性(图8c)。上述数据均反映了较弱的分选作用。

  • 当CIA和WIP拥有较高的相关性时,我们可以认为沉积物从“源”到“汇”只经历了极少的循环次数[5960]。因此,通过计算CIA和WIP的相关性大小,可以判断沉积再循环过程的强弱。而这一过程倾向于在沉积物中积累石英和锆石[61],后两者含量的变化对WIP有较为显著的影响[59]。通过拟合分析,嫩江组一、二段CIA⁃WIP的相关性为0.79,为较高的相关性(图8),证明沉积再循环过程较弱。

    由于沉积分选作用和再循环作用倾向于在沉积物中富集重矿物,如锆石、石英等[61],而Zr往往富集在锆石中,所以随着分选作用和沉积再循环作用的进行,Zr的含量会增加。Th/Sc值在分选和沉积再循环过程中较稳定,而Zr/Sc值会逐渐增大,因此也可以利用Zr/Sc⁃Th/Sc图解来判断沉积物的分选和再循环程度[56]。将嫩江组一、二段各个样品在Zr/Sc-Th/Sc图进行投点(图9d),结果显示样品十分靠近成分演化线(BFG),均在大陆上地壳(UCC)和后太古宙澳大利亚页岩(PAAS)附近[62],说明嫩江组一、二段的成分被原岩控制,没有或较少地经历了分选和沉积再循环过程。结合CIA⁃WIP图解,我们可以认为嫩江组一、二段的沉积再循环过程较弱。

    Figure 9.  Diagram for sorting and recycling of K2 n 1+2

  • 在沉积物固结成岩的过程中,水中的Ca离子会以碳酸盐矿物的形式析出并填充在孔隙中,这一过程将改变沉积物的化学组成。据全岩XRD矿物含量数据,嫩江组一、二段的样品中含极少或不含的方解石(多数低于2%),几乎不含铁白云石。这指示后期成岩过程中形成的碳酸盐矿物对沉积物的影响十分有限。

  • 经过讨论,我们认为在LD6⁃7井嫩江组一、二段可以运用τNa⁃MAT转换方程进行古温度计算。如果以中国酸性岩[58]为原岩,计算得出松辽盆地嫩江组一、二段的11组样品的钠亏损指数(τNa),最小值为-0.71,最大值为-0.53,平均值为-0.62,根据Yang et al. [22]的经验公式,相对应的陆表古温度为11.9 °C~16.2 °C,平均值为14.2 °C。

    嫩江组一、二段沉积时期的气候主要为温带—亚热带半湿润气候[16],此前对松辽盆地嫩江组的陆表古温度研究主要通过孢粉和植物化石、氧同位素等方式进行。高瑞琪等[15]利用孢粉化石推测嫩江组一、二段的植被景观为针叶林、灌草丛、草丛,古气候以半湿润的北亚热带气候为主,温度大概为14 °C~16 °C。Zakharov et al.[6364]利用δ 18O测得的相同时代、相同纬度的俄罗斯远东地区温度大约为10 °C~15 °C,利用介形类化石测定的松辽盆地在嫩江组一、二段沉积时期的古温度在10 °C~15 °C[13]。Spicer et al. [65]利用Barykov化石反映同时期、近北冰洋的俄罗斯远东地区的温度为11.2 °C。以往数据证明前文中以中国酸性岩为原岩、利用经验公式还原的陆表古温度是基本可靠的。

    嫩江组一、二段沉积时期属于晚白垩世,Wang et al. [66]得出松辽盆地在晚白垩世的古纬度大约为45° N,和今天松辽盆地的纬度接近。现代松辽盆地的年平均气温约为3.6 °C,年降雨量约为420~490 mm[15],属于中温带半湿润气候。本文计算得出的嫩江组一、二段沉积时期松辽盆地的陆表古温度约为14.2 °C,若用此温度和现代东亚的年均温进行对比,大约对应现代中国东部黄河以南、长江以北地区的年平均温度,与这些地区纬度接近的胶莱盆地在晚白垩世的夏季平均温度为(21.6±3.6) °C[67]。对比同一地点晚白垩世的温度和现代的温度,华北南部(河南、陕西一线)的温度差为7.41 °C,松辽盆地为10.59 °C。由此可以看出,在古纬度和现代纬度基本一致的前提下,晚白垩世松辽盆地和华北南部的陆表古温度均高于现代相同地点的年均温,与白垩纪处于温室气候的事实相符。现代松辽盆地的降水约为420~490 mm/yr,嫩江组一、二段沉积时期为400~500 mm/yr或更高[15],二者相差不大。

  • 对松辽盆地LD6⁃7井嫩江组一、二段开展矿物学和地球化学研究表明,全岩矿物以黏土矿物含量最多(平均46.2%),石英含量次之(平均21.7%),斜长石和钾长石含量较低。化学蚀变指数(CIA,平均63)、氧化条件下镁铁质蚀变指数(MIA⁃O,>64)、斜长石蚀变指数(PIA,>53)和帕克风化指数(WIP,>44)表明嫩江组一、二段具有中等强度的化学风化作用。物源区、搬运和成岩过程对沉积物化学组成的影响分析结果显示:1)降水量较大,2)物源区有一定强度的物理剥蚀,3)分选和沉积再循环作用较弱,4)成岩作用较弱,5)原岩为酸性岩。本文利用基于既有经验方程,计算得到松辽盆地LD6⁃7井嫩江组一、二段沉积时期的陆表古温度为14.2 ℃,属于温带—亚热带气候,与前人研究结果一致。研究证明利用元素地球化学手段重建古温度的方法在松辽盆地嫩江组一、二段具有可行性,可为今后“深时”陆地古气候定量研究和重建提供借鉴。

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return