Advanced Search
Volume 38 Issue 3
Jul.  2020
Turn off MathJax
Article Contents

WenBin WU, LiuQin CHEN, Ting DING, WenHao LI, YuJia WANG. Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 485-496. doi: 10.14027/j.issn.1000-0550.2019.074
Citation: WenBin WU, LiuQin CHEN, Ting DING, WenHao LI, YuJia WANG. Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 485-496. doi: 10.14027/j.issn.1000-0550.2019.074

Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin

doi: 10.14027/j.issn.1000-0550.2019.074
Funds:

Natio nal Natural Science Foundation of China 41602113

Natio nal Natural Science Foundation of China 41962009

Open Research Fund from the State Key Laboratory of Nuclear Resources and Environment (East China University of Technology) NRE1605

  • Received Date: 2019-05-10
  • Rev Recd Date: 2019-07-18
  • Publish Date: 2020-06-10
  • Cretaceous terrestrial red beds are widespread in southeastern China, and they are archives for understanding the continental sedimentological response to the Cretaceous greenhouse climate. It remains controversial as to whether the red beds were deposited in "subaqueous" or "superaqueous" environments, and the paleoclimate needs to be further explored as well. Based on measurements of the Maocun section in the Guangfeng Basin, the depositional environments and paleoclimate of the Late Cretaceous Zhoutian Formation red beds were studied by chroma, magnetic susceptibility and calcium carbonate content analysis of paleosol samples. Three types of rocks, namely paleosol, sandstone and conglomerate, are distinguished in the Zhoutian Formation. The paleosol is distributed almost throughout the measured section, being characterized by abundant carbonate nodules, carbonate deposition layers, trace fossils, and slickensides. The sandstone observed in some horizons is mainly medium-to coarse-grained. The pebbly conglomerate occurs in parallel bedding and graded bedding structures. The calcium carbonate content of the paleosol samples is closely related to low-frequency mass magnetic susceptibility, which can be used as a climate proxy. In contrast, the chroma index reflects only regional changes, thus is less indicative of climate. Both the calcium carbonate contents and magnetic susceptibility have clear trends, which probably reflect cyclical dry and wet conditions. Therefore, the red beds of the Zhoutian Formation were interpreted to have been deposited in a intense oxidizing environment with seasonal precipitation, and the paleoclimate may have changed between wet and dry conditions.
  • [1] Retallack G J. Soils and global change in the carbon cycle over geological time[M]//Holland H D, Turekian K K. Treatise on geochemistry. Amsterdam: Elsevier Science, 2003: 581-605.
    [2] Li X H, Xu W L, Liu W H, et al. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385:171-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2772fb8867f4ddacdbd6040559f67162
    [3] 刘东生.黄土与环境[M].北京:科学出版社, 1985.

    Liu Tungsheng. Loess and the environment[M]. Beijing:Science Press, 1985.
    [4] An Z S. Late Cenozoic climate change in Asia:Loess, monsoon and monsoon-arid environment evolution[M]. Dordrecht:Springer, 2014.
    [5] 胡泉旭, 王先彦, 孟先强, 等.青藏高原东北部黄土次生碳酸盐氧同位素的古气候意义[J].地球科学, 2018, 43(11):4128-4137. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811028

    Hu Quanxu, Wang Xianyan, Meng Xianqiang, et al. Paleoclimatic implications of oxygen isotope from Authigenic carbonates in loess deposit of northeastern Tibetan Plateau[J]. Earth Science, 2018, 43(11):4128-4137. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811028
    [6] 侯战方, 张军, 宋春晖, 等.青藏高原天水盆地中新世沉积物碳氧同位素对古气候演化的指示[J].海洋地质与第四纪地质, 2011, 31(3):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201103009

    Hou Zhanfang, Zhang Jun, Song Chunhui, et al. The oxygen and carbon isotopic records of Miocene sediments in the Tianshui Basin of the northestern Tibetan Plateau and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(3):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201103009
    [7] 李林, 周锡强, 黄永建, 等.色度学方法的深时研究:以藏南贡扎剖面白垩系赛诺曼/土仑阶为例[J].地学前缘, 2009, 16(5):153-159. doi:  10.3321/j.issn:1005-2321.2009.05.015

    Li Lin, Zhou Xiqiang, Huang Yongjian, et al. The deep-time research by chromatometry:An example from the Cenomanian to Turonian Stages of the Cretaceous, Gongza section, Southern Tibet[J]. Earth Science Frontiers, 2009, 16(5):153-159. doi:  10.3321/j.issn:1005-2321.2009.05.015
    [8] 陈杰, 杨太保, 曾彪, 等.中国帕米尔地区黄土上部色度变化特征及古气候意义[J].沉积学报, 2018, 36(2):333-342. http://www.cjxb.ac.cn/CN/abstract/abstract3869.shtml

    Chen Jie, Yang Taibao, Zeng Biao, et al. Chroma characteristics and its paleoclimatic significance in Pamir Loess Section, China[J]. Acta Sedimentologica Sinica, 2018, 36(2):333-342. http://www.cjxb.ac.cn/CN/abstract/abstract3869.shtml
    [9] 丁敏, 庞奖励, 黄春长, 等.全新世黄土-古土壤序列色度特征及气候意义:以关中平原西部梁村剖面为例[J].陕西师范大学学报(自然科学版), 2010, 38(5):92-97. http://d.old.wanfangdata.com.cn/Periodical/sxsfdxxb201005022

    Ding Min, Pang Jiangli, Huang Chunchang, et al. Chroma characteristics and its climatic significance in Holocene loess-paleosol sequence:A case study of the Holocene Liangcun profile in the western Guanzhong Basin[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2010, 38(5):92-97. http://d.old.wanfangdata.com.cn/Periodical/sxsfdxxb201005022
    [10] 高鹏坤, 庞奖励, 黄春长, 等.陕南丹凤茶房村黄土-古土壤剖面色度参数特征[J].沉积学报, 2015, 33(3):537-542. http://www.cjxb.ac.cn/CN/abstract/abstract3537.shtml

    Gao Pengkun, Pang Jiangli, Huang Chunchang, et al. Chroma characteristics and its significances of the Chafangcun loesspaleosol profile in Southeast Shaanxi, China[J]. Acta Sedimentologica Sinica, 2015, 33(3):537-542. http://www.cjxb.ac.cn/CN/abstract/abstract3537.shtml
    [11] Du X B, Xie X N, Lu Y C, et al. Distribution of continental red paleosols and their forming mechanisms in the Late Cretaceous Yaojia Formation of the Songliao Basin, NE China[J]. Cretaceous Research, 2011, 32(2):244-257. doi:  10.1016/j.cretres.2010.12.010
    [12] Huang C M, Retallack G J, Wang C S, et al. Paleoatmospheric pCO2 fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol carbonates in NE China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385:95-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a1c61b9449faf40ed20ad30c7980bfa
    [13] Gao Y, Ibarra D E, Wang C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4):287-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76eb37d83453e62873609e61b906d417
    [14] 曹珂.胶莱盆地晚白垩世辛格庄组钙质结核的碳、氧同位素特征[J].矿物岩石, 2014, 34(2):85-90. http://d.old.wanfangdata.com.cn/Periodical/kwys201402013

    Cao Ke. Carbon and oxygen isotopic compositions of carbon nodule in the Xingezhuang Formation of Late Cretaceous, Jiaozhou-Laiyang Basin[J]. Journal of Mineralogy and Petrology, 2014, 34(2):85-90. http://d.old.wanfangdata.com.cn/Periodical/kwys201402013
    [15] Zhang L M, Wang C S, Cao K, et al. High elevation of Jiaolai Basin during the Late Cretaceous:Implication for the coastal mountains along the East Asian margin[J]. Earth and Planetary Science Letters, 2016, 456:112-123. http://cn.bing.com/academic/profile?id=5b2ba092cb14de23806712892c9315fe&encoded=0&v=paper_preview&mkt=zh-cn
    [16] Huang C M, Retallack G J, Wang C S. Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China[J]. Cretaceous Research, 2012, 33(1):42-49. doi:  10.1016/j.cretres.2011.08.001
    [17] Li J, Wen X Y, Huang C M. Lower Cretaceous paleosols and paleoclimate in Sichuan Basin, China[J]. Cretaceous Research, 2016, 62:154-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b601a9f38e4f082d04c3c3d839d5c681
    [18] 李祥辉, 陈斯盾, 曹珂, 等.浙闽地区白垩纪中期古土壤类型与古气候[J].地学前缘, 2009, 16(5):63-70. doi:  10.3321/j.issn:1005-2321.2009.05.006

    Li Xianghui, Chen Sidun, Cao Ke, et al. Paleosols of the mid-Cretaceous:A report from Zhejiang and Fujian, SE China[J]. Earth Science Frontiers, 2009, 16(5):63-70. doi:  10.3321/j.issn:1005-2321.2009.05.006
    [19] 刘秀铭, 吕镔, 毛学刚, 等.风积地层中铁矿物随环境变化及其启示[J].第四纪研究, 2014, 34(3):443-457. doi:  10.3969/j.issn.1001-7410.2014.03.01

    Liu Xiu-ming, Lü Bin, Mao Xuegang, et al. Iron minerals of aeolian deposits vary with environment and its significances[J]. Quaternary Sciences, 2014, 34(3):443-457. doi:  10.3969/j.issn.1001-7410.2014.03.01
    [20] 温昌辉.江西石城盆地白垩纪红色地层中成壤特征及古环境分析[D].福州: 福建师范大学, 2016.

    Wen Changhui. The Cretaceous stratum: Pedogenesis recognition and paleoenvironmental analysis, in Shicheng Basin, Jiangxi province[D]. Fuzhou: Fujian Normal University, 2016.
    [21] 江西省地质矿产局.江西省岩石地层[M].武汉:中国地质大学出版社, 2008.

    Bureau of Geology and Mineral Resources Jiangxi Provincial. Lithostratigraphy in Jiangxi province[M]. Wuhan:China University of Geosciences Press, 2008.
    [22] Chen L Q, Guo F S, Steel R J, et al. Petrography and geochemistry of the Late Cretaceous redbeds in the Gan-Hang Belt, southeast China:Implications for provenance, source weathering, and tectonic setting[J]. International Geology Review, 2016, 58(10):1196-1214. doi:  10.1080/00206814.2016.1141378
    [23] Chen L Q, Steel R J, Guo F S, et al. Alluvial fan facies of the Yongchong Basin:Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 2017, 134:37-54.
    [24] 陈留勤, 刘鑫, 李鹏程.古土壤:沉积环境和古气候变化的灵敏指针[J].沉积学报, 2018, 36(3):510-520. http://www.cjxb.ac.cn/CN/abstract/abstract3883.shtml

    Chen Liuqin, Liu Xin, Li Pengcheng. Paleosols:Sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3):510-520. http://www.cjxb.ac.cn/CN/abstract/abstract3883.shtml
    [25] 王凤之, 陈留勤, 郭福生, 等.江西信江盆地晚白垩世塘边组成壤碳酸盐岩碳、氧同位素特征[J].岩石矿物学杂志, 2018, 37(1):143-151. doi:  10.3969/j.issn.1000-6524.2018.01.012

    Wang Fengzhi, Chen Liuqin, Guo Fusheng, et al. Carbon and oxygen isotopic compositions of pedogenic carbonates from the Late Cretaceous Tangbian Formation in the Xinjiang Basin, Jiangxi province[J]. Acta Petrologica et Mineralogica, 2018, 37(1):143-151. doi:  10.3969/j.issn.1000-6524.2018.01.012
    [26] 刘细元, 衷存堤, 张永忠, 等.江西省晚白垩世周田组的再划分[J].地质调查与研究, 2004, 27(4):217-222. doi:  10.3969/j.issn.1672-4135.2004.04.002

    Liu Xiyuan, Zhong Cundi, Zhang Yongzhong, et al. Redefinition of the Late Cretaceous Zhoutian Formation, Jiangxi province[J]. Geological Survey and Research, 2004, 27(4):217-222. doi:  10.3969/j.issn.1672-4135.2004.04.002
    [27] 肖光荣, 姚琪, 范爱春.江西省晚白垩世层序地层研究[J].资源调查与环境, 2013, 34(3):141-149. doi:  10.3969/j.issn.1671-4814.2013.03.001

    Xiao Guangrong, Yao Qi, Fan Aichun. Research on sequence stratigraphy of Late Cretaceous in Jiangxi province[J]. Resources Survey & Environment, 2013, 34(3):141-149. doi:  10.3969/j.issn.1671-4814.2013.03.001
    [28] 邓家瑞, 张志平.赣杭构造带及其地质意义[J].铀矿地质, 1989, 5(1):15-21. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503009

    Deng Jiarui, Zhang Zhiping. Gan-Hang tectonic belt and its geologic significance[J]. Uranium Geology, 1989, 5(1):15-21. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503009
    [29] 余心起, 舒良树, 颜铁增, 等.赣杭构造带红层盆地原型及其沉积作用[J].沉积学报, 2005, 23(1):12-20. doi:  10.3969/j.issn.1000-0550.2005.01.002

    Yu Xinqi, Shu Liangshu, Yan Tiezeng, et al. Prototype and sedimentation of red basins along the Ganhang tectonic belt[J]. Acta Sedimentologica Sinica, 2005, 23(1):12-20. doi:  10.3969/j.issn.1000-0550.2005.01.002
    [30] 余达淦, 叶发旺, 王勇.江西广丰早白垩世中晚期盆地火山-侵入杂岩活动序列确认及地质意义[J].大地构造与成矿学, 2001, 25(3):271-276. doi:  10.3969/j.issn.1001-1552.2001.03.008

    Yu Dagan, Ye Fawang, Wang Yong. Active succession establishment for volcanic-intrusive complex in Middle-Late Lower Cretaceous in Guangfeng, Jiangxi and its geological implication[J]. Geotectonic et Metallogenia, 2001, 25(3):271-276. doi:  10.3969/j.issn.1001-1552.2001.03.008
    [31] 姜勇彪, 郭福生, 刘林清, 等.广丰盆地白垩纪红层及其地貌景观发育研究[J].资源调查与环境, 2009, 30(4):235-242. doi:  10.3969/j.issn.1671-4814.2009.04.001

    Jiang Yongbiao, Guo Fusheng, Liu Linqing, et al. A study on Cretaceous red beds and their geomorphologic landscapes in Guangfeng Basin[J]. Resources Survey & Environment, 2009, 30(4):235-242. doi:  10.3969/j.issn.1671-4814.2009.04.001
    [32] 衷存堤, 徐平, 肖晓林, 等.对江西晚白垩世赣州群茅店组的重新厘定[J].中国地质, 2002, 29(3):271-274. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200203006

    Zhong Cundi, Xu Ping, Xiao Xiaolin, et al. Revision of the Late Cretaceous Maodian Formation of the Ganzhou Group in Jiangxi province[J]. Geology in China, 2002, 29(3):271-274. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200203006
    [33] 巫建华, 项媛馨, 钟志菲.江西广丰、玉山盆地橄榄玄粗岩的SHRIMP锆石U-Pb定年和Sr-Nd-Pb-O元素同位素特征[J].岩石矿物学杂志, 2014, 33(4):645-656. doi:  10.3969/j.issn.1000-6524.2014.04.004

    Wu Jianhua, Xiang Yuanxin, Zhong Zhifei. SHRIMP zircon U-Pb dating and SrNd-Pb-O isotope characteristics of shoshonite from Guangfeng and Yushan Basins in Jiangxi province[J]. Acta Petrologica et Mineralogica, 2014, 33(4):645-656. doi:  10.3969/j.issn.1000-6524.2014.04.004
    [34] 曹珂.中国陆相白垩系地层对比[J].地质论评, 2013, 59(1):24-40. doi:  10.3969/j.issn.0371-5736.2013.01.004

    Cao Ke. Cretaceous terrestrial stratigraphic correlation in China[J]. Geological Review, 2013, 59(1):24-40. doi:  10.3969/j.issn.0371-5736.2013.01.004
    [35] 周涛, 巫建华, 艾成辉.江西广丰碱性橄榄玄武岩的成因:SHRIMP锆石U-Pb年龄和元素、Sr-Nd-Pb同位素制约[J].东华理工大学学报(自然科学版), 2016, 39(2):108-117. doi:  10.3969/j.issn.1674-3504.2016.02.002

    Zhou Tao, Wu Jianhua, Ai Chenghui. Petrogenesis of alkali olivine basalt from Guangfeng Basins in Jiangxi province:SHRIMP zircon U-Pb Dating and element、Sr-Nd-Pb isotope constraints[J]. Journal of East China University of Technology, 2016, 39(2):108-117. doi:  10.3969/j.issn.1674-3504.2016.02.002
    [36] 杨胜利, 方小敏, 李吉均, 等.表土颜色和气候定性至半定量关系研究[J].中国科学(D辑):地球科学, 2001, 31(增刊1):175-181.

    Yang Shengli, Fang Xiaomin, Li Jijun, et al. Transformation functions of soil color and climate[J]. Science China (Seri. D):Earth Sciences, 2001, 31(Suppl. 1):175-181.
    [37] 何柳, 孙有斌, 安芷生.中国黄土颜色变化的控制因素和古气候意义[J].地球化学, 2010, 39(5):447-455. http://d.old.wanfangdata.com.cn/Periodical/dqhx201005005

    He Liu, Sun Youbin, An Zhisheng. Changing color of Chinese loess:Controlling factors and paleocliamtic significances[J]. Geochimica, 2010, 39(5):447-455. http://d.old.wanfangdata.com.cn/Periodical/dqhx201005005
    [38] 石培宏, 杨太保, 田庆春, 等.靖远黄土-古土壤色度变化特征分析及古气候意义[J].兰州大学学报(自然科学版), 2012, 48(2):15-23. doi:  10.3969/j.issn.0455-2059.2012.02.004

    Shi Peihong, Yang Taibao, Tian Qingchun, et al. Chroma chracteristics in the loess-paleosol at Jingyuan section and its signification to paleocliamete[J]. Journal of Lanzhou University(Natural Sciences), 2012, 48(2):15-23. doi:  10.3969/j.issn.0455-2059.2012.02.004
    [39] 赵景波.风化淋滤带地质新理论-CaCO3淀积深度理论[J].沉积学报, 2000, 18(1):29-35. doi:  10.3969/j.issn.1000-0550.2000.01.006

    Zhao Jingbo. A new geological theory about eluvial zone-theory illuvial on depth of CaCO3[J]. Acta Sedimentologica Sinica, 2000, 18(1):29-35. doi:  10.3969/j.issn.1000-0550.2000.01.006
    [40] Sun Y B, He L, Liang L J, et al. Changing color of Chinese loess:Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6):1131-1138. doi:  10.1016/j.jseaes.2010.08.006
    [41] Torrent J, Barrón V, Liu Q S. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil[J]. Geophysical Research Letters, 2006, 33(2):L02401. doi:  10.1029-2005GL024818/
    [42] Deaton B C, Balsam W L. Visible spectroscopy:A rapid method for determining hematite and goethite concentration in geological materials[J]. Journal of Sedimentary Research, 1991, 61(4):628-632. doi:  10.1306/D4267794-2B26-11D7-8648000102C1865D
    [43] Ji J F, Balsam W, Chen J. Mineralogic and climatic interpretations of the Luochuan loess section(China)based on diffuse reflectance spectrophotometry[J]. Quaternary Research, 2001, 56(1):23-30.
    [44] 何同.黄土高原晚中新世-上新世红粘土碳酸盐地球化学研究[D].南京: 南京大学, 2012.

    He Tong. Geochemistry of carbonates in the Late Miocene-Pliocene red clay deposits on Chinese Loess Plateau[D]. Nanjing: Nanjing University, 2012.
    [45] 刘秀铭, 刘东生, Heller F, 等.中国黄土磁化率与第四纪古气候研究[J].地质科学, 1992(增刊1):279-285.

    Liu Xiuming, Liu Tungsheng, Heller F, et al. Study on magnetic susceptibility of Loess and Quaternary climate in China[J]. Scientia Geologica Sinica, 1992(Suppl. 1):279-285.
    [46] 王文艳.南雄盆地大塘剖面红色地层的磁化率变化机制及其古气候意义[D].福州: 福建师范大学, 2017.

    Wang Wenyan. Magnetic susceptibility change mechanism in Datang, Nanxiong Basin and its paleoclimate significances[D]. Fuzhou: Fujian Normal University, 2017.
    [47] 张蕊.黄土-红粘土磁学参数记录的晚新生代东亚季风气候演化[D].兰州: 兰州大学, 2017.

    Zhang Rui. Late Cenozoic East Asian monsoon climate variations recorded by loess-red clay magnetic parameters on the Chinese Loess Plateau[D]. Lanzhou: Lanzhou University, 2017.
    [48] 陈海霞.川西雅安地区白垩纪古环境古气候研究[D].成都: 成都理工大学, 2009.

    Chen Haixia. Research of paleoenvironment and paleoclimate of Cretaceous in Ya'an area of western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2009.
    [49] 王尹, 李祥辉, 周勇, 等.南雄盆地晚白垩世-古新世陆源沉积组份变化的古气候指示[J].沉积学报, 2015, 33(1):116-123. http://www.cjxb.ac.cn/CN/abstract/abstract3496.shtml

    Wang Yin, Li Xianghui, Zhou Yong, et al. Paleoclimate indication of terrigenous clastic rock's component during the Late Cretaceous-Early Paleocene in the Nanxiong Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1):116-123. http://www.cjxb.ac.cn/CN/abstract/abstract3496.shtml
    [50] 陈留勤.江西永崇盆地晚白垩世沉积演化[M].北京:地质出版社, 2018.

    Chen Liuqin. Depositional evolution of the Yongchong Basin during Late Cretaceous in Jiangxi province, SE China[M]. Beijing:Geological Publishing House, 2018.
    [51] Mills H H. Downstream rounding of pebbles:A quantitative review[J]. Journal of Sedimentary Research, 1979, 49(1):295-303. http://cn.bing.com/academic/profile?id=ffd005c6f7831c8b7f4c4cfe8741cf6f&encoded=0&v=paper_preview&mkt=zh-cn
    [52] Nemec W, Postma G. Quaternary alluvial fans in southwestern Crete: Sedimentation processes and geomorphic evolution[M]//Marzo M, Puigdefábregas C. Blackwell: Oxford. Alluvial sedimentation. IAS Special Publication, 1993: 235-276.
    [53] 刘鑫, 陈留勤, 李馨敏, 等.江西象山地质公园丹霞地貌成景地层沉积环境分析[J].现代地质, 2018, 32(2):260-269. http://d.old.wanfangdata.com.cn/Periodical/xddz201802005

    Liu Xin, Chen Liuqin, Li Xinmin, et al. Depositional environments of the bedrock of Danxia Landform in Xiangshan Geopark of Jiangxi province, SE China[J]. Geoscience, 2018, 32(2):260-269. http://d.old.wanfangdata.com.cn/Periodical/xddz201802005
    [54] Buck B J, Mack G H. Latest Cretaceous(Maastrichtian)aridity indicated by paleosols in the McRae Formation, south-central New Mexico[J]. Cretaceous Research, 1995, 16(5):559-572. doi:  10.1006/cres.1995.1036
    [55] Burgener L, Hyland E, Huntington K W, et al. Revisiting the equable climate problem during the Late Cretaceous greenhouse using paleosol carbonate clumped isotope temperatures from the Campanian of the western Interior Basin, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:244-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ddc2e2a0a52f681bbc84140b928db7d
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(2)

Article Metrics

Article views(744) PDF downloads(116) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-05-10
  • Revised:  2019-07-18
  • Published:  2020-06-10

Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin

doi: 10.14027/j.issn.1000-0550.2019.074
Funds:

Natio nal Natural Science Foundation of China 41602113

Natio nal Natural Science Foundation of China 41962009

Open Research Fund from the State Key Laboratory of Nuclear Resources and Environment (East China University of Technology) NRE1605

Abstract: Cretaceous terrestrial red beds are widespread in southeastern China, and they are archives for understanding the continental sedimentological response to the Cretaceous greenhouse climate. It remains controversial as to whether the red beds were deposited in "subaqueous" or "superaqueous" environments, and the paleoclimate needs to be further explored as well. Based on measurements of the Maocun section in the Guangfeng Basin, the depositional environments and paleoclimate of the Late Cretaceous Zhoutian Formation red beds were studied by chroma, magnetic susceptibility and calcium carbonate content analysis of paleosol samples. Three types of rocks, namely paleosol, sandstone and conglomerate, are distinguished in the Zhoutian Formation. The paleosol is distributed almost throughout the measured section, being characterized by abundant carbonate nodules, carbonate deposition layers, trace fossils, and slickensides. The sandstone observed in some horizons is mainly medium-to coarse-grained. The pebbly conglomerate occurs in parallel bedding and graded bedding structures. The calcium carbonate content of the paleosol samples is closely related to low-frequency mass magnetic susceptibility, which can be used as a climate proxy. In contrast, the chroma index reflects only regional changes, thus is less indicative of climate. Both the calcium carbonate contents and magnetic susceptibility have clear trends, which probably reflect cyclical dry and wet conditions. Therefore, the red beds of the Zhoutian Formation were interpreted to have been deposited in a intense oxidizing environment with seasonal precipitation, and the paleoclimate may have changed between wet and dry conditions.

WenBin WU, LiuQin CHEN, Ting DING, WenHao LI, YuJia WANG. Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 485-496. doi: 10.14027/j.issn.1000-0550.2019.074
Citation: WenBin WU, LiuQin CHEN, Ting DING, WenHao LI, YuJia WANG. Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 485-496. doi: 10.14027/j.issn.1000-0550.2019.074
  • 古土壤是古代成壤作用的产物,记录了丰富的古环境信息,国际上古土壤的研究涉及从太古代到第四纪不同时代的地层[1]。古土壤对认识沉积环境和古气候具有重要意义。中国第四纪黄土—土壤研究成果显著[2-5],用于分析古气候的方法除碳、氧同位素外[6-7],还包括常用于研究第四纪气候的替代指标,如色度、磁化率、碳酸钙含量等,均表现出良好的气候指示意义[8-10]。国内学者对松辽[11-13]、胶莱[14-15]和四川盆地[16-17]的白垩纪古土壤研究较多。近年来,中国东南地区白垩系红层中的古土壤得到了较多关注[18-20]

    江西省上白垩统划分为赣州群和圭峰群,前者包括茅店组和周田组,后者包括河口组、塘边组和莲荷组[21]。近年来,圭峰群红层的沉积特征及古气候意义研究取得一定进展[22-25]。周田组的岩性主要包括砖红色(钙质)泥岩、钙质粉砂岩、粗砂岩、砾岩,以及钙质结核[20, 26]。以往对周田组的认识主要以岩性描述为主[27],对地层中岩相的划分以及古土壤的鉴别和阐述相对薄弱。另外,江西省境内关于白垩纪红层古土壤气候替代指标的研究还比较少,因此,采用第四纪黄土气候替代指标对白垩纪红层古土壤气候及指标适用性的研究具有重要意义。本文以周田组中的古土壤为研究对象,通过测定样品的色度参数(亮度(L*)、红度(a*)、黄度(b*)、饱和度(C*)、色调角(h*))与磁化率值(χlf)及碳酸钙百分比含量(ω(CaCO3)%)指标,对各自特征曲线及内在关系进行对比分析,并结合实际剖面特征,探讨周田组古气候变化信息,为气候替代指标的适用性提供检验。

  • 广丰盆地位于江西省东北部,地理坐标为118°4'~118°26' E、28°13'~28°29' N,海拔72~1 534.6 m,面积约为100 km2,处于扬子地块和华夏地块的东段结合部赣杭构造带的中段[28, 29]。盆地受北东向江山—绍兴断裂带、上饶—玉山—常山断裂带和北北西向广丰—五都断裂带复合控制[30](图 1)。盆地内沉积了一套以陆相碎屑岩系为主的地层,自下而上划分为石溪组、茅店组和周田组。圭峰群河口组只出露于盆地东北部四十二都乌岩山,中墩组大量出露于盆地南部边缘,以发育酸性火山岩为特点,与茅店组超覆不整合接触。

    Figure 1.  Geological sketch map of the Guangfeng Basin (modified from reference [31])

    衷存堤等[32]对茅店组凝灰质含砾岩屑砂岩石英ESR测年样年龄值为96.5 Ma。上饶董团茅店组橄榄玄武岩年龄为(96.9±0.5) Ma[33]。广丰、玉山盆地橄榄玄粗岩的SHRIMP锆石U-Pb测年结果为(93±1)Ma[34]。广丰盆地的橄榄玄武岩进行了SHRIMP锆石U-Pb年龄为88.5~102.5 Ma[35]。结合区域地层对比资料,周田组对应于Coniacian早期至Turonian期,沉积时间为96~90 Ma。

  • 实测剖面位于广丰盆地东北部的毛村村桥东北约100 m,海拔160~220 m。在剖面测制过程中,记录岩性及沉积构造,以1 m间隔采样193件,绘制地层岩性柱状图,在柱状图上划分岩相单元。在193件样品中,钙质结核样81件,钙质淀积层样79件,黏化层样19件,砂岩样14件。经后期处理在室内完成对样品色度、磁化率及碳酸钙百分比含量指标的测试。

    色度指标采用国产3nh-NH300色差仪进行测试,色度参数包括L*,a*,b*值,实验误差小于0.08。样品前处理和测试简要步骤如下:称取10 g烘干样品,研磨至颗粒粒径75 μm以下,将粉末样品放在标准校正白板上压实,压平后,在背景光源恒定的条件下,测试3次求取平均值。本文引入新的色度指标,通过公式(1)和(2)分别计算求得饱和度(C*)和色调角(h*)。

    (1)
    (2)

    磁化率指标采用英国Bartington公司生产的MS-2型磁化率系统测试完成。本文涉及的磁化率为低频质量磁化率(χlf),仪器参数设置“×0.1量程”,“SI”档(10-8 m3/kg),“LF”档。测试步骤:称取20 g烘干并研磨至粒径45 μm左右的粉末样品,测试3次求取平均值。为得到准确的磁化率值,需要完成空值测量(R0),以获得校正后的样品测量值为R = R样品-R0/2。已知MS2B探头用10 g样品校准,所以样品的低频质量磁化率值的计算公式如(3)所示。

    (3)

    碳酸钙百分比含量采用酸和盐反应前后差量计算得到。实验环节包括:1)反应前称量样品质量m1;2)滴酸反应48 h且每间隔12 h搅拌反应溶液;3)称量滤纸质量m2;4)过滤反应溶液;5)烘干附着于滤纸表面的样品;6)称量滤纸质量m3。所以样品碳酸钙百分比含量计算公式如(4)所示。实验中采用酸浸湿的滤纸作为对照实验,将测试结果误差降至最小。

    (4)
  • 广丰盆地周田组露头发育良好,沉积构造丰富,主要有三种沉积岩石类型(图 2):古土壤(Ⅰ)、砂岩(Ⅱ)和砾岩(Ⅲ)。

    Figure 2.  Stratigraphic section of the Zhoutian Formation in Guangfeng Basin

  • 古土壤广泛发育,且在剖面上分布连续,识别特征明显。钙质淀积层集中发育在剖面0~70 m、160~200 m、270~330 m范围,以钙板层形态为主,厚度变化幅度较大,薄层仅为2 cm,最厚层可达110 cm,颜色呈红褐色(图 2e)或浅灰绿色(图 3a)。剖面中可见黏化层与钙质淀积层互层构成的韵律层(图 2c),二者界面平直、清晰,横向延伸远。钙质结核在剖面中断续分布,大多数质地坚硬,颜色呈浅红色至红褐色,滴稀盐酸强烈起泡,多富集于层内和层底部(图 2d)。结核大小不一,大者直径为17~25 cm,小者为1~1.5 cm,形如豆状、姜状或椭球体状。部分钙质结核见次生方解石脉(图 3b)。由黏化层和钙质淀积层互层构成土壤发生层次。同时,可见滑擦面,遗迹化石(图 2ac)。

    Figure 3.  Outcrop photographs of paleosol and sandstone

  • 砂岩类型以中—粗砂岩为主,细砂岩较少。细砂岩的单层厚度20~180 cm,呈红褐色,滑擦面发育,可见椭圆形浅灰绿色晕斑,龟裂构造(图 3d)以及含量不足1%的深灰色次棱角状砾石。中砂岩的单层厚度以10~30 cm为主,最大厚度可达120 cm,岩层间的古土壤中零散分布直径小的钙质结核(图 3e)。粗砂岩的单层厚度15~50 cm,以浅灰黑色为主,可见直径1~2 cm的灰岩砾石(图 3f)。

  • 砾岩类型主要为中—粗砾岩,砂质支撑。砾岩层集中分布于剖面60~150 m、200~220 m,单层厚度10~50 cm,最大可达6 m,横向延伸不超过8 m。砾石岩性主要为灰岩,含有少量火山岩(图 4a)。砾石主要呈次棱角状,分选性差—中等,粒径主要为3~10 cm,最大直径为23 cm。位于剖面210~220 m处砾岩层平行层理构造发育(图 4b),砾石分布相对均匀。部分砾岩层底部显示逆粒序而在其上部显示正粒序(图 4c)。位于剖面70~75 m处砾岩层底侵蚀界面清晰,可见截然的底界面并呈现出下凹顶平的特征(图 4de)。部分砾岩层发育叠瓦状构造(图 4f)。

    Figure 4.  Outcrop photographs of conglomerate

  • 色度实验结果如表 1表 2所示。L*值变化范围为29.48~63.54,平均值为46.32,变化幅度为79.49%,古土壤L*值平均值为45.33,其中钙质结核(A)、钙质淀积层(B)、黏化层(D)L*值变化范围分别为29.48~63.54、32.42~61.64、33.15~54.18,平均值分别为47.10、45.6、43.90。砂岩(C)L*值平均值为49.06,变化范围为38.99~60.99。各地层单元L*值的大小排序为C > A > B > D。

    N 极小值 极大值 均值 变化幅度/%
    L* 193 29.48 63.54 46.32 79.49
    a* 193 7.24 17.48 13.38 47.89
    b* 193 12.24 22.21 18.07 37.13
    C* 193 15.18 28.26 22.53 40.00
    h* 193 0.36 0.77 0.64 33.87
    ω(CaCO3)% 193 5.58 61.90 24.55 60.52
    χlf×10-8 m3/kg 193 1.16 10.16 5.42 251.85

    Table 1.  Paleosol index descriptions

    L* a* b* C* h* χlf×10-8 m3/kg ω(CaCO3)%
    A钙质结核 47.10 14.06 18.04 22.90 0.66 4.30 32.62
    B钙板层 45.6 12.99 18.25 22.45 0.62 6.16 19.28
    C砂层 49.06 11.42 17.00 20.53 0.59 6.21 19.01
    D黏化层 43.90 13.56 18.26 22.76 0.64 6.40 16.14
    古土壤(A、B、D) 45.33 13.54 18.15 22.70 0.64 5.62 22.68

    Table 2.  Stratigraphic unit chroma index comparison

    (1) a*值变化幅度为47.89%,平均值为13.38,不同地层单元a*值差异不明显,但整体上表现出A > C > D > B。其中,B层a*值最低,平均值为14.06,变化范围为7.24~17.48,C层和D层a*值平均值相近,分别为13.56、13.55;A层a*值变化范围为10.20~16.94,平均值为14.06。

    (2) b*值变化范围为12.24~22.21,变化幅度为37.13%,平均值为18.07,各地层单元b*从大到小依次为D(18.26) > B(18.25) > A(18.04) > C(17.00)。b*随深度变化趋势与a*相似(图 5)。

    Figure 5.  Depth curve of climate substitution indicator in Zhoutian Formation section

    (3) C*随深度的变化趋势与L*、a*、b*基本一致(图 5),剖面C*值变化范围为15.18~28.26,变化幅度为40.00%,平均值为22.53。钙质结核(钙结层)C*最高,平均值为22.90,钙质淀积层和黏化层C*值的均值分别为22.45、22.76。砂岩层C*值最低,均值仅为20.53。各地层单元C*值大小排序为A > D > B > C。

    (4) h*值变化范围为0.360~0.770,变化幅度为33.87%,均值为0.625,古土壤中h*值均值为0.638,分别为A层0.662,B层0.616,D层0.638。砂岩层C层h*值均值为0.590。显然,各地层单元h*大小顺序依次为A > D > B > C。

    (5) χlf在剖面中变化幅度高达251.85%,平均值为5.42×10-8 m3/kg,极小值为1.16×10-8 m3/kg,极大值为10.16×10-8 m3/kg。A层χlf值均值最低,仅有4.34×10-8 m3/kg,B、C、D层χlf值均值相近,分别为6.16×10-8 m3/kg、6.21×10-8 m3/kg、6.39×10-8 m3/kg。所以各地层χlf之间存在D > C > B > A,即磁化率值砂岩层高于古土壤。

    (6) ω(CaCO3)%差异显著(图 5),A层最高,其碳酸钙百分比含量为32.62%,B、C层ω(CaCO3)%相近,含量分别为19.28%、19.01%,D层含量最低,仅有16.14%。整个剖面中ω(CaCO3)%变化范围为5.58%~61.90%,变化幅度为60.52%,均值为24.55%。古土壤中碳酸钙百分比含量为22.68%,高于砂岩层ω(CaCO3)%。各地层单元ω(CaCO3)%大小关系为:A > B > C > D。

  • L*与沉积物的粗糙度、湿度和碳酸盐含量等多种因素密切相关[36]。实验环节中恒温70 ℃烘干48 h以及研磨至45 μm的要求已将对L*的影响降至最小,所以对周田组毛村剖面亮度的讨论主要基于其L*指标与碳酸盐的研究。通过对周田组所采样品L*值与a*、b*ω(CaCO3)%、χlf做相关性分析(图 6)。结果显示:亮度L*值与a*、b*ω(CaCO3)%表现为弱的线性相关或无线性关系,其中L*ω(CaCO3)%线性相关系数为0.130 9,与前人在甘肃省庆阳市西峰剖面[37]、靖远黄土剖面[38]的研究并不完全一致。另外使用pearson双侧检验L*与各指标之间的关系,亮度L*ω(CaCO3)%相关系数仅为0.362 0,在0.1水平(双侧)上呈显著正相关。不同于丁敏等[9]对关中平原西部梁村全新世黄土剖面相关研究:R2(L*-ω(CaCO3)%)=0.856 6,呈极显著负相关。这可能是研究区降水相对较高,导致碳酸盐矿物的强烈淋滤,使地层中的碳酸钙含量降低[39],用碳酸盐百分比含量指示亮度L*具有区域局限性,预示着该地区碳酸盐对色度分量L*贡献微弱。

    Figure 6.  Linear relationship matrices for brightness L*, redness a*, yellowness b*, calcium carbonate content ω(CaCO3), magnetic susceptibility χlf

  • a*、b*是描述颜色的分量,前人对黄土研究表明,引起a*、b*发生变化的因素主要是沉积物中铁氧化物的种类和含量,而碳酸盐的变化对a*、b*的影响较小[40]。比较周田组毛村剖面a*、b*ω(CaCO3)%曲线,随地层序列的特征变化二者并没有表现出相似的变化趋势。对a*、b*ω(CaCO3)%做相关性分析(图 6),结果显示a*、b*ω(CaCO3)%呈极弱的线性相关或无线性关系,与陈杰等[8]对帕米尔高原奥依塔克黄土—古土壤序列研究结果相一致。pearson双侧检验a*、b*与各指标之间的关系显示,a*ω(CaCO3)%相关系数仅为0.246 0,即二者之间没有明显因果关系,b*ω(CaCO3)%相关系数仅为0.057 0,显示不相关,表示基本无因果关系。具体到广丰盆地红层表现为碳酸盐对a*变化影响微弱,对b*变化基本无影响。可能原因是成壤过程中,变价铁元素随易淋滤组分迁移,其价态随沉积环境的改变而转换,最终以铁氧化物组合形式在地层中积累,导致土壤颜色发生变化,但具体是哪一种铁氧化物形态导致a*、b*的变化还有待研究。

    在土壤与沉积物中常见的铁氧化物中,针铁矿呈亮黄色,使沉积物显示明亮的黄色,而赤铁矿呈赤红色,可以使沉积物显示红色[41]。在陆相红层中,赤铁矿浓度低于0.3%~0.1%(按重量计)时就可使土壤呈现红色[42]。结合剖面特征,将a*、b*分别与χlf做相关性分析,结果显示周田组红层a*、b*χlf无明显的线性关系,与黄土研究结果不完全一致[8, 9]。且pearson双侧检验结果显示,a*-χlf相关系数为-0.277,在0.1水平(双侧)上呈显著负相关,与Ji et al.[43]对黄土高原洛川剖面研究所得的弱正相关结果不符,而b*-χlf基本无相关关系,与陕南丹凤茶房村黄土—古土壤剖面(R2=0.285 0,显著正相关)[10],关中平原梁村剖面(R2=0.285 0,显著正相关)研究结果[9]不一致。位于剖面42~43 m、67~68 m、120~121 m的灰绿色钙板层,其a*(b*)-χlf与剖面a*(b*)-χlf平均值比较后发现,并未表现一致的增减性,进一步佐证了周田组红层a*、b*χlf没有明显的因果关系。以上结果的不相符可能是沉积环境的差异和铁氧化物的种类及含量所致,也说明出色度指标并不适用于所有的沉积环境。

    不同的颜色坐标分量在CIELAB(1976)表色系统会相互影响[38],并且a*与b*曲线形态变化[10]相一致,具有多处相似的相位和极值。线性相关性结果显示:a*与b*线性相关系数为0.270 2,而前人研究二者线性相关系数可达0.892 0[8],除去砂岩样品的影响,古土壤中a*与b*线性相关系数为0.502 7。使用pearson双侧检验a*、b*之间为显著正相关,表示a*、b*相互影响。靖远黄土的研究显示,赤铁矿的含量高低会引起a*变化,b*主要受针铁矿的影响[38]。虽然在一定的条件下铁的氧化物可以相互转化,但由于受控因素的多变,铁氧化物的含量并不稳定,进而导致相对较弱的线性关系。

  • 强降水将土壤碳酸盐溶解并且向下淋滤运移,逐渐形成了钙质淀积层[44]。所以ω(CaCO3)%可以表示碳酸盐在地层中的富集情况,直接反映地层中碳酸盐矿物淋滤的强度,间接说明降水量,以此推测古气候变化。χlf与成壤作用密切相关,可以指示地层中磁性矿物的变化情况[45],可以综合反映磁性矿物的种类。铁磁性矿物(如单质铁、磁铁矿、磁赤铁矿等)磁化率较高,反铁磁性矿物(如赤铁矿、针铁矿等)磁化率低,研究区周田组毛村剖面的低频磁化率(χlf)值在(1.16~10.16)×10-8 m3/kg之间变化,均值为5.42×10-8 m3/kg,与广东南雄盆地大塘剖面结果相似[46],数值整体很低,说明地层以反铁磁性矿物为磁化率主要贡献矿物。

    周田组红层中ω(CaCO3)%最高可达61.90%,指示红层沉积物经历过强烈的降水过程,可能为季风性降水[47]。同样,χlf最高达10.16×10-8 m3/kg,可能指示该沉积阶段处于相对湿热的强氧化环境,形成大量的铁氧化物,以赤铁矿为主[41, 45]。在ω(CaCO3)%和χlf曲线中,二者形态特征相反,大致呈镜像。二者相关性分析后发现,ω(CaCO3)%与χlf存在相关性,R2(ω(CaCO3)%-χlf) = 0.443 0,整体上呈现碳酸钙含量随磁化率升高而降低的特点,反之亦然。χlf曲线整体呈减小趋势,可能是由地层中赤铁矿含量下降导致,意味着研究区成壤作用降低,强氧化环境呈减弱趋势,反映了气候由相对湿热向干热变化的过程,与川西雅安地区夹关组紫红色岩层反映的干旱炎热气候相一致[48],南雄盆地晚白垩纪早期红层同样显示干热气候[49]。赣中永丰—崇仁盆地晚白垩世圭峰群碎屑岩镜下特征指示了与沉积过程中相一致的干旱氧化环境[50],体现了湿热向干热变化趋势的延续。ω(CaCO3)%曲线变化剧烈,具有多个峰值,但整体呈缓慢增大趋势,意味着降水量的减小,这与剖面中钙质淀积层厚度变化所指示的古降水量[39]减小结果显示一致。深度曲线中多处“谷—峰”组合可解释为强烈的淋滤作用之后碳酸盐的富集结果[44],对应剖面岩性变化特征可以发现,往往谷值指向古土壤,代表弱的淋滤环境,而峰值指向砂岩及砾岩,代表强的淋滤环境。预示着此处存在一个降水量骤增的时期,可能指示为季风性降水[47]

    从L*、a*、b*、C*、h*ω(CaCO3)%、χlf相关分析结果可以看出周田组h*与其他各指标均存在显著相关性,砂岩中h*-ω(CaCO3)%呈显著正相关,相关系数为0.535,远大于古土壤中h*-ω(CaCO3)%的相关系数(0.187),指示h*有助于鉴别古土壤。古土壤中相关系数最高值均出现在黏化层,这说明在古土壤研究当中,气候替代指标在黏化层中表达比较准确,由于数据较少且来源受地域条件限制,所以其适用性有待进一步研究。

  • 研究区红层沉积时代归属晚白垩世早期(96~89 Ma),古土壤广泛发育,几乎涵盖整个剖面,砂岩和砾岩仅分布于部分层位。实测岩性柱状图特征明显,大致呈“谷—峰”交替形态。“谷”阶段主要为古土壤,岩性为泥岩—泥质粉砂岩,其中钙质结核、钙板层发育,可见遗迹化石。沉积物的颜色,沉积构造特征以及生物扰动现象均表明,该时期沉积环境为泛滥平原或干盐湖环境,经常暴露于地表,在成壤作用过程中碳酸盐聚集形成钙质结核[50]。“峰”阶段以河道化侵蚀—充填、发育粒序层理构造的砾岩为特点,指示了河流沉积或泛滥平原沉积环境。其中,叠瓦状构造指示了高强度洪泛水流作用[51]。正粒序层理、底侵蚀面的砾岩层可能是在河道决口和废弃后,低能沉积作用形成的叠置坝[52]

    结合气候指标变化特征,基本显示与剖面形态对应关系,经分析ω(CaCO3)%、χlf具有较好的气候替代信度,在“谷”阶段,碳酸盐的淋滤富集过程相对稳定,指示了干热的气候,而在“峰”阶段剧烈变化正指示了强降水导致的碳酸盐淋失,代表该阶段气候相对湿热。磁化率指标也指示了湿热向干热转变的气候。因此,“谷—峰”交替对应的气候变化为:干热—湿热—干热—湿热—干热。结合ω(CaCO3)%、χlf深度变化曲线特征,揭示研究区古气候渐变整体趋势为:湿热向干热转变。这大致与浙闽赣粤[18, 20, 22, 47, 53]地区白垩纪炎热干旱的气候背景相一致。国外研究表明,新墨西哥州中南部的麦克雷组马斯特里赫特晚期气候干旱趋势显著增加[54]。美国西部内陆盆地晚白垩世气候干旱,并且显示年均气温(MAT)转向更高的值[55]。由此说明,广丰盆地周田组沉积时期的气候不仅在区域上存在响应而且与全球范围的气候变化相一致,晚白垩世气候由湿热向干热转变。

  • (1) 广丰盆地周田组毛村剖面富含古土壤,古土壤以发育钙质淀积层、黏化层、土壤滑擦面、遗迹化石为识别特征。砂岩与砾岩仅分布于部分层位,砂岩以中—粗砂岩为主,砾岩以中砾岩为主,发育平行层理和粒序层理构造。

    (2) 周田组古土壤样品的碳酸钙含量与低频质量磁化率联系密切,可作为气候替代指标并解释古气候的变化,色度指标存在区域独特性,对该研究区的气候指示不明显。

    (3) 碳酸钙含量指标与磁化率指标深度曲线变化明显,记录了红层沉积阶段气候的干湿交替,其数值整体上分别呈增大趋势和减小趋势。因此,周田组红层沉积于强氧化环境并伴有季节性降水,古气候由相对湿热逐渐变化为干热。

Reference (55)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return