[1] |
Riding R.
Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
|
[2] |
Riding R. Microbialites, stromatolites, and thrombolites[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 635-654. |
[3] |
Shapiro R S.
A comment on the systematic confusion of thrombolites[J]. PALAIOS, 2000, 15(2): 166-169.
|
[4] |
Kalkowsky E.
Oolith und Stromatolith im norddeutschen Buntsandstein[J]. Zeitschrift der Deutschen Geologischen Gesellschaft, 1908, 60(): 68-125.
|
[5] |
Aitken J D.
Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Research, 1967, 37(4): 1163-1178.
|
[6] |
Riding R. Classification of microbial carbonates[M]//Riding R. Calcareous algae and stromatolites. Berlin, Heidelberg: Springer, 1991: 21-51. |
[7] |
Braga J C, Martin J M, Riding R.
Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain[J]. PALAIOS, 1995, 10(4): 347-361.
|
[8] |
杨仁超, 樊爱萍, 韩作振.
核形石研究现状与展望[J]. 地球科学进展, 2011, 26(5): 465-474.
|
Yang Renchao, Fan Aiping, Han Zuozhen.
Status and prospect of studies on oncoid[J]. Advances in Earth Science, 2011, 26(5): 465-474.
|
[9] |
梅冥相.
微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5): 222-234.
|
Mei Mingxiang.
Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5): 222-234.
|
[10] |
Woo J, Chough S, Han Z.
Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong province, China[J]. PALAIOS, 2008, 23(1/2): 55-64.
|
[11] |
韩作振, 陈吉涛, 张晓蕾.
鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J]. 地质学报, 2009, 83(8): 1097-1103.
|
Han Zuozhen, Chen Jitao, Zhang Xiaolei.
Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Geologica Sinica, 2009, 83(8): 1097-1103.
|
[12] |
Shen J W, Yu C M, Bao H M.
A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China[J]. Facies, 1997, 37(1): 195-209.
|
[13] |
Chen J T, Lee J H, Woo J.
Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414(): 246-259.
|
[14] |
Lee J H, Chen J T, Choh S J.
Furongian (Late Cambrian) sponge-microbial maze-like reefs in the North China Platform[J]. PALAIOS, 2014, 29(1): 27-37.
|
[15] |
Lee J H, Chen J T, Chough S K.
Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(3/4): 621-632.
|
[16] |
Coulson K P, Brand L R.
Lithistid sponge-microbial reef-building communities construct laminated, Upper Cambrian (Furongian) 'stromatolites'[J]. PALAIOS, 2016, 31(7): 358-370.
|
[17] |
Lee J H, Riding R.
Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs[J]. Earth-Science Reviews, 2018, 181(): 98-121.
|
[18] |
Nutman A P, Bennett V C, Friend C R L.
Rapid emergence of life shown by discovery of 3, 700-million-year-old microbial structures[J]. Nature, 2016, 537(7621): 535-538.
|
[19] |
Allen M A, Goh F, Burns B P.
Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay[J]. Geobiology, 2009, 7(1): 82-96.
|
[20] |
Delfino D O, Wanderley M D, Silva L H S E.
Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil[J]. Sedimentary Geology, 2012, 263-264(): 85-95.
|
[21] |
Reid R P, James N P, Macintyre I G.
Shark Bay stromatolites: Microfabrics and reinterpretation of origins[J]. Facies, 2003, 49(1): 299-324.
|
[22] |
梅冥相, 孟庆芬.
现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口[J]. 古地理学报, 2016, 18(2): 127-146.
|
Mei Mingxiang, Meng Qingfen.
Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites[J]. Journal of Palaeogeography, 2016, 18(2): 127-146.
|
[23] |
Chen Z Q, Tu C Y, Pei Y.
Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189(): 21-50.
|
[24] |
梅冥相, LatifK, 孟庆芬.
寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘:以河北秦皇岛驻操营剖面为例[J]. 地质学报, 2019, 93(1): 227-251.
|
Mei Ming-xiang, Latif K, Meng Qingfen.
Cambrian bioherms dominated by microbial carbonate within the oolitic grainstone bank, Zhangxia Formation of the Miaolingian, Zhucaoying section in Qinhuangdao city of Hebei province[J]. Acta Geologica Sinica, 2019, 93(1): 227-251.
|
[25] |
梅冥相, 郭荣涛, 胡媛.
北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报, 2011, 27(8): 2473-2486.
|
Mei Mingxiang, Guo Rongtao, Hu Yuan.
Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8): 2473-2486.
|
[26] |
梅冥相, 张瑞, 李屹尧.
华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 2017, 33(4): 1073-1093.
|
Mei Mingxiang, Zhang Rui, Li Yiyao.
Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform[J]. Acta Petrologica Sinica, 2017, 33(4): 1073-1093.
|
[27] |
Riding R.
Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4): 229-238.
|
[28] |
史晓颖, 陈建强, 梅仕龙.
华北地台东部寒武系层序地层年代格架[J]. 地学前缘, 1997, 4(3/4): 161-173.
|
Shi Xiaoying, Chen Jianqiang, Mei Shilong.
Cambrian sequence chronostratigraphic frame-work of the North China Platform[J]. Earth Science Frontiers, 1997, 4(3/4): 161-173.
|
[29] |
Han Z Z, Zhang X L, Chi N J.
Cambrian oncoids and other microbial-related grains on the North China Platform[J]. Carbonates and Evaporites, 2015, 30(4): 373-386.
|
[30] |
肖恩照, 覃英伦, RiazM.
吕梁山东北缘寒武系层序地层划分:以文水苍尔会剖面为例[J]. 东北石油大学学报, 2017, 41(5): 43-53.
|
Xiao Enzhao, Qin Yinglun, Riaz M.
Sequence stratigraphy division of Cambrian in the northeast area of Luliang Mountain: A case study of the Cangerhui section in Wenshui city[J]. Journal of Northeast Petroleum University, 2017, 41(5): 43-53.
|
[31] |
卢衍豪, 朱兆玲, 袁金良, 等.中国寒武纪地层对比表及说明书[M].北京:科学出版社, 1982.[ |
Lu Yanhao, Zhu Zhaoling, Yuan Jinliang, et al. Suggestions for the establishment of the Cambrian Stages in China[M]. Beijing:Science Press, 1982.] |
[32] |
梅冥相, 马永生, 梅仕龙.
华北寒武系层序地层格架及碳酸盐台地演化[J]. 现代地质, 1997, 11(3): 275-282.
|
Mei Mingxiang, Ma Yongsheng, Mei Shilong.
Framework of Cambrian sedimentary sequence and evolution of carbonate platform in North China[J]. Geoscience, 1997, 11(3): 275-282.
|
[33] |
Helland-Hansen W.
Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 94(1/2/3/4): 95-97.
|
[34] |
Goldhammer R K, Dunn P A, Hardie L A.
Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples from Alpine Triassic platform carbonates[J]. Geological Society of America Bulletin, 1990, 102(5): 535-562.
|
[35] |
梅冥相.
从正常海退与强迫型海退的辨别进行层序界面对比:层序地层学进展之一[J]. 古地理学报, 2010, 12(5): 549-564.
|
Mei Mingxiang.
Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy[J]. Journal of Palaeogeography, 2010, 12(5): 549-564.
|
[36] |
Burne R V, Moore L S.
Microbialites: Organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 1987, 2(3): 241-254.
|
[37] |
Chen J T, Lee J H.
Current progress on the geological record of microbialites and microbial carbonates[J]. Acta Geologica Sinica, 2014, 88(1): 260-275.
|
[38] |
陈金勇, 韩作振, 范洪海.
鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J]. 沉积学报, 2014, 32(3): 494-502.
|
Chen Jinyong, Han Zuozhen, Fan Honghai.
Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3): 494-502.
|
[39] |
梅冥相.
碳酸盐岩米级旋回层序的成因类型及形成机制[J]. 岩相古地理, 1993, 13(6): 34-43.
|
Mei Ming-xiang.
Genetic types and mechanisms of the carbonate rock meter-scale cyclic sequences[J]. Sedimentary Geology and Tethyan Geology, 1993, 13(6): 34-43.
|
[40] |
梅冥相, RiazM, 刘丽.
辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石[J]. 古地理学报, 2019, 21(1): 31-48.
|
Mei Mingxiang, Riaz M, Liu Li.
Oncoids built by photosynthetic biofilms: An example from the Series 2 of Cambrian at Fuzhouwan section in Liaodong Peninsula[J]. Journal of Palaeogeography, 2019, 21(1): 31-48.
|
[41] |
Logan B W, Rezak R, Ginsburg R N.
Classification and environmental significance of algal stromatolites[J]. The Journal of Geology, 1964, 72(1): 68-83.
|
[42] |
Luo C, Reitner J.
First report of fossil "keratose" demosponges in Phanerozoic carbonates: Preservation and 3-D reconstruction[J]. Naturwissenschaften, 2014, 101(6): 467-477.
|
[43] |
Xiao E Z, Latif K, Riaz M.
Calcified microorganisms bloom in Furongian of the North China Platform: Evidence from Microbialitic-Bioherm in Qijiayu Section, Hebei[J]. Open Geosciences, 2018, 10(1): 250-260.
|
[44] |
Stal L J. Cyanobacterial mats and stromatolites[M]//Whitton B A, Potts M. The ecology of cyanobacteria: Their diversity in time and space. Dordrecht: Springer, 2000: 61-120. |
[45] |
陈旭, 阮亦萍, 布科A J.中国古生代气候演变[M].北京:科学出版社, 2001:1-325.[ |
Chen Xu, Ruan Yiping, Boucot A J. Paleozoic climate evolution in China[M]. Beijing:Science Press, 2001:1-325.] |
[46] |
王龙, LatifK, RiazM.
微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
|
Wang Long, Latif K, Riaz M.
The genesis, classification, problems and prospects of microbial carbonates: Implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1005-1023.
|
[47] |
Luchinina V A, Terleev A A.
The morphology of the genus Epiphyton Bornemann[J]. Geologia Croatica, 2008, 61(2/3): 105-111.
|
[48] |
Adachi N, Nakai T, Ezaki Y.
Late early Cambrian archaeocyath reefs in Hubei province, South China: Modes of construction during their period of demise[J]. Facies, 2014, 60(2): 703-717.
|
[49] |
Laval B, Cady S L, Pollack J C.
Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804): 626-629.
|
[50] |
梅冥相.
微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报, 2014, 16(3): 285-304.
|
Mei Mingxiang.
Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3): 285-304.
|
[51] |
Dupraz C, Reid R P, Braissant O.
Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
|
[52] |
Dupraz C, Reid R P, Visscher P T. Microbialites, modern[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 617-635. |
[53] |
Kennard J M, James N P.
Thrombolites and stromatolites: Two distinct types of microbial structures[J]. PALAIOS, 1986, 1(5): 492-503.
|
[54] |
Dupraz C, Pattisina R, Verrecchia E P.
Translation of energy into morphology: Simulation of stromatolite morphospace using a stochastic model[J]. Sedimentary Geology, 2006, 185(3/4): 185-203.
|
[55] |
梅冥相.
从凝块石概念的演变论微生物碳酸盐岩的研究进展[J]. 地质科技情报, 2007, 26(6): 1-9.
|
Mei Ming-xiang.
Discussion on advances of microbial carbonates from the terminological change of thrombolites[J]. Geological Science and Technology Information, 2007, 26(6): 1-9.
|
[56] |
Reid R P, Foster J S, Radtke G, et al. Modern marine stromatolites of Little Darby Island, Exuma archipelago, Bahamas:Environmental setting, accretion mechanisms and role of euendoliths[M]//Reitner J, Quéric N V, Arp G. Advances in stromatolite geobiology. Berlin:Springer, 2011:77-89. |