Advanced Search
Volume 38 Issue 4
Sep.  2020
Turn off MathJax
Article Contents

GUO MoZhen, LÜ FuLiang, Hou FuDou, LI Lin, YANG TaoTao, LI Dong. Microbial Composition and Significance of Lower Pliocene Sedimentary Globigerinid Limestone Facies in the East Java Basin[J]. Acta Sedimentologica Sinica, 2020, 38(4): 747-758. doi: 10.14027/j.issn.1000-0550.2019.070
Citation: GUO MoZhen, LÜ FuLiang, Hou FuDou, LI Lin, YANG TaoTao, LI Dong. Microbial Composition and Significance of Lower Pliocene Sedimentary Globigerinid Limestone Facies in the East Java Basin[J]. Acta Sedimentologica Sinica, 2020, 38(4): 747-758. doi: 10.14027/j.issn.1000-0550.2019.070

Microbial Composition and Significance of Lower Pliocene Sedimentary Globigerinid Limestone Facies in the East Java Basin

doi: 10.14027/j.issn.1000-0550.2019.070
Funds:

Scientific Research and Technological Development Program of China National Petroleum Corporation 2019⁃D4309

  • Received Date: 2019-04-29
  • Publish Date: 2020-09-02
  • Globigerinid limestone is well developed in the Pliocene Series of the East Java Sea Basin, and has become one of the main exploration targets in this area. Many oil and gas fields have been discovered in Globigerinid limestone reservoirs. Globigerinid limestone is dominated by Foraminifera tests, particularly of the planktonic genus Globiegerina, which may form up to 50 percent of the limestone. Pore space in the limestone comprises foraminiferal test pores and intergranular pores. The porosity of the grainstones may exceed 50 percent, which represents a high⁃quality reservoir. Due to the lack of reliable facies markers, however, opinions differ as to its origin and depositional environment, seriously affecting knowledge of the control factors and distribution of such reservoirs, and limiting exploration in the area.This study examined the depositional environment of Globigerinid limestone based on thin sections of casts, core observations and microbial data, together with the ecological environment of planktonic Foraminifera. It is concluded that the Globigerinid limestone consists of different species, including shallow⁃water species, middle⁃water species and deep⁃water species, as well as tropical⁃, subtropical⁃ and temperate⁃water species. Globigerina bulloides and Globorotalia menardii were found in large quantities, indicating the existence of upwelling. The combined characteristics of the paleosedimentary environment and paleocurrents indicate that the formation of Globigerinid limestone in the study area was closely related to upwelling, and occurred in two stages: firstly, the planktonic foraminiferal species living in the shelf slope and middle ocean were deposited on the sea bed after their death. The bottom current and upwelling current carried the different species to the shelf margin where the energy is weakest and they accumulated there, influenced by offshore currents. Secondly, they were winnowed and transported by waves or storm⁃associated currents, eventually forming one of the primary high⁃quality reservoir exploration targets in the East Java Bain.
  • [1] Mudjiono R, Pireno G E. Exploration of the North Madura platform, offshore East Java, Indonesia[C]// Proceedings of the 28th annual convention of Indonesian petroleum association. Jakarta: Indonesian Petroleum Association, 2002: 707-726.
    [2] Triyana Y, Harris G I, Basden W A, et al. The Maleo field: an example of the Pliocene Globigerina bioclastic limestone play in the East Java basin-Indonesia[C]//Proceedings of the 31st annual convention of the Indonesian petroleum association. Jakarta: Indonesian Petroleum Association, 2007: 61-77.
    [3] Sutadiwiria G, Prasetyo H. Uncertainty in Geophysic-geology-reservoir modelling for Globigerinid sand carbonate in NE-Java Basin, Indonesia; Case Study: planning vs. Actual of fields development at Madura Strait, Indonesia[C]//Proceedings of the SPE Asia pacific oil & gas conference and exhibition. Adelaide, Australia: SPE, 2006: 1-5.
    [4] Iriska D M, Sharp N C, Kueh S. The Mundu Formation: Early production performance of an unconventional limestone reservoir, East Java Basin-Indonesia[C]//Proceedings of the 34th annual convention of the Indonesian petroleum association. Jakarta: Indonesian Petroleum Association, 2010: 174-189.
    [5] 吴梦霜,邵磊,庞雄,等. 南海北部深水区白垩的发现及其储层意义[J]. 石油学报,2013,34(增刊2):32-38.

    Wu Mengshuang, Shao Lei, Pang Xiong, et al. Discovery of chalk in deep-water area of the northern South China Sea and its significance of reservoirs[J]. Acta Petrolei Sinica, 2013, 34(Suppl.2): 32-38.
    [6] Bransden P J E, Matthews S J. Structural and stratigraphic evolution of the East Java Sea, Indonesia[C]//Proceedings of the 21st annual convention of Indonesian petroleum association. Jakarta: Indonesian Petroleum Association, 1992: 417-435.
    [7] Sribudiyani, Muchsin N, Ryacudu R, et al. The collision of the East Java microplate and its implication for hydrocarbon occurrences in the East Java Basin[C]//Proceedings of the 29th annual convention of Indonesian petroleum association. Jakarta: Indonesian Petroleum Association, 2003: 335-346.
    [8] 倪军娥,孙立春,何娟,等. 印尼马都拉海峡A气田底流沉积—抱球虫灰岩储层特征[J]. 石油与天然气地质,2016,37(5):773-778.

    Ni Jun’e, Sun Lichun, He Juan, et al. Characteristics of globigerinid limestone reservoirs of bottom current deposition in Gas field A of Madura Strait, Indonesia[J]. Oil & Gas Geology, 2016, 37(5): 773-778.
    [9] Matthews S J, Bransden P J E. Late Cretaceous and Cenozoic tectono-stratigraphic development of the East Java Sea Basin, Indonesia[J]. Marine and Petroleum Geology, 1995, 12(5): 499-510.
    [10] Schiller D M, Seubert B W, Musliki S, et al. The reservoir potential of Globigerinid sands in Indonesia[C]//Proceedings of the 23rd annual convention of Indonesian petroleum association. Jakarta: Indonesian Petroleum Association, 1994: 189-212.
    [11] 雷倩萍,吴馨,万晓樵. 缅甸英雄岛始新世—上新世浮游有孔虫及其古环境意义[J]. 微体古生物学报,2009,26(4):323-330.

    Lei Qianping, Wu Xin, Wan Xiaoqiao. The Eocene-Pliocene planktonic foraminifera from Ramree Island, Burma[J]. Acta Micropalaeontologica Sinica, 2006, 26(4): 323-330.
    [12] 刘芳,向荣. 现代浮游有孔虫生态研究进展[J]. 微体古生物学报,2010,27(4):366-375.

    Liu Fang, Xiang Rong. Advances in the study of modern planktonic foraminifera[J]. Acta Micropalaeontologica Sinica, 2010, 27(4): 366-375.
    [13] Douglas R G, Savin S M. Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera[J]. Marine Micropaleontology, 1978, 3(2): 175-196.
    [14] Keller G. Depth stratification of planktonic foraminifers in the Miocene ocean[M]//Kennett J P. The Miocene ocean: Paleoceanography and biogeography. Houston: Geological Society of America, 1985, 163: 177-196.
    [15] Gasperi J T, Kennet T J P. Miocene planktonic foraminifers at DSDP site289: Depth stratification using isotopic differences[M]//Berger W H, Kroenke L W, Mayer L A, et al. Proceedings of the ocean drilling program. Santa Barbara, CA: Texas A & M University Publisher, 1993: 323-332.
    [16] 杨福忠,罗良,贾东,等. 印尼东爪哇盆地新生代构造演化[J]. 高校地质学报,2011,17(2):240-248.

    Yang Fuzhong, Luo Liang, Jia Dong, et al. Cenozoic tectonic evolution of the East Java Basin, Indonesia[J]. Geological Journal of China Universities, 2011, 17(2): 240-248.
    [17] Haq B U, Hardenbol J, Vail P R, et al. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Houston: SEPM (Society for Sedimentary Geology) Special Publications, 1988, 42: 71-108.
    [18] Kennett J P, Srinivasan M S. Neogene planktonic foraminifera: A phylogenetic atlas[M]. Stroudsburg, PA: Hutchinson Ross, 1983: 1-265.
    [19] Bolli H M, Saunders J B, Perch-Nielsen K. Cambridge earth science series plankton stratigraphy, Planktic foraminifera, calcareous nannofossils and calpionellids[M]. Cambridge: Cambridge University Press, 1985: 1-1040.
    [20] BouDagher-Fadel M K. Biostratigraphic and geological significance of planktonic foraminifera[M]. London: UCL Press, 2015: 1-320.
    [21] BouDagher-Fadel M K, Banner F T, Whittaker J E. The early evolutionary history of planktonic foraminifera[M]. Business Media Dordrecht: Springer, 1997: 1-261.
    [22] Sautter L R, Thunell R C. Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions: Sediment trap results from San Pedro Basin, Southern California Bight[J]. Journal of Foraminiferal Research, 1991, 21(4): 347-363.
    [23] 何卫军,谢金有,刘新宇,等. 莺歌海盆地DF1-1-11井有孔虫生物地层与沉积环境研究[J]. 地层学杂志,2011,35(1):81-87.

    He Weijun, Xie Jinyou, Liu Xinyu, et al. Foraminiferal Biostratigraphy and sedimentary environment reconstruction based on paleontological data from bore hole DF1-1-11, Yinggehai Basin[J]. Journal of Stratigraphy, 2011, 35(1): 81-87.
    [24] 徐建,黄宝琦,陈荣华,等. 南海东北部表层沉积中有孔虫的分布及其环境意义[J]. 热带海洋学报,2001,20(4):6-13.

    Xu Jian, Huang Baoqi, Chen Ronghua, et al. Distribution of foraminifera in surface sediments of northeastern South China sea and its environmental implications[J]. Journal of Tropical Oceanography, 2001, 20(4): 6-13.
    [25] Bé A W H. An ecological zoogeographic and taxonomic review of recent planktonic foraminifera[M]//Ramsay A T S. Oceanic micropaleontology. London: Academic Press, 1977: 1-100.
    [26] Kucera M. Planktonic foraminifera as traces of past oceanic environments[J]. Developments in Marine Geology, 2007, 1(4): 213-262.
    [27] Hemleben C, Spindler M, Anderson O R. Modern planktonic foraminifera[M]. New York, NY: Springer-Verlag, 1989: 1-363.
    [28] 张尚锋,许光彩,朱锐,等. 上升流沉积的研究现状和发展趋势[J]. 石油天然气学报,2012,34(1):7-11.

    Zhang Shangfeng, Xu Guangcai, Zhu Rui, et al. Research status and development tendency of upwelling sediments[J]. Journal of Oil and Gas Technology, 2012, 34(1): 7-11.
    [29] Diester-Haass L. Radiolarian/planktonic foraminiferal ratios in a coastal upwelling region[J]. Journal of Foraminiferal Research, 1977, 7(1): 26-33.
    [30] Anderson D M, Prell W L. A 300 KYR record of upwelling off Oman during the Late Quaternary: Evidence of the Asian southwest monsoon[J]. Paleoceanography and Paleoclimatology, 1993, 8(2): 193-208.
    [31] Kroon D, Darling K. Size and upwelling control of the stable isotope composition of Neogloboquadrina dutertrei (d’Orbigny), globigerinoides ruber (d’Orbigny) and Globigerina bulloides d’Orbigny: Examples from the Panama Basin and Arabian Sea[J]. Journal of Foraminiferal Research, 1995, 25(1): 39-52.
    [32] 程广芬,周颖春. 沉积有孔虫作为上升流指标的可行性研究[J]. 青岛海洋大学学报,1991,21(1):101-108.

    Cheng Guangfen, Zhou Yingchun. The practicability of sedimentary foraminifera as an indicator of upwelling[J]. Journal of Ocean University of Qingdao, 1991, 21(1): 101-108.
    [33] Naidu P D, Babu C P, Rao C M. The upwelling record in the sediments of the western continental margin of India[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1992, 39(3/4): 715-723.
    [34] Machain⁃Castillo M L, Monreal⁃Gómez M A, Arellano⁃Torres E, et al. Recent planktonic foraminiferal distribution patterns and their relation to hydrographic conditions of the gulf of Tehuantepec, Mexican Pacific[J]. Marine Micropaleontology, 2008, 66(2): 103-119.
    [35] Susanto R D, Gordon A L, Zheng Q A. Upwelling along the coasts of Java and Sumatra and its relation to ENSO[J]. Geophysical Research Letters, 2001, 28(8): 1599-1602.
    [36] Oppo D W, Rosenthal Y. The great Indo-Pacific communicator[J]. Science, 2010, 328(5985): 1492-1494.
    [37] 张鹏,徐建,杨策,等. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质,2017,37(3):129-137.

    Zhang Peng, Xu Jian, Yang Ce, et al. Paleoceanographic records of Indonesian throughflow at its exit since the last glacial and their significance[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137.
    [38] 朱伟林,胡平,江文荣,等. 南亚—东南亚含油气盆地[M]. 北京:科学出版社,2012:1-379.

    Zhu Weilin, Hu Ping, Jiang Wenrong, et al. South Asia - Southeast Asia petroleum-bearing basins[M]. Beijing: Science Press, 2012: 1-379.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(3)

Article Metrics

Article views(711) PDF downloads(179) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-04-29
  • Published:  2020-09-02

Microbial Composition and Significance of Lower Pliocene Sedimentary Globigerinid Limestone Facies in the East Java Basin

doi: 10.14027/j.issn.1000-0550.2019.070
Funds:

Scientific Research and Technological Development Program of China National Petroleum Corporation 2019⁃D4309

Abstract: Globigerinid limestone is well developed in the Pliocene Series of the East Java Sea Basin, and has become one of the main exploration targets in this area. Many oil and gas fields have been discovered in Globigerinid limestone reservoirs. Globigerinid limestone is dominated by Foraminifera tests, particularly of the planktonic genus Globiegerina, which may form up to 50 percent of the limestone. Pore space in the limestone comprises foraminiferal test pores and intergranular pores. The porosity of the grainstones may exceed 50 percent, which represents a high⁃quality reservoir. Due to the lack of reliable facies markers, however, opinions differ as to its origin and depositional environment, seriously affecting knowledge of the control factors and distribution of such reservoirs, and limiting exploration in the area.This study examined the depositional environment of Globigerinid limestone based on thin sections of casts, core observations and microbial data, together with the ecological environment of planktonic Foraminifera. It is concluded that the Globigerinid limestone consists of different species, including shallow⁃water species, middle⁃water species and deep⁃water species, as well as tropical⁃, subtropical⁃ and temperate⁃water species. Globigerina bulloides and Globorotalia menardii were found in large quantities, indicating the existence of upwelling. The combined characteristics of the paleosedimentary environment and paleocurrents indicate that the formation of Globigerinid limestone in the study area was closely related to upwelling, and occurred in two stages: firstly, the planktonic foraminiferal species living in the shelf slope and middle ocean were deposited on the sea bed after their death. The bottom current and upwelling current carried the different species to the shelf margin where the energy is weakest and they accumulated there, influenced by offshore currents. Secondly, they were winnowed and transported by waves or storm⁃associated currents, eventually forming one of the primary high⁃quality reservoir exploration targets in the East Java Bain.

GUO MoZhen, LÜ FuLiang, Hou FuDou, LI Lin, YANG TaoTao, LI Dong. Microbial Composition and Significance of Lower Pliocene Sedimentary Globigerinid Limestone Facies in the East Java Basin[J]. Acta Sedimentologica Sinica, 2020, 38(4): 747-758. doi: 10.14027/j.issn.1000-0550.2019.070
Citation: GUO MoZhen, LÜ FuLiang, Hou FuDou, LI Lin, YANG TaoTao, LI Dong. Microbial Composition and Significance of Lower Pliocene Sedimentary Globigerinid Limestone Facies in the East Java Basin[J]. Acta Sedimentologica Sinica, 2020, 38(4): 747-758. doi: 10.14027/j.issn.1000-0550.2019.070
  • 印度尼西亚东爪哇盆地在多年的勘探和开发过程中,在早上新世发现了多个以抱球虫灰岩为储集体的油气田[14]。该类储集体发育于早上新世Mundu组,岩石组成主要以浮游有孔虫目的抱球虫超科生物为主,储层岩石类型主要为抱球虫颗粒灰岩、泥质抱球虫颗粒灰岩及抱球虫颗粒质泥灰岩,岩石组构不同其浮游有孔虫含量分布在30%~50%[4]。该套储集体埋藏深度以小于1 500 m为主,孔隙度以大于30%为主,最高可达52%[4],因而成为该区域主要的勘探热点层位之一。由于该类储集体不同于常规的半深海、深海软泥型抱球虫沉积[5],因而对其沉积环境研究争议较大,不同的学者基于不同的资料,有不同的认识[610],主要有等积岩沉积、深水软泥沉积、底流沉积等观点。也有学者发现该套储层中抱球虫的种类繁多,认为是水深约为100~200 m的层状水柱沉积[2]。Schiller et al. [10]则认为该类沉积物是由上新世盆地内持续流体作用形成的漂积体,经后期的水流改造而形成。上述学者主要从岩矿组成、岩石颗粒形态,或者是一般浮游有孔虫的生态习性进行该套灰岩的沉积环境分析,但对其成因缺少可靠的指相标志,因此严重影响了对此类储集体控制因素及展布的研究,从而限制了该区的油气勘探。

    由于研究区该套灰岩其生物颗粒含大量浮游有孔虫,而浮游有孔虫受温度、盐度、水深及水体性质的影响明显[1112],不同种类的浮游有孔虫能反映不同的沉积环境,特别是某些属种,已形成指示特定沉积环境的标志[1315]。因而分析研究区抱球虫的属种分布及其生态环境,对该套抱球虫灰岩的成因有重要意义。故本文主要利用东爪哇盆地南部海上X油气田X⁃1井的上新世Mundu组和Paciran组的岩芯、铸体薄片及浮游有孔虫微生物等资料,对浮游有孔虫属种和生态环境分析,发现了上升流指示性水种Globigerina bulloides Globorotalia Menardii(s)。这对该类储集体的沉积环境分析有重要指导意义。在此基础上,对该套抱球虫灰岩的沉积环境进行了分析,指出了该套储层的沉积环境及其沉积过程,这对该套抱球虫灰岩下一步的沉积相研究有重要意义。

  • 东爪哇盆地位于印度尼西亚东部,为巽他大陆的东南边界,约盆地面积的87%位于浅海,陆上部分主要是爪哇岛东北部和Madura岛(图1)。盆地面积约16.5×104 km2,为第三系沉积,沉积厚度最厚可达6 000 m,盆地含有丰富的油气资源,据IHS(Information Handling Services)2009年的统计资料显示,盆地总的油气量已经达到3 549百万桶油当量[16]

    Figure 1.  Tectonic location of East Java Basin (modified from reference [16])

    东爪哇盆地自始新世以来处于拉张和挤压的构造环境中,发育陆相、海相及海陆过渡相沉积环境下的各种沉积[6]图2)。总体上早始新世(Ngimbang下段)盆地为早裂谷盆地发育阶段,以陆相沉积主为,发育陆相河流—三角洲—湖泊体系,岩性以砂砾岩、砂岩和泥岩为主。中晚始新世—早渐新世,为同裂谷期盆地,沉积环境转变为海陆交互相和海相环境,岩性以砂岩、泥岩和碳酸盐岩为主。中渐新世—中新世,研究区为后裂谷拗陷型盆地,多次的海退和海浸,使研究区处于有利的碳酸盐台地发育环境,生物礁灰岩及灰岩发育,形成了研究区主要的储集层(Kujung组上段)。中晚中新世始,研究区开始构造反转,北部开始隆升,沉积格局由南高北低转化为南低北高,处于海陆过渡、浅海至半深海沉积环境,沉积物为碎屑岩与碳酸盐岩并存。早上新世时,构造反转进一步加强,北部持续抬高,研究区中南部下降,北部发育宽缓的浅海陆棚,中南部为半深海,在陆架边缘发育了一套抱球虫灰岩沉积,形成了研究区浅部构造带主要的抱球虫灰岩储集体发育段(Mundu组)。晚上新世至更新世,研究区仍为浅海至半深海沉积环境,但沉积物过渡为泥岩及海相砂岩沉积,碳酸盐岩沉积物减少。

    Figure 2.  Stratigraphic comprehensive column of southern East Java Basin[17]

  • 东爪哇盆地东南部X⁃1井区块的抱球虫灰岩在研究区广泛发育,其含油气抱球虫灰岩厚度为148 m,埋藏深度浅(多小于1 000 m)[4],含油气富集,目前在该层位已发现多个油气藏[14]。X⁃1井的抱球虫灰岩的铸体薄片表明岩石生物碎屑颗粒的主要组成为抱球虫(图3),其壳体大小相当,形态完整,其直径主要分布在50~150 μm,分选中等,含量可达30%~51%[2,4];其次为小型底栖有孔虫,海胆、红藻及软体动物碎片[2,4],其含量均小于10%;以及少量海绿石颗粒,其含量小于2%。除此之外,还发育非生物颗粒的石英颗粒,其含量少于2%。胶结物主为黄铁矿、方解石及白云石,含量均小于3%;岩石的结构不同,灰泥的含量有一定的差异,但总体含量以小于25%为主[2,4]。颗粒灰岩、泥质颗粒灰岩中颗粒以线、点接触为主,泥质含量少,表明其沉积时水动力较强(图3)。

    Figure 3.  Globigerinid limestone micro⁃features in well X⁃1, East Java Basin

  • 该套抱球虫灰岩的孔隙类型主要为抱球虫颗粒体腔孔、粒间孔、晶间孔、有孔虫壳壁孔及基质微孔(图3)。镜下面孔率可达20%左右(图3),岩芯分析的孔隙度30%~52%,渗透率(1~600)×10-3 μm2[2,4]图4)。这种高孔中高渗型储层主要是由于基质含量少,有孔虫体腔孔隙和粒间孔隙发育,且后期压实作用不强造成的。由于其储层性质好,因而是研究区上新世主要的勘探层位之一。

    Figure 4.  Distribution of porosity and permeability from core analysis, well X⁃1, East Java Basin

  • 为了研究该套抱球虫灰岩的沉积环境,对该区块X⁃1井上新世Mundu组和Paciran组共12个样品(4个岩屑样品和8个岩芯样品)的浮游有孔虫种类进行了分析(表1图5),发现该区块发育7个属32个种(表1)。表1中的样品个数是样品经泥浆滤液清洗、洪干后取10 g,采用0.063 mm的网筛进行微体化石冲洗和筛选后,对有孔虫残留用随机样本拆分器,产生超过个100个有孔虫个体进行鉴定的结果。浮游有孔虫化石鉴定主要根据Kennett et al.[18]和Bolli et al. [19]的浮游有孔虫分类标准。

    抱球虫属种个数
    层位 Parciran组 Mundu组
    样品深度/m 800.0 825.0 860.0 875.0 885.0 900.0 909.9 924.0 934.4 938.9 950.0 956.9
    样品类型 岩屑 岩屑 岩芯 岩屑 岩屑 岩芯 岩芯 岩芯 岩芯 岩芯 岩芯 岩芯
    抱球虫Globigerina Globigerina bulloides 1 0 3 5 3 4 9 4 4 2 7 5
    Globigerina falconensis 1 2 1 1 1 2 2 1 1 2
    Globigerina glutinate 1 2 1 1
    Globigerina nepenthes 1
    Globigerina venezuelana 1 4 3 3 1 3 5 4 11 4
    Globigerina woodi 1 3 2 2 3 2 2 2 5 2
    Globigerina spp. 4 6 4 9 5 8 17 10 9 9 14 5
    圆幅虫Globorotalia Globorotalia spp. 8 4 5 1 3 3 4 3 5 5 5
    Globorotalia Menardii(s) 2 4 5 3 1 1 1 1 1
    Globorotalia tumida(s) 1 2 2 3 1 3
    Globorotalia Menardii(d) 2 1
    Globorotalia obesa 2 1 1 3 2 2 2 2 2 1
    Globorotalia flexuosa 5 5 1
    Globorotalia plesiotumida 3 7 4 1 1 1 1
    拟抱球虫globigerinoides globigerinoides immaturus 4 4 3 2 4 3 2 5 2 5
    globigerinoides quadrilobatus 4 5 21 15 21 15 23 21 15 18 13 14
    globigerinoides ruber 1 1 3 6 1 1 2 1
    globigerinoides sacculifer 1 5 2 3 2 2 2 2 2 3 6
    globigerinoides trilobus 7 4 2 3 4 4 4 2 2
    globigerinoides bollii 1 1 3 1 2 1
    globigerinoides obliquus 3 2 1 8 11 5 9 5 8 7
    globigerinoides extremus 1 1 1 2
    globigerinoides spp. 2 13 4 8 6 11 8 9 10 4 12
    新方球虫Neogloboquardrina Neogloboquardrina humerosa(d) 1 1 2 1 2
    Neogloboquardrina pseudopima(d) 1
    Neogloboquardrina acostaensis(d) 2 2 2 5 2 9 11 13 9 14 14
    Neogloboquardrina pachyderma(s) 1 5 1
    Neogloboquardrina spp. 1
    方球虫globoquadrina globoquadrina altispira 3 2 2 2 1 1 1 5 4 2
    globoquadrina dehiscens 1 5 2 2 2 2 2 3 7 6 3
    圆球虫Orbulina Orbulina universa 2 2 1 1 1 4 1 2 1 1 1 6
    普林虫Pulleniatina Pulleniatina obliqueloculata(d) 1 1
    Planktonics indet. 12 14 11 23 18 19 21 14 14 29 16 15
    浮游有孔虫总数 50 60 68 110 109 105 140 104 117 117 127 124
    底栖有孔虫总数 52 64 45 17 42 9 25 34 24 29 25 29
    深水底栖生物个数 26 22 15 10 6 1 2 1 3 0 3 1

    Table 1.  Occurrence of planktonic Foraminifera, well X⁃1, East Java Basin

    Figure 5.  Comprehensive chart of facies and eco⁃environmental distribution of planktonic Foraminifera, well X⁃1, East Java Basin

  • (1) 抱球虫属Globigerina

    该属占总浮游有孔虫的10%~31%,主要发育Globigerina bulloides, Globigerina venezuelana, Globigerina woodi,占该属总数的40%以上,其他为Globigerina falconensis, Globigerina glutinate, Globigerina nepenthesi,占该属总数的10%以下(表1)。这些抱球虫主要分布在热带、副热带和温带,冷暖水种皆有,其中Globigerina bulloides为全球型上升流的标志属种[1921]

    (2) 拟抱球虫属Globigerinoides

    该属占总浮游有孔虫的30%~50%,主要发育Globigerinoides quadrilobatus,Globigerinoides obliquus, Globigerinoides immaturus,Globigerinoides sacculiferGlobigerinoides trilobus, 占该属总数的70%以上,其他为Globigerinoides trilobus,Globigerinoides extremus, globigerinoides bollii,占该属总数的10%以下。这些抱球虫主要分布在热带、副热带和温带,为浅层暖水种[1921]

    (3) 圆幅虫属Globorotalia

    该属占总浮游有孔虫的比例小于15%为主,主要发育Globorotalia Menardii(s),Globorotalia obesa, Globorotalia plesiotumidaGloborotalia inflata,占该属总数的40%以上,其他为Globorotalia truncatulin⁃ oides(d), Globorotalia tumida(s), Globorotalia Menardii(d), Globorotalia flexuosa,占该属总数的10%以下。这些抱球虫除Globorotalia plesiotumida外,主要分布在热带、副热带,为深水种[1921]

    (4) 方球虫属Globoquadrina

    该属占总浮游有孔虫的比例为5%~15%,发育globoquadrina altispira, globoquadrina dehiscens,分布在热带副热带和温带,为中浅层水中[1921]

    (5) 新方球虫属Neogloboquardrina

    该属占总浮游有孔虫的比例以小于12%为主,主要发育Neogloboquardrina acostaensis(d),占该属总数的60%以上,其他为Neogloboquardrina dutertrei(d), Neogloboquardrina humerosa(d),Neogloboquardrina pse⁃udopima(d), Neogloboquardrina pachyderma(s),占该属总数的30%以下。这些抱球虫除Globorotalia plesio⁃ tumida外,主要分布在热带、副热带[1921]

    此外,研究区还发现有Orbulina universaPulleniatina obliqueloculata(d),这二者皆属于浅层水种,分布于热带、副热带,局部分布于温带[1921]

  • 浮游有孔虫主要生长在海洋和半咸水环境中,发育的种类和数量明显受温度、盐度、水深及水体性质的影响[1112],特别是某些属种,形成标志性属种组合,对水团微环境具有指示性意义。如Globoquadrina venezuelana是最可靠的浮游有孔虫深层水(水深大于100 m)指示者[1315]Globorotalia menardiiGloborotalia fohsi为中层水(50~100 m)较好的指示类群[1315]Globoquadrina altispiraGloborotalia mayeri 是浅层水(水深0~50 m)较好的指示者[1315]Globigerina bulloidesGloborotalia Menardii(s)是最具有上升流指示意义的种属[1922],因而浮游有孔虫常作为恢复古地理古环境的良好标志[1113,2324]。本文主要通过该区有孔虫的深度及区域分布来分析研究区抱球虫灰岩的沉积环境。

  • 水体深度是影响浮游有孔虫种类分布的重要因素,不同的水体深度,其浮游有孔虫的个体特征有明显的差异。如生活在表层、浅层水(水深0~50 m)的浮游有孔虫,其有孔虫房室壳壁较薄,表面具细刺,房室圆球型或扁平形,房室之间一般不重叠,缝合线深,典型的有孔虫种类有Globigerinoides mixed spp.(包括 Globigerinoides obliquus, Globigerinoides ruber等),Globigerinoides trilobus, Globigerinoides sacculifer, Globo⁃quadrina altispira, Pulleniatina obliquiloculata, Orbulina universa, Globigerinoides subquadratus,Globorotalia siakensis, Globorotalia mayer, Globorot⁃ alia kugleri, Globigerina angustiumbilicata [1415,1921]。中层水(水深50~100 m),此类浮游有孔虫生活在温跃层以上的水域中,壳体特征介于浅层水组合与深层水组合之间,房室扁平,平旋或螺旋式排列,壳缘呈圆型或截形。典型的有孔虫种类有Globorotalia menardii group, Sphaeroidinellopsis seminulina, Globigerina nephenthes, Globorotalia continuosa, Globorotalia acostaensis, Globo⁃rotalia fohsi group, Globorotalia merotumida, Globigerina bulloides [1415,1921]。深层水(水深大于100 m),此类浮游有孔虫房室壳壁较厚,表面较光滑或无细刺,壳体扁平形或近圆锥形,壳缘尖锐或具棱脊,房室之间重叠,缝合线浅,一般认为生活在温跃层以下的水域中,典型的有孔虫种类有Globorotalia praemenardii, Globoquadrin⁃ avene zuelana, Globoquadrina triparita, Catapsydrax spp [1415,1921]

    本文依据学者普遍认可的一些较确定属种的生活深度,去除一些有争议或认识尚不清楚的种类,对Mundu组10个样品及Parciran组2个样品,共410个浮游有孔虫个体的水深分布丰度进行分析(表2图5)。从统计结果分析,Mundu组浮游有孔虫种群浅层水种占统计样品的56.5%~86.5%,平均为71.8%;中层水种占统计样品的3.4%~29.8%,平均为18.0%;深层水种占统计样品的2.0%~24.0%,平均为10.2%。Parciran组两个岩屑样品分析,其总的浮游有孔虫数目明显减少,约为Mundu组总数的60%,为浅层水种。纵向上,不同水深的水种所占比例与总统计规律变化不大,以浅层水种为主。但随深度增加,因其沉积水体变深(图5),浅层水种数量变化不明显,而中层水属种和深层水属种随水体变深,其属种数量呈上升趋势(图5)。总体上,研究区的抱球虫灰岩浮游有孔虫是以浅层浮游有孔虫种群为主,中层和深层浮游有孔虫种群为次的不同水深浮游有孔虫的混合。

    类别 浅层水类群 中层水类群 深层水类群
    属种 Orbulina universa,Globoquadrina altispira, Pulleniatina obliqueloculata(d), Globigerinoides obliquus, Globigerinoides immaturus, Globigerinoides quadrilobatus Globoquadrina dehiscens, Sphaeroidinellopsis seminulina, Sphaeroidinella dehiscens, Globorotalia tumida(s),Globigerina nepenthes Globigerina venezuelana, Globigerina glutinate, Globorotalia Menardii(d)
    分布范围 56.5%~86.5% 3.4%~29.8% 2.0%~24.0%
    平均值 71.8% 18.0% 10.2%

    Table 2.  Water depth distribution of planktonic Foraminifera, well X⁃1, East Java Basin

  • 受以温度为主的海洋环境变化的影响,全球范围内的浮游有孔虫呈现出明显的纬度分带特征。Bé早在70 年代就发现浮游有孔虫在全球大洋中有明显的纬度分带变化,并据此划分了极地区、亚极地区、过渡带区、亚热带区和热带区共5个有孔虫纬度分带[25],各带中主要浮游有孔虫属种有明显的差异。最近,Kucera[26]在这方面做了进一步的总结和补充,对各带主要浮游有孔虫属种丰度随温度的变化进行了更详细的研究工作,认为极地区以Neogloboquadrina pachyderma占绝对优势,亚极地区以Neogloboquadrina incomptaTurborotalia quiqueloba为主要优势种,过渡带区的主要属种为Globorotalia inflata, Globorotalia scitula, Globogerinita glutinataGlobigerina bulloides。随着温度升高,亚热带区和热带区的有孔虫属种分异度明显增加,其中亚热带以Globigerinoides ruber(白色), Globorotalia truncatulinoides, Globigerina falconensis, Neogloboquadrina dutertreiGlobigerinella siphonifera(Globigerinella aequilateralis)等种为主,热带则以 Globigerinoides sacculifer, Globorotaliamenardii tumida Globigerinoides rube(粉红)和Pulleniatina obliquiloculata 等为主。

    此外,不同温度环境下,浮游有孔虫的个体特征也有明显差异。温度可影响有孔虫壳体的形态构造[1921],如厚壁新方球虫在两极区,壳体左旋;在温暖海域,壳体则为右旋。在现代大洋中,温度常控制着浮游有孔虫壳体的旋转方向,如螺旋壳浮游有孔虫的某些属种在高纬度冷水环境中以左旋为主,低纬度赤道地带温暖环境中则以右旋为主。如Neogloboquadrina Pachyderma的左旋和右旋壳,尽管有些学者认为这二者是不同的种[19],但大多学者认为其左旋壳种生活在冷水环境中,而右旋壳种生活在热带暖水环境中。

    同样采用学者普遍认可的一些属种温度带划分[1921,2627],排除一些有争议或认识尚不清楚的属种,对研究区12个样品,32个属种共439个有孔虫个体进行归类统计分析(表3图5),发现研究区的有孔虫种类以各类区带的混合为特征,热带至温带的属种皆有。其中热带—副热带种群占统计种群的3.2%~31.0%,平均为14.6%;副热带—温带种群较少,占统计种群的1.6%~19.1%,平均为4.6%;其他为热带、副热带、温带皆发育的水种,占统计种群的28.6%~80.6%,平均为50.4%。另外,适应性较强、冷暖水种皆有的种群Globigerina bulloidesGlobigerina woo⁃di [1921]也有分布,占统计种群的11.9%~25.0%,平均为17.8%。纵向上(图5),Paciran组基本上以热带—副热带属种为主,而Mundu组,则以温度区间较宽的热带—温带属种为主,且随深度增加,因沉积水体变深(图5),其数量有增加趋热,而热带—副热带及副热带—温带属种较少,随深度增加,水体变深,其数量有减少的趋势。这表明研究区有孔虫的属种以温度区间较宽的热带至温带属种为主,跨不同区带、不同温度环境水种的混合。

    类别 全球性 热带、副热带 副热带、温带 热带、副热带、温带 上升流属种
    属种 Globigerina bulloides,Globigerina woodi Pulleniatina obliqueloculata(d), Sphaeroidinella dehiscens, Globorotalia tumida(s), Neogloboquardrina humerosa(d), Globigerinoides ruber, Globorotalia flexuosa, Globorotalia tumida(s), Globigerina falconensis, Globorotalia plesiotumida Globigerina nepenthes, Globorotalia plesiotumida globigerinoides sacculifer, Globigerinoides extremus, Globigerinoides obliquus, Sphaeroidinellopsis seminulina, Globoquadrina altispira, Neogloboquardrina pseudopima(d), Neogloboquardrina acostaensis(d), globigerinoides bollii Globigerina bulloides, Globorotalia Menardii(s)
    分布范围 11.9%~25.0% 3.2%~31.0% 1.6%~19.1% 28.6%~80.6% 6.5%~20.8%
    平均值 16.7% 14.6% 4.6% 59.4% 15.6%

    Table 3.  Temperature distribution of planktonic Foraminifera, well X⁃1, East Java Basin, Indonesia

  • 除了上述浮游有孔虫特定生活深度、温度发育特定属种外,上升流对特定浮游有孔虫属种的丰度和形态也具有直接影响[20,28]。上升流是受地形、季风或大洋环流等作用而产生深层海水涌升的一种洋流。它把低温、富溶解硅和营养盐(特别是硝酸盐和磷酸盐)的海水带到表层,大大促进表层生物生长,从而有效提高海洋生产力[27]。上升流独特的发生过程及环境造就了其特有的古生物属性特征,其中以微体古生物有孔虫、放射虫以及腹足类最为典型,因此这些古生物的特殊种属及其组合就成为上升流鉴别的有用标志。1977年Leslie et al.[29]在对非洲西北部现代上升流沉积的研究中发现了放射虫和有孔虫的比率与上升流的强度呈正相关,由此说明有孔虫的研究是上升流沉积研究中的一个重要方向。目前,普遍认为Globigerina bulloidesGloborotalia Menardii(s) 是最具有上升流指示意义的种属[1921],这二者属于浮游有孔虫中的冷水种,在上升流开始发生的时候从温跃层底部爬升至表层,同时其数量达到最大值,形态上表现低钙化和敞开式[30],并且它的丰度变化往往与上升流强度和表层水生产力变化相对应,丰度高表明上升流强、生产力高[3134]。Maria et al.[34]认为Tehuantepec海湾沉积中Globigerina bulloides指示了上升流影响的表层水体高生产力、Globigerinita Glutinata分布在上升流轴部及Globorotalia menardii⁃Neogloboquadrina dutertrei分布在温暖的赤道上升流水体中。

    研究区有孔虫丰度分布(表13图5)表明,研究区发育有上升流的标志性有孔虫属种Globigerina bulloidesGloborotalia Menardii(s),且大量发育,占统计浮游有孔虫的比例为6.5%~20.8%,平均为15.6%(表3)。同时在纵向上,上升流属种数目的变化与短期旋回的变化有对应性(图5),表现为水体变浅,上升流属种的数量增大,水体变深,上升流属种的个数数量减少。而在Paciran组半深海环境中,上升流属种数量极少,表明上升流属种的丰度与沉积环境及水体深度有一定关系。这是因为上升流把低温、富溶解硅和营养盐的海水带到表层的过程中,提高上升流属种的生产力,促进了Globigerina bulloidesGloborotalia Menardii(s)的生长发育,使其丰度增加[28],证实了研究区抱球虫的堆积与上升流有关。研究区发育的跨不同区带、不同水深的混合浮游有孔虫属种,应是上升流作用的结果。

    此外,根据上升流形成的条件,当海水体积运输方向与沿岸风带相互作用造成海水辐散时,就能引起下层海水的涌升,形成上升流,各大洋的许多海域,均有较明显的上升流[3537]图6)。表现为近岸的下层海水上升,形成了上升流,而在远离海岸处则形成了下降流,它从下层流向近岸,以弥补近岸海水的流失。沿岸风与海流作用产生水体辐散、不同温度或盐度流向相反的海流相遇、岛屿的背风侧及伸入海洋岛弧的背风面,皆是上升流发育的有利区带。目前研究区处于东爪哇岛北侧,处于印尼穿越流和平行爪哇岛海岸的信风上(图6),是印尼穿越流、南海穿越流和爪哇岛海岸的信风带相互作用区带,在爪哇岛南侧发育著名的爪哇上升流。其中印尼高温高盐的穿越流和南海稍低温低盐的穿越流流向相反,两者水温不同,盐度不同,且由于爪哇岛伸入,为印尼穿越流和南海穿越流构成逆时针旋转流,具形成上升流良好的地理格局条件,因此目前研究区具有上升流形成的有利条件。

    Figure 6.  Distribution of ocean currents and upwellings (modified from reference [36])

    在早上新世Mundu组沉积时,根据区域构造演化史[67,16,38],区域大洋、古陆的格局与现在差异不大,但研究区构造、沉积格局与现在有一定的差异(图7)。当时研究区的沉积格局北部为婆罗洲古陆,南部为东爪哇火山岛弧,东部为古爪哇海。盆地北部发育宽缓的浅海陆棚,中南部为沉积中心,发育半深海的泥岩沉积[6]。盆地北部婆罗洲古陆为盆地的主要物源方向,在研究区北部靠岸方向形成一系列海陆交互的碎屑岩三角洲群,向南部浅海陆棚上过度为碳酸盐岩与碎屑岩交互沉积,而在陆棚边缘古地貌高上沉积了一系列抱球虫灰岩滩等碳酸盐岩沉积,在陆坡及半深海沉积了含抱球虫的泥灰岩、泥岩沉积。这种沉积格局目前以被钻井揭示的Mundu组岩性所证实,在研究区北部钻井揭示其对应层位从北向南岩性依次为砂岩,泥岩及抱球虫泥灰岩,同时镜下薄片也可见到石英颗粒,且其含量为2%左右,反映陆棚边缘的沉积仍受少量碎屑岩影响。同时研究区东部为古爪哇海,推测当时与太平洋连通,发育来自赤道高温逆流形成的古洋流,这股洋流与沿岩季风流的相互作用,造成海水辐散,引起下层海水升,形成上升流。同时研究区也为古印度洋的背风侧,也具促使形成上升流的条件。综上古地理分析及上升流属种的发育,认为研究在早上新世发育上升流。

    Figure 7.  Palaeogeographic map of Early Pliocene, East Java Basin

  • 从微生物角度分析,大量浮游有孔虫的出现是远离海岸的标志[1112]。一般认为抱球虫是生活在上层海水中的一类原生动物,多发育在远离海岸的陆坡及半深海中,近岸带及深海其数量明显减少,当其死亡后,其壳体会逐渐下沉,呈分散状广泛地分布于海底,最终保存在海底,形成抱球虫软泥[5,12],属陆坡—半深海沉积,但该类抱球虫软泥多为抱球虫体腔呈悬浮状分布于黏土和灰泥中,抱球虫体腔互不接触,虽有一定的孔隙度,但渗透率极低,不具油气开发价值[5]。由于研究区抱球虫灰岩具抱球虫含量高,泥质含量少,抱球虫颗粒分选好,显示为较强水动力作用下的沉积产物,依据构造演化[67,16]及古地理环境分析(图57),认为研究区北部发育碎屑岩三角洲,向南部过渡为粉砂质泥岩、泥岩及泥灰岩交互沉积,而在陆棚边缘古地貌高部位,发育抱球虫灰岩沉积,南部为陆坡及半深海含抱球虫泥灰岩及泥岩沉积。陆棚边缘沉积的抱球虫灰岩,微生物组成分析表明其浮游有孔虫属种由不同深度带、不同温度带属种组成,上升流性属种Globigerina bulloidesGloborotalia Menardii(s)的发育,指示研究区发育上升流。同时X⁃1井沉积环境分析,早上新世为中期旋回下降半旋回(图5),水体由深变浅,发育海退沉积旋回,自然伽玛值由上至下依次增加。表现在岩性上,随水深增加,泥质含量增加,其岩性由上部的抱球虫颗粒分选好、泥质含量少、水动力强的抱球虫颗粒灰岩,向下部过渡为泥质含量高,水动力作用弱的抱球虫泥灰岩(图5),故认为上部为受波浪作用强烈的浅海陆棚边缘沉积,下部为水动力较弱的陆坡环境沉积(图5)。综上分析,认为研究区为抱球虫灰岩的形成分二步(图8):一是生活在陆坡至半深海的不同水深,不同温带的抱球虫个体死亡后,由海底洋流和上升流等动力运移至陆棚边缘古隆起上沉积,因受沿岸流或者季风的影响,能量减弱,而在陆棚边缘堆积,二是抱球虫沉积后经受波浪等水动力作用冲刷、淘洗,从而形成了不同生态环境抱球虫属种组成的抱球虫颗粒滩(图8)。

    Figure 8.  Sedimentary model of Globigerinid limestone in the East Java Basin

    目前该区域已发现多个抱球虫灰岩油气田[14],表明因上升流作用而形成的这套抱球虫灰岩储层具有很大的油气勘探潜力。因此,今后应将上升流发育区带作为该区域油气勘探的重要区域,这拓展了海域油气田勘探开发的思路,对海域油气勘探有重要指导意义。

  • 通过对东爪哇盆地X⁃1井抱球虫灰岩储集体其微生物组成研究分析,发现研究区浮游有孔虫共发育7个属32个种。对抱球虫属种分布特征及其生态环境分析,认为研究区抱球虫属种主要为生活在不同深度带、不同温度区带浮游有孔虫属种的混合,并大量发育上升流指示性属种Globigerina bulloidesGloborotalia Menardii(s)。结合研究区古区域海流及古地理分析,提出研究区抱球虫灰岩是上升流作用的结果,认为该套灰岩是在上升流作用下,上升流携带陆坡及半深海沉积的浮游有孔虫个体,因受离岸流的影响,能量减弱,而在陆棚边缘沉积,并经受波浪等水动力作用冲刷、淘洗,从而形成抱球虫颗粒灰岩。这对研究区该类储层的沉积和成因有重要意义,并指出在研究区上升流发育区域,具有形成优质抱球虫灰岩的条件,应将该区带作为油气勘探的重要区域,这对海域油气勘探有重要指导意义。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return