[1]
|
Formaggia L, Guadagnini A, Imperiali I, et al. Uncertainty analysis of basin scale compaction processes[C]//EGU General Assembly 2012. Vienna: EGU, 2012: 7828. |
[2]
|
Formaggia L, Guadagnini A, Imperiali I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geoscience, 2013, 17(1):25-42. doi: 10.1007/s10596-012-9311-5 |
[3]
|
Porta G, Tamellini L, Lever V, et al. Inverse modeling of geochemical and mechanical compaction in sedimentary basins through polynomial chaos expansion[J]. Water Resource Research, 2014, 50(12):9414-9431. doi: 10.1002/2014WR015838 |
[4]
|
Giovanardi B, Scotti A, Formaggia L, et al. A general framework for the simulation of geochemical compaction[J]. Computational Geosciences, 2015, 19(5):1027-1046. doi: 10.1007/s10596-015-9518-3 |
[5]
|
Colombo I, Nobile F, Porta G, et al. Uncertainty quantification of geochemical and mechanical compaction in layered sedimentary basins[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328:122-146. doi: 10.1016/j.cma.2017.08.049 |
[6]
|
寿建峰, 张惠良, 斯春松, 等.砂岩动力成岩作用[M].北京:石油工业出版社, 2005:1-2.
Shou Jianfeng, Zhang Huiliang, Si Chunsong, et al. Dynamic diagenesis of sandstone[M]. Beijing:Petroleum Industry Press, 2005:1-2. |
[7]
|
李建忠, 郭彬程, 郑民, 等.中国致密砂岩气主要类型、地质特征与资源潜力[J].天然气地球科学, 2012, 23(4):607-615. http://d.old.wanfangdata.com.cn/Periodical/zghgmy201718217
Li Jianzhong, Guo Bincheng, Zheng Min, et al. Main types, geological features and resource potential of tight sandstone gas in China[J]. Natural Gas Geoscience, 2012, 23(4):607-615. http://d.old.wanfangdata.com.cn/Periodical/zghgmy201718217 |
[8]
|
纪友亮.油气储层地质学[M]. 2版.东营:中国石油大学出版社, 2009:55-61.
Ji Youliang. Petroleum reservoir geology[M]. 2nd ed. Dongying:China University of Petroleum Press, 2009:55-61. |
[9]
|
施辉, 刘震, 潘高峰, 等.沉积盆地碎屑岩地层孔隙度演化模型分析:以鄂尔多斯盆地延长组为例[J].地质科学, 2013, 48(3):732-746. doi: 10.3969/j.issn.0563-5020.2013.03.012
Shi Hui, Liu Zhen, Pan Gaofeng, et al. Clastic strata porosity evolution model analysis in sedimentary basins[J]. Chinese Journal of Geology, 2013, 48(3):732-746. doi: 10.3969/j.issn.0563-5020.2013.03.012 |
[10]
|
Fawad M, Mondol N H, Jahren J, et al. Mechanical compaction and ultrasonic velocity of sands with different texture and mineralogical composition[J]. Geophysical Prospecting, 2011, 59(4):697-720. doi: 10.1111/j.1365-2478.2011.00951.x |
[11]
|
Marcussen Ø, Thyberg B I, Peltonen C, et al. Physical properties of Cenozoic mudstones from the northern North Sea:Impact of clay mineralogy on compaction trends[J]. AAPG Bulletin, 2009, 93(1):127-150. doi: 10.1306/08220808044 |
[12]
|
Mondol N H, Bjørlykke K, Jahren J, et al. Experimental mechanical compaction of clay mineral aggregates-changes in physical properties of mudstones during burial[J]. Marine and Petroleum Geology, 2007, 24(5):289-311. doi: 10.1016/j.marpetgeo.2007.03.006 |
[13]
|
Peltonen C, Marcussen Ø, Bjørlykke K, et al. Mineralogical control on mudstone compaction:A study of Late Cretaceous to Early Tertiary mudstones of the Vøring and Møre basins, Norwegian Sea[J]. Petroleum Geoscience, 2008, 14:127-138. doi: 10.1144/1354-079308-758 |
[14]
|
Ajdukiewicz J M, Lander R H. Sandstone reservoir quality prediction:The state of the art[J]. AAPG Bulletin, 2010, 94(8):1083-1091. doi: 10.1306/intro060110 |
[15]
|
Bjørlykke K. Clay mineral diagenesis in sedimentary basins-a key to the prediction of rock properties. Examples from the North Sea Basin[J]. Clay Minerals, 1988, 33(1):15-34. doi: 10.1180-000985598545390/ |
[16]
|
Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of southwest Texas; implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 494(1):55-70. http://cn.bing.com/academic/profile?id=54ecaa30006341b70f68ee9917d15067&encoded=0&v=paper_preview&mkt=zh-cn |
[17]
|
Zadeh M K, Mondol N H, Jahren J. Compaction and rock properties of Mesozoic and Cenozoic mudstones and shales, northern North Sea[J]. Marine and Petroleum Geology, 2016, 76:344-361. doi: 10.1016/j.marpetgeo.2016.05.024 |
[18]
|
Athy L F. Density, porosity, and compaction of sedimentary rock[J]. AAPG Bulletin, 1930, 14(1):1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6041494bd398fc31dace86cb77e1788 |
[19]
|
Hedberg H D. Gravitational compaction of clays and shales[J]. American Journal of Science, 1936, 31(184):241-287. http://cn.bing.com/academic/profile?id=e3805037e769e1943207d0588c4d6180&encoded=0&v=paper_preview&mkt=zh-cn |
[20]
|
Lander R H, Walderhaug O. Predicting porosity through simulating sandstone compaction and quartz cementation[J]. AAPG Bulletin, 1999, 83(3):433-449. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027169131/ |
[21]
|
Bjørlykke K, Høeg K. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins[J]. Marine and Petroleum Geology, 1997, 14(3):267-276. doi: 10.1016/S0264-8172(96)00051-7 |
[22]
|
Bjørkum P A, Oelkers E H, Nadeau P H, et al. Porosity prediction in quartzose sandstones as a function of time, temperature, depth, stylolite frequency, and hydrocarbon saturation[J]. AAPG Bulletin, 1988, 82(4):637-648. http://cn.bing.com/academic/profile?id=cac638171216c88e9e40b469bad34413&encoded=0&v=paper_preview&mkt=zh-cn |
[23]
|
Giles M R, Indrelid S L, James D M D. Compaction-the great unknown in basin modelling[C]//Düppenbecker S J, Iliffe J E. Basin modelling: Practice and progress. Geological Society, London, Special Publication, 1988, 141(1): 15-43. |
[24]
|
Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6):633-642. |
[25]
|
Lundegard P D, Trevena A S. Sandstone diagenesis in the Pattani Basin(Gulf of Thailand):History of water-rock interaction and comparison with the gulf of Mexico[J]. Applied Geochemistry, 1990, 5(5/6):669-685. |
[26]
|
Oelkers E H, Bjørkum P A, Murphy W M. A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones[J]. American Journal of Science, 1996, 296(4):420-452. doi: 10.2475/ajs.296.4.420 |
[27]
|
Scherer M. Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J]. AAPG Bulletin, 1987, 71(5):485-491. doi: 10.1306-703C80FB-1707-11D7-8645000102C1865D/ |
[28]
|
Schmoker J W, Gautier D L. Compaction of basin sediments:Modeling based on time-temperature history[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B6):7379-7386. doi: 10.1029/JB094iB06p07379 |
[29]
|
Wangen M. The blanketing effect in sedimentary basins[J]. Basin Research, 1995, 7(4):283-298. doi: 10.1111/j.1365-2117.1995.tb00118.x |
[30]
|
Waples D W, Kamata H. Modeling porosity reduction as a series of chemical and physical processes[C]//Doré A G. Basin modelling: Advances and application. Amsterdam: Elsevier, 1993: 303-320. |
[31]
|
Aplin A C, Vasseur G. Some new developments for modelling the geological compaction of fine-grained sediments:Introduction[J]. Marine and Petroleum Geology, 1998, 15(2):105-108. doi: 10.1016/S0264-8172(98)00007-5 |
[32]
|
Tokunaga T, Hosoya S I, Kojima K, et al. Change of hydraulic properties of muddy deposits during compaction: Assessment of mechanical and chemical effect[C]//7th International Congress of the International Association of Engineering Geology, 1994; 635-643. |
[33]
|
刘震, 邵新军, 金博, 等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J].现代地质, 2007, 21(1):125-132. doi: 10.3969/j.issn.1000-8527.2007.01.016
Liu Zhen, Shao Xinjun, Jin Bo, et al. Co-effect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction[J]. Geoscience, 2007, 21(1):125-132. doi: 10.3969/j.issn.1000-8527.2007.01.016 |
[34]
|
刘明洁, 刘震, 刘静静, 等.鄂尔多斯盆地上三叠统延长组机械压实作用与砂岩致密过程及对致密化影响程度[J].地质论评, 2014, 60(3):655-665. http://d.old.wanfangdata.com.cn/Periodical/dzlp201403017
Liu Mingjie, Liu Zhen, Liu Jingjing, et al. The relationship between the mechanical compaction and the densification process of sandstones and the affect degree of compaction to the densifying of Yanchang Formation, Ordos Basin[J]. Geological Review, 2014, 60(3):655-665. http://d.old.wanfangdata.com.cn/Periodical/dzlp201403017 |
[35]
|
刘震, 孙迪, 李潍莲, 等.沉积盆地地层孔隙动力学研究进展[J].石油学报, 2016, 37(10):1193-1215. doi: 10.7623/syxb201610001
Liu Zhen, Sun Di, Li Weilian, et al. Advances in research on stratigraphic porodynamics of sedimentary basins[J]. Acta Petrolei Sinica, 2016, 37(10):1193-1215. doi: 10.7623/syxb201610001 |
[36]
|
刘明洁, 刘震, 刘静静, 等.砂岩储集层致密与成藏耦合关系:以鄂尔多斯盆地西峰-安塞地区延长组为例[J].石油勘探与开发, 2014, 41(2):168-175. http://d.old.wanfangdata.com.cn/Periodical/syktykf201402005
Liu Mingjie, Liu Zhen, Liu Jingjing, et al. Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation:A case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(2):168-175. http://d.old.wanfangdata.com.cn/Periodical/syktykf201402005 |
[37]
|
Nooraiepour M, Mondol N H, Hellevang H, et al. Experimental mechanical compaction of reconstituted shale and mudstone aggregates:Investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences[J]. Marine and Petroleum Geology, 2017, 80:265-292. doi: 10.1016/j.marpetgeo.2016.12.003 |
[38]
|
Bjørlykke K, Chuhan F, Kjeldstad A, et al. Modelling of sediment compaction during burial in sedimentary basins[J]. Elsevier Geo-Engineering Book Series, 2004, 2:699-708. doi: 10.1016/S1571-9960(04)80121-6 |
[39]
|
Makowitz A, Lander R H, Milliken K L. Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction[J]. AAPG Bulletin, 2006, 90(6):873-885. doi: 10.1306/12190505044 |
[40]
|
王旭, 刘树晖, 叶德胜, 等.塔里木盆地东北地区三叠系、侏罗系砂岩的压实作用及其石油地质意义[J].石油实验地质, 1993, 15(1):49-59.
Wang Xu, Liu Shuhui, Ye Desheng, et al. On the sandstone compaction of Jura-Trias systems and the petroleum geological significance in the Northeast Tarim Basin[J]. Experimental Petroleum Geology, 1993, 15(1):49-59. |
[41]
|
Bjørlykke K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301:1-14. doi: 10.1016/j.sedgeo.2013.12.002 |
[42]
|
Coulty N R, Sargent C, Andras P, et al. Compaction of diagenetically altered mudstones-Part 1:Mechanical and chemical contributions[J]. Marine and Petroleum Geology, 2016, 77:703-713. doi: 10.1016/j.marpetgeo.2016.07.015 |
[43]
|
Schmoker J W, Gautier D L. Sandstone porosity as a function of thermal maturity[J]. Geology, 1988, 16(11):1007-1010. doi: 10.1130/0091-7613(1988)016<1007:SPAAFO>2.3.CO;2 |
[44]
|
Aagaard P, Jahren J. Special issue introduction:Compaction processes-porosity, permeability and rock properties evolution in sedimentary basins[J]. Marine and Petroleum Geology, 2010, 27(8):1681-1683. doi: 10.1016/j.marpetgeo.2010.07.001 |
[45]
|
程启贵, 张磊, 郑海妮, 等.基于成岩作用定量表征的成岩-储集相分类及意义:以鄂尔多斯盆地王窑-杏河-侯市地区延长组长6油层组特低渗储层为例[J].石油天然气学报(江汉石油学院学报), 2010, 32(5):60-65. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201005013
Cheng Qigui, Zhang Lei, Zheng Haini, et al. Classification and significance of diagenesis-reservoir facies based on the quantitative characterization of diagenesis-by taking Chang-6 extra-low permeability reservoirs of Yanchang Formation of Triassic System in Wangyao-Xinghe-Houshi area of Ordos Basin for example[J]. Journal of Oil and Gas Technology, 2010, 32(5):60-65. http://d.old.wanfangdata.com.cn/Periodical/jhsyxyxb201005013 |
[46]
|
宋子齐, 王静, 路向伟, 等.特低渗透油气藏成岩储集相的定量评价方法[J].油气地质与采收率, 2006, 13(2):21-23. doi: 10.3969/j.issn.1009-9603.2006.02.007
Song Ziqi, Wang Jing, Lu Xiangwei, et al. An quantitative assessment method of the diagenetic reservoir facies in extra-low permeability oil-gas reservoir[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(2):21-23. doi: 10.3969/j.issn.1009-9603.2006.02.007 |
[47]
|
石良, 金振奎, 闫伟, 等.储层压实作用和胶结作用的压力响应特征[J].地球科学进展, 2015, 30(2):259-267. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201502007
Shi Liang, Jin Zhenkui, Yan Wei, et al. Characteristics of pressure response in detrital resveroir compaction and cementation[J]. Advances in Earth Science, 2015, 30(2):259-267. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201502007 |
[48]
|
Ehrenberg S N, Nadeau P H, Steen Ø. Petroleum reservoir porosity versus depth:Influence of geological age[J]. AAPG Bulletin, 2009, 93(10):1281-1296. doi: 10.1306/06120908163 |
[49]
|
Ehrenberg S N, Nadeau P H. Sandstone vs. carbonate petroleum reservoirs:A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89(4):435-445. doi: 10.1306/11230404071 |
[50]
|
何小胡, 刘震, 梁全胜, 等.沉积地层埋藏过程对泥岩压实作用的影响[J].地学前缘, 2010, 17(4):167-173. http://d.old.wanfangdata.com.cn/Periodical/dxqy201004014
He Xiaohu, Liu Zhen, Liang Quansheng, et al. The influence of burial history on mudstone compaction[J]. Earth Science Frontiers, 2010, 17(4):167-173. http://d.old.wanfangdata.com.cn/Periodical/dxqy201004014 |
[51]
|
Pittman E D, Larese R E. Compaction of lithic sands:Experimental results and applications[J]. AAPG Bulletin, 1991, 75(8):1279-1299. |
[52]
|
Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973, 57(2):349-369. |
[53]
|
牛海青, 陈世悦, 韩小锋.准噶尔盆地乌夏地区三叠系成岩作用及其影响因素[J].西安石油大学学报(自然科学版), 2010, 25(2):6-12. doi: 10.3969/j.issn.1673-064X.2010.02.002
Niu Haiqing, Chen Shiyue, Han Xiaofeng. Diagenesis of Triassic reservoir in Wuxia area of Junggar Basin and its influencing factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2010, 25(2):6-12. doi: 10.3969/j.issn.1673-064X.2010.02.002 |
[54]
|
卢红霞, 陈振林, 高振峰, 等.碎屑岩储层成岩作用的影响因素[J].油气地质与采收率, 2009, 16(4):53-55. doi: 10.3969/j.issn.1009-9603.2009.04.016
Lu Hongxia, Chen Zhenlin, Gao Zhenfeng, et al. Analysis on influencing factors of diagenesis in clastic reservoir[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(4):53-55. doi: 10.3969/j.issn.1009-9603.2009.04.016 |
[55]
|
Wilson J C, McBride E F. Compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California[J]. AAPG Bulletin, 1988, 72(6):664-681. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59416765ecf34c6ce85592530f9d9cdf |
[56]
|
寿建峰, 张惠良, 沈杨, 等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报, 2006, 22(8):2165-2170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608006
Shou Jian-feng, Zhang Huiliang, Shen Yang, et al. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J]. Acta Petrologica Sinica, 2006, 22(8):2165-2170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608006 |
[57]
|
奇林格V A..异常地层压力成因与预测[M].赵文智, 译.北京: 石油工业出版社, 2004: 15-51.
Serebryakov V A. Origin and prediction of abnormal formation pressures[M]. Zhao Wenzhi, trans. Beijing: Petroleum Industry Press, 2004: 15-51. |
[58]
|
Colombo I, Porta G M, Ruffo P, et al. Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins[J]. Hydrogeology Journal, 2017, 25(2):385-403. doi: 10.1007/s10040-016-1493-9 |
[59]
|
曾治平, 郝芳, 宋国奇, 等.车镇凹陷套尔河洼陷古地层压力演化与油气幕式成藏[J].石油与天然气地质, 2010, 31(2):194-197. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201002009
Zeng Zhiping, Hao Fang, Song Guoqi, et al. Palaeo-formation pressure evolution and episodic hydrocarbon accumulation in Tao' Erhe Depression, Chezhen Sag[J]. Oil & Gas Geology, 2010, 31(2):194-197. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201002009 |
[60]
|
徐晓明, 刘震, 肖伟, 等.二连盆地异常低压成因机理探讨[J].中国石油大学学报(自然科学版), 2007, 31(2):13-18. doi: 10.3321/j.issn:1000-5870.2007.02.003
Xu Xiaoming, Liu Zhen, Xiao Wei, et al. Investigation on genetic mechanism of subnormal pressure in Erlian Basin[J]. Journal of China University of Petroleum, 2007, 31(2):13-18. doi: 10.3321/j.issn:1000-5870.2007.02.003 |
[61]
|
孟元林, 张磊, 曲国辉, 等.异常低压背景下储集层成岩特征:以渤海湾盆地辽河坳陷西部凹陷南段古近系为例[J].石油勘探与开发, 2016, 43(4):669-674. http://d.old.wanfangdata.com.cn/Periodical/syktykf201604022
Meng Yuanlin, Zhang Lei, Qu Guohui, et al. Diagenetic characteristics under abnormally low pressure:A case from the Paleocene of southern Western Sag of Liaohe Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(4):669-674. http://d.old.wanfangdata.com.cn/Periodical/syktykf201604022 |
[62]
|
Paxton S T, Szabo J O, Ajdukiewicz J M, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J]. AAPG Bulletin, 2002, 86(12):2047-2067. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be6719f6f94f4631b86fe0e6e031d69b |
[63]
|
Schneider F, Hay S. Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, Mid-Norwegian Continental Shelf[J]. Marine and Petroleum Geology, 18(7):833-848. doi: 10.1016/S0264-8172(01)00032-0 |
[64]
|
Schneider F, Potdevin S, Wolf S, et al. Mechanical and chemical compaction model for sedimentary basin simulators[J]. Tectonophysics, 1996, 263(1/2/3/4):307-317. |
[65]
|
Schneider F, Nadeau P, Hay S. Model of shale permeability as a function of the temperature. Application to Mesozoic mudstones, Egersund Basin, Norwegian Continental Shelf[C]//EAGE 65th Conference & Exhibition, Stavanger, Norway, 2003:1-2. |
[66]
|
Chudi O K. Predicting Oligocene reservoir potential in the deep-water western Niger Delta: An integrated basic modelling and diagenetic study[D]. Heriot-Watt University, 2015, 28-55. |
[67]
|
庞雄奇, 汪文洋, 汪英勋, 等.含油气盆地深层与中浅层油气成藏条件和特征差异性比较[J].石油学报, 2015, 36(10):1167-1187. http://d.old.wanfangdata.com.cn/Periodical/syxb201510001
Pang Xiongqi, Wang Wenyang, Wang Yingxun, et al. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 2015, 36(10):1167-1187. http://d.old.wanfangdata.com.cn/Periodical/syxb201510001 |
[68]
|
Bloch B. Empirical prediction of porosity and permeability in sandstones[J]. AAPG Bulletin, 1991, 75(7):1145-1160. |
[69]
|
Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin, 1996, 80(5):732-745. |
[70]
|
Walderhaug O. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn Field, northern North Sea[J]. AAPG Bulletin, 2000, 84(9):1325-1339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95972be16962edf74d933cb935b3101b |
[71]
|
Heald M T, Renton J J. Experimental study of sandstone cementation[J]. Journal of Sedimentary Research, 1966, 36(4):977-991. |
[72]
|
Makowitz A, Sibley D F. Crystal growth mechanisms of quartz overgrowths in a Cambrian quartz arenite[J]. Journal of Sedimentary Research, 2001, 71(5):809-816. doi: 10.1306/2DC4096A-0E47-11D7-8643000102C1865D |
[73]
|
Lander R H, Larese R E, Bonnell L M. Toward more accurate quartz cement models:The importance of euhedral versus noneuhedral growth rates[J]. AAPG Bulletin, 2008, 92(11):1537-1563. doi: 10.1306/07160808037 |
[74]
|
Bjørlykke K, Egeberg P K. Quartz cementation in sedimentary basins[J]. AAPG Bulletin, 1993, 77(9):1538-1548. |
[75]
|
Hyodo A, Kozdon K, Pollington D A, et al. Evolution of quartz cementation and burial history of the Eau Claire Formation based on in situ oxygen isotope analysis of quartz overgrowths[J]. Chemical Geology, 2014, 384:168-180. doi: 10.1016/j.chemgeo.2014.06.021 |
[76]
|
Ehrenberg S N. Measuring sandstone compaction from modal analyses of thin sections; How to do it and what the results mean[J]. Journal of Sedimentary Research, 1995, 65(2a):369-379. doi: 10.1306/D42680C7-2B26-11D7-8648000102C1865D |
[77]
|
Maxwell J C. Influence of depth, temperature, and geologic age on porosity of quartzose sandstone[J]. AAPG Bulletin, 1964, 48(5):697-709. |
[78]
|
Hayes J B. Porosity evolution of sandstone related to vitrinite reflectance[J]. Organic Geochemistry, 1991, 17(2):117-129. doi: 10.1016/0146-6380(91)90070-Z |
[79]
|
Stephenson L P, Plumley W J, Palciauskas V V. A model for sandstone compaction by grain interpenetration[J]. Journal of Sedimentary Petrology, 1992, 62(1):11-22. |
[80]
|
Taylor J M. Pore-space reduction in sandstones[J]. AAPG Bulletin, 1950, 34(4):701-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e40c9a8846e681eab9b4a39ea66ff6e0 |
[81]
|
Ajdukiewicz J M, Paxton S T, Szabo J O. Deep porosity preservation in the Norphlet Formation, Mobile Bay, Alabama(abs)[J]. AAPG Bulletin, 1991, 75(3):533. |
[82]
|
Wilson M D, Stanton P T. Diagenetic mechanisms of porosity and permeability reduction and enhancement[M]//Wilson M D. Reservoir quality assessment and prediction in clastic rocks. Arizona: SEPM Society for Sedimentary Geology, 1994, 30: 59-118. |
[83]
|
Velde B, Vasseur G. Estimation of the diagenetic smectite-to-illite transformation in time-temperature space[J]. American Mineralogists, 1992, 77:967-976. |
[84]
|
Elliott W C, Matisoff G. Evaluation of kinetic models for the smectite to illite transformation[J]. Clays and Clay Minerals, 1996, 44(1):77-87. doi: 10.1346/CCMN.1996.0440107 |
[85]
|
Huang W L. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer[J]. Clays and Clay Minerals, 1993, 41(2):162-177. doi: 10.1346/CCMN.1993.0410205 |
[86]
|
Perez R J, Boles J R. An empirically derived kinetic model for albitization of detrital plagioclase[J]. American Journal of Science, 2005, 305(4):312-343. doi: 10.2475/ajs.305.4.312 |
[87]
|
Lander R H, Bonnell L M. A model for fibrous illite nucleation and growth in sandstones[J]. AAPG Bulletin, 2010, 94(8):1161-1187. doi: 10.1306/04211009121 |
[88]
|
Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction:Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8):1093-1132. doi: 10.1306/04211009123 |
[89]
|
Obinna C, Anaevune A, Lewis H. An integrated approach to reservoir quality prediction of untapped Oligocene reservoir offshore western Niger Delta[C]//SPE Nigeria Annual International Conference and Exhibition. Lagos: Society of Petroleum Engineer, 2016, doi: 10.2118/184273-MS. |
[90]
|
English K L, English J M, Bonnell L M, et al. Controls on reservoir quality in exhumed basins-An example from the Ordovician sandstone, Illizi Basin, Algeria[J]. Marine and Petroleum Geology, 2017, 80:203-227. doi: 10.1016/j.marpetgeo.2016.11.011 |
[91]
|
Chudi O K, Lewis H, Stow D A V, et al. Reservoir quality prediction of deep-water Oligocene sandstones from the west Niger Delta by integrated petrological, petrophysical and basin modelling[J]. Geological Society, London, Special Publication, 2016, 435(1):245-264. |
[92]
|
夏鲁, 刘震, 李潍莲, 等.砂岩压实三元解析减孔模型及其石油地质意义:以鄂尔多斯盆地十里加汗地区二叠系下石盒子组致密砂岩为例[J].石油勘探与开发, 2018, 45(2):275-286. http://d.old.wanfangdata.com.cn/Periodical/syktykf201802010
Xia Lu, Liu Zhen, Li Weilian, et al. Ternary analytic porosity-reduction model of sandstone compaction trend and its significance in petroleum geology:A case study of tight sandstones in Permian Lower Shihezi Formation of Shilijiahan area, Ordos Basin, China[J]. Petroleum Exploration and Development, 2018, 45(2):275-286. http://d.old.wanfangdata.com.cn/Periodical/syktykf201802010 |
[93]
|
Gluyas J, Cade C A. Prediction of porosity in compacted sands[M]//Kupecz J A, Gluyas J, Bloch S. Reservoir quality prediction in sandstones and carbonates. Tulsa, Oklahoma, U. S. A: AAPG, 1997, 69: 19-28. |
[94]
|
Rossi C, Alaminos A. Evaluating the mechanical compaction of quartzarenites:The importance of sorting(Llanos foreland basin, Colombia)[J]. Marine and Petroleum Geology, 2014, 56:222-238. doi: 10.1016/j.marpetgeo.2014.04.012 |
[95]
|
Marcussen Ø, Maast T E, Mondol N H, et al. Changes in physical properties of a reservoir sandstone as a function of burial depth-The Etive Formation, northern North Sea[J]. Marine and Petroleum Geology, 2010, 27(8):1725-1735. doi: 10.1016/j.marpetgeo.2009.11.007 |
[96]
|
O'Neilla S R, Jonesa S J, Kampb P J J, et al. Pore pressure and reservoir quality evolution in the deep Taranaki Basin, New Zealand[J]. Marine and Petroleum Geology, 2018, 98:815-835. doi: 10.1016/j.marpetgeo.2018.08.038 |
[97]
|
林承焰, 王文广, 董春梅, 等.储层成岩数值模拟研究现状及进展[J].中国矿业大学学报, 2017, 46(5):1084-1101. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201705016
Lin Chengyan, Wang Wenguang, Dong Chunmei, et al. State quo of reservoir diagenetic numerical simulation and its advancement[J]. Journal of China University of Mining & Technology, 2017, 46(5):1084-1101. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201705016 |
[98]
|
冯佳睿, 高志勇, 崔京钢, 等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价:埋藏方式制约下的成岩物理模拟实验研究[J].地球科学进展, 2018, 33(3):305-320. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201803008
Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression:Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3):305-320. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201803008 |
[99]
|
冯佳睿, 高志勇, 崔京钢, 等.准南斜坡带砂岩储层孔隙演化特征与有利储层评价:基于成岩物理模拟实验研究[J].地质科技情报, 2014, 33(5):135-140, 148.
Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the slope belt in the southern margin of the Junggar Basin:Insight from diagenesis modeling experiments[J]. Geological Science and Technology Information, 2014, 33(5):135-140, 148. |
[100]
|
操应长, 葸克来, 王健, 等.砂岩机械压实与物性演化成岩模拟实验初探[J].现代地质, 2011, 25(6):1152-1158. doi: 10.3969/j.issn.1000-8527.2011.06.014
Cao Yingchang, Xi Kelai, Wang Jian, et al. Preliminary discussion of simulation experiments on the mechanical compaction and physical property evolution of sandstones[J]. Geoscience, 2011, 25(6):1152-1158. doi: 10.3969/j.issn.1000-8527.2011.06.014 |
[101]
|
吴松涛, 孙亮, 崔京钢, 等.正演模式下成岩作用的温压效应机理探讨与启示[J].地质评论, 2014, 60(4):791-798. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404009
Wu Songtao, Sun Liang, Cui Jinggang, et al. Effect of temperature and pressure on diagenesis using forward modeling[J]. Geological Review, 2014, 60(4):791-798. http://d.old.wanfangdata.com.cn/Periodical/dzlp201404009 |
[102]
|
侯高峰, 纪友亮, 吴浩, 等.物理模拟法定量表征碎屑岩储层物性影响因素[J].地质科技情报, 2017, 36(4):153-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704019
Hou Gaofeng, Ji Youliang, Wu Hao, et al. Quantitative characterization on the influence factors of porosity and permeability characteristics of clastic reservoirs by physical experiment simulation[J]. Geological Science and Technology Information, 2017, 36(4):153-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704019 |
[103]
|
Chuhan F A, Kjeldstad A, Bjørlykke K, et al. Experimental compression of loose sands:Relevance to porosity reduction during burial in sedimentary basins[J]. Canadian Geotechnical Journal, 2003, 40(5):995-1011. doi: 10.1139/t03-050 |
[104]
|
Chester J S, Lenz S C, Chester F M, et al. Mechanisms of compaction of quartz sand at diagenetic conditions[J]. Earth and Planetary Science Letters, 2004, 220(3/4):435-451. |
[105]
|
Baud P, Klein E, Wong T F. Compaction localization in porous sandstones:Spatial evolution of damage and acoustic emission activity[J]. Journal of Structural Geology, 2004, 26(4):603-624. doi: 10.1016/j.jsg.2003.09.002 |
[106]
|
Zanella A, Cobbold P R, de Veslud C L C. Physical modelling of chemical compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-rich source rock[J]. Marine and Petroleum Geology, 2014, 55:262-274. doi: 10.1016/j.marpetgeo.2013.12.017 |
[107]
|
孟元林, 王志国, 杨俊生, 等.成岩作用过程综合模拟及其应用[J].石油实验地质, 2003, 25(2):211-215, 220. doi: 10.3969/j.issn.1001-6112.2003.02.020
Meng Yuan-lin, Wang Zhiguo, Yang Junsheng, et al. Comprehensive process-oriented simulation of diagenesis and its application[J]. Petroleum Geology & Experiment, 2003, 25(2):211-215, 220. doi: 10.3969/j.issn.1001-6112.2003.02.020 |
[108]
|
刘国勇, 金之钧, 张刘平.碎屑岩成岩压实作用模拟实验研究[J].沉积学报, 2006, 24(3):407-413. doi: 10.3969/j.issn.1000-0550.2006.03.013
Liu Guoyong, Jin Zhijun, Zhang Liuping. Simulation study on clastic rock diagenetic compaction[J]. Acta Sedimentologica Sinica, 2006, 24(3):407-413. doi: 10.3969/j.issn.1000-0550.2006.03.013 |
[109]
|
刘国勇, 刘阳, 张刘平.压实作用对砂岩储层物性的影响[J].西安石油大学学报(自然科学版), 2006, 21(4):24-28, 41. doi: 10.3969/j.issn.1673-064X.2006.04.006
Liu Guoyong, Liu Yang, Zhang Liuping. Experimental study on the effects of compaction on the properties of sandstone reservoir[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2006, 21(4):24-28, 41. doi: 10.3969/j.issn.1673-064X.2006.04.006 |
[110]
|
Szabo J O, Paxton S T. Intergranular volume(IGV)decline curves for evaluating and predicting compaction and porosity loss in sandstones[C]//AAPG Annual Convention, 1991, (5): 678. |
[111]
|
Lu X, Liu Z, Li W L, et al. Initial porosity and compaction of consolidated sandstone in Hangjin Qi, North Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2018, 166:324-336. doi: 10.1016/j.petrol.2018.02.060 |