HTML
-
长山组顶部厚层块状泥晶灰岩中发育一系列的米级穹窿状构造,这些穹窿状构造形成了图 4所示的生物丘。这些生物丘与围岩有明显界限,主体由无明显纹层状或凝块状组构发育的均一石构成。均一石这一概念最早由Braga et al. [26]提出,由Riding[3-4]与梅冥相[42]将其与叠层石、凝块石、树形石、核形石、纹理石并列为六种微生物岩。这些均一石为主体构成的生物丘,在形态上类似于“碳酸盐岩泥丘”[43],同时在成因上相近于“微生物礁”[44-45],由细粒泥晶为基本构成的均一石和长山组顶部灰岩的块状构造,代表低能环境产物与代表高能环境构造的矛盾,从而表明这些均一石生物丘来源于微生物席在动荡水环境中固着底栖沉积的碳酸盐岩建造。
-
野外针对均一石生物丘进行采样,并对灰岩样品进行全岩XRD矿物组分分析与全岩碳氧同位素分析。XRD分析结果显示,均一石生物丘主要矿物为方解石,含少量白云石,石英、黄铁矿与黏土矿物(表 1、图 5)。均一石生物丘碳氧同位素测试结果显示,δ 13CPDB值为低正值、δ18OPDB值为中负值,这一特征与均一石生物丘形成所需的水体环境相吻合:均一石生物丘形成于浅缓坡环境,海水中碳氧轻同位素蒸发,重同位素富集,从而使得灰岩中δ 13C、δ 18O同位素值升高。
样品编号 矿物成分含量/% 石英石 方解石 白云石 黄铁矿 黏土矿物 QJCS-1 2 95 3 QJCS-2 3 95 QJCS-3 2 97 1 1 QJCS-4 2 95 2 1 Table 1. XRD results of carbonate rocks forming the leiolitic bioherm
-
前人研究表明,灰岩的碳氧同位素值与形成环境盐度具有相关性,Keith et al.[46]将碳酸盐岩的δ 13CPDB与δ 18OPDB,二者结合起来,用以指示古盐度,以Z值区分海相灰岩和淡水石灰岩。Z值大于120为海相,小于120为陆相,其中Z=2.048(δ 13C+50)+0.498(δ 18O+50),δ 13CPDB和δ 18OPDB采用PDB标准。从结果中可见(表 2),长山组均一石生物丘样品Z值均大于120,结果符合其海相成因。
样品编号 δ 13CPDB/‰ 均值 δ 18OPDB/‰ 均值 Z值 t/℃ QJCS-1 0.42 0.36 -6.90 -7.19 124.72 52.08 QJCS-2 0.24 -6.88 124.37 51.97 QJCS-3 0.51 -6.85 124.93 51.81 QJCS-4 0.27 -8.16 123.79 58.90 注:成岩温度计算公式为:t =-258.4-5.41δ 18OPDB; 盐度Z值计算公式:Z =2.048×(δ 13CPDB+50)+0.498×(δ 18OPDB+50)。 Table 2. Carbon and oxygen isotopic data for carbonate rocks from leiolitic bioherm in Qijiayu section
-
灰岩形成过程中,温度对δ 18OPDB值影响较大,而δ 13CPDB值对温度变化反应不敏感,在盐度无剧烈变化情况下,δ 18OPDB值随温度升高而降低。因此,许多学者提出了应用δ 18OPDB值来测定其形成的温度[47]。本文采用t=-258.4-5.41δ 18OPDB来计算均一石生物丘中方解石的形成温度。结果显示最高温度计算值为58.90 ℃,最低温度计算值为51.81 ℃(表 2)。碳酸盐岩中δ 18OPDB值随着地质历史的变迁发生较大变化。时代越老、成岩作用时间越长,氧同位素交换愈强,δ 18OPDB值就愈低。所以上述方法的应用受到很大限制,计算出来的温度已不代表原始沉积水体温度。虽然如此,该值仍然具有一定参考价值,特别对反映成岩作用强弱,具有定性意义[48]。
2.1 均一石生物丘宏观特征
2.2 均一石生物丘地球化学分析
2.2.1 海水盐度
2.2.2 成岩温度
[1] | Bosence D W J, Gibbons K A, Heron D P L, et al. Microbial carbonates in space and time: Implications for global exploration and production[J]. Geological Society London Special Publications, 2015, 481: 437-454. | |
[2] | Dupraz C, Reid R P, Visscher P T. Microbialites, modern[M]//Reitner J, Thiel V. Encyclopedia of Geobiology. Netherlands: Springer, 2011: 617-635. | |
[3] | Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214. | |
[4] | Riding R. Microbialites, stromatolites, and thrombolites[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 635-654. | |
[5] | Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115. | |
[6] | Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4): 229-238. | |
[7] | 杨孝群, 李忠. 微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J]. 沉积学报, 2018, 36(4): 639-650. | Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks: A review based on the 33rd International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2018, 36(4): 639-650. |
[8] | Wood R. Reef evolution[M]. Oxford:Oxford University Press, 1999:1-414. | |
[9] | Kiessling W. Geologic and biologic controls on the evolution of reefs[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1): 173-192. doi: 10.1146/annurev.ecolsys.110308.120251 | |
[10] | Myrow P M, Tice L, Archuleta B. Flat-pebble conglomerate: Its multiple origins and relationship to metre-scale depositional cycles[J]. Sedimentology, 2004, 51(5): 973-996. doi: 10.1111/j.1365-3091.2004.00657.x | |
[11] | Pratt B R, Bordonar O L. Tsunamis in a stormy sea: Middle Cambrian inner-shelf limestones of western Argentina[J]. Journal of Sedimentary Research, 2007, 77(4): 256-262. doi: 10.2110/jsr.2007.032 | |
[12] | Pruss S B, Finnegan S, Fischer W W. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25(): 73-84. doi: 10.2110/palo.2009.p09-101r | |
[13] | 梅冥相, 郭荣涛, 胡媛. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报, 2011, 27(8): 2473-2486. | Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8): 2473-2486. |
[14] | Liu W, Zhang X L. Calcified biofilms from Cambrian oolitic limestones in China[J]. Acta Geologica Sinica (English Edition), 2015, 89(1): 70-76. doi: 10.1111/1755-6724.12395 | |
[15] | 韩作振, 陈吉涛, 张晓蕾. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J]. 地质学报, 2009, 83(8): 1097-1103. doi: 10.3321/j.issn:0001-5717.2009.08.006 | Han Zuozhen, Chen Jitao, Zhang Xiaolei. Characteristics of Epiphyton and Epiphyton Microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Geologica Sinica, 2009, 83(8): 1097-1103. doi: 10.3321/j.issn:0001-5717.2009.08.006 |
[16] | 张文浩, 史晓颖, 汤冬杰. 华北地台西缘早—中寒武世过渡期核形石:微生物群落对浅海缺氧环境的响应[J]. 古地理学报, 2014, 16(3): 305-318. | Zhang Wenhao, Shi Xiaoying, Tang Dongjie. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform: A response of microbial community to shallow marine anoxia[J]. Journal of Palaeogeography, 2014, 16(3): 305-318. |
[17] | 王皓, 肖恩照. 山西灵丘刁泉剖面寒武系第三统张夏组核形石[J]. 东北石油大学学报, 2018, 42(5): 44-53. doi: 10.3969/j.issn.2095-4107.2018.05.005 | Wang Hao, Xiao Enzhao. Oncolites in Cambrian Series 3 at Diaoquan section in Lingqiu, Shanxi[J]. Journal of Northeast Petroleum University, 2018, 42(5): 44-53. doi: 10.3969/j.issn.2095-4107.2018.05.005 |
[18] | 代明月, 齐永安, 常玉光. 河南登封地区寒武系第三统馒头组二段中的核形石及其意义[J]. 沉积学报, 2014, 32(3): 410-417. | Dai Mingyue, Qi Yong'an, Chang Yuguang. Oncoids and their significance from the Second member of the Mantou Formation (Cambrian Series 3), Dengfeng area, Henan[J]. Acta Sedimentologica Sinica, 2014, 32(3): 410-417. |
[19] | 梅冥相, 刘丽, 胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报, 2015, 89(2): 440-460. | Mei Ming-xiang, Liu Li, Hu Yuan. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing, North China[J]. Acta Geologica Sinica, 2015, 89(2): 440-460. |
[20] | Woo J, Chough S K, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong province, China[J]. Palaios, 2008, 23(1): 55-64. doi: 10.2110/palo.2006.p06-103r | |
[21] | 陈金勇, 韩作振, 范洪海. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J]. 沉积学报, 2014, 32(3): 494-502. | Chen Jinyong, Han Zuozhen, Fan Honghai. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3): 494-502. |
[22] | Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4): 299-316. doi: 10.1111/j.1472-4669.2006.00087.x | |
[23] | Xiao E Z, Latif K, Riaz M. Calcified microorganisms bloom in Furongian of the North China platform: Evidence from Microbialitic-Bioherm in Qijiayu Section, Hebei[J]. Open Geosciences, 2018, 10(1): 250-260. doi: 10.1515/geo-2018-0019 | |
[24] | 梅冥相. 淹没不整合型碳酸盐三级旋回层序:兼论碳酸盐台地的"凝缩作用"[J]. 岩相古地理, 1996, 16(6): 24-33. | Mei Mingxiang. The third-order carbonate cyclic sequences of drowned unconformity type with discussion on "condensation" of carbonate platform[J]. Sedimentary Facies and Palaeogeography, 1996, 16(6): 24-33. |
[25] | 肖恩照, 隋明园, 覃英伦. 河北涞源祁家峪剖面寒武系层序地层划分[J]. 大庆石油地质与开发, 2017, 36(6): 16-25. | Xiao Enzhao, Sui Mingyuan, Qing Yinglun. Cambrian sequence stratigraphic division for Qijiayu section in Hebei Laiyuan[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6): 16-25. |
[26] | Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain[J]. Palaios, 1995, 10(4): 347-361. doi: 10.2307/3515160 | |
[27] | Hillgärtner H, Dupraz C, Hug W A. Microbially induced cementation of carbonate sands: Are micritic meniscus cements good indicators of vadose diagenesis?[J]. Sedimentology, 2001, 48(1): 117-131. doi: 10.1046/j.1365-3091.2001.00356.x | |
[28] | Dupraz C, Visscher P T, Baumgartner L K. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 2004, 51(4): 745-765. doi: 10.1111/j.1365-3091.2004.00649.x | |
[29] | 肖恩照, 覃英伦, RiazM. 吕梁山东北缘寒武系层序地层划分:以文水苍尔会剖面为例[J]. 东北石油大学学报, 2017, 41(5): 43-53. doi: 10.3969/j.issn.2095-4107.2017.05.005 | Xiao Enzhao, Qin Yinglun, Riaz M. Sequence stratigraphy division of Cambrian in the northeast area of Luliang Mountain: A case study of the Cangerhui section in Wenshui city[J]. Journal of Northeast Petroleum University, 2017, 41(5): 43-53. doi: 10.3969/j.issn.2095-4107.2017.05.005 |
[30] | 梅冥相. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J]. 中国地质, 2011, 38(2): 317-337. doi: 10.3969/j.issn.1000-3657.2011.02.008 | Mei Mingxiang. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing[J]. Geology in China, 2011, 38(2): 317-337. doi: 10.3969/j.issn.1000-3657.2011.02.008 |
[31] | Meng, X H, Ge, M, Tucker, M E, Sequence Sequence stratigraphy, sea-level changes and depositional systems in the CambroOrdovician of the North China carbonate platform[J]. Sedimentary Geology, 1997, 114(1):189-222 | |
[32] | 肖恩照, 隋明园, LatifK. 微生物白云岩形成机制研究进展与存在问题[J]. 大庆石油地质与开发, 2017, 36(2): 26-32. doi: 10.3969/J.ISSN.1000-3754.2017.02.004 | Xiao Enzhao, Sui Mingyuan, Latif K. Study advances and existed problem for the forming mechanism of the microbial dolomite[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(2): 26-32. doi: 10.3969/J.ISSN.1000-3754.2017.02.004 |
[33] | 彭善池. 华南寒武系年代地层系统的修订及相关问题[J]. 地层学杂志, 2008, 32(3): 239-245. doi: 10.3969/j.issn.0253-4959.2008.03.002 | Peng Shanchi. Revision on Cambrian chronostratigraphy of South China and related remarks[J]. Journal of Stratigraphy, 2008, 32(3): 239-245. doi: 10.3969/j.issn.0253-4959.2008.03.002 |
[34] | 樊隽轩, 彭善池, 侯旭东. 国际地层委员会官网与《国际年代地层表》(2015/01版)[J]. 地层学杂志, 2015, 39(2): 125-134. | Fan Junxuan, Peng Shanchi, Hou Xudong. Official website of the International Commission on Stratigraphy and the release of the international chronostratigraphic chart (V2015/01)[J]. Journal of Stratigraphy, 2015, 39(2): 125-134. |
[35] | Mei M M, Ma Y S, Deng J. From cycles to sequences: Sequence stratigraphy and relative sea level change for the Late Cambrian of the North China Platform[J]. Acta Geologica Sinica (English Edition), 2005, 79(3): 372-383. doi: 10.1111/j.1755-6724.2005.tb00902.x | |
[36] | Mei M M, Ma Y S, Zhang H. From basin black shales to platform carbonate rocks: A study on sequence stratigraphy for the Lower Cambrian of the upper-Yangtze region in South China[J]. Acta Geologica Sinica (English Edition), 2015, 81(5): 739-755. | |
[37] | Schlager W, Warrlich G. Record of sea-level fall in tropical carbonates[J]. Basin Research, 2009, 21(2): 209-224. doi: 10.1111/j.1365-2117.2008.00383.x | |
[38] | Schlager W. Type 3 sequence boundaries[M]//Harris P, Saller A and Simo A. Carbonate sequence stratigraphy: Application to reservoirs, outcrops and models. SEPM Special Publication, Tulsa, 1999, 63: 35-46. | |
[39] | Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level'fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9. | |
[40] | Helland-Hansen W, Gjelberg J G. Conceptual basis and variability in sequence stratigraphy: A different perspective[J]. Sedimentary Geology, 1994, 92(1/2): 31-52. | |
[41] | Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level: Part 3: Relative changes of sea level from coastal onlap[M]//Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulso, Okla: AAPG Memoir, 1977: 63-81. | |
[42] | 梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5): 222-234. doi: 10.3321/j.issn:1005-2321.2007.05.022 | Mei Mingxiang. Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5): 222-234. doi: 10.3321/j.issn:1005-2321.2007.05.022 |
[43] | Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231. | |
[44] | Hong J, Cho S H, Choh S J. Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi formation, Korea): Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event[J]. Sedimentary Geology, 2012, 253-254(): 47-57. doi: 10.1016/j.sedgeo.2012.01.011 | |
[45] | Chen J T, Lee J H, Woo J. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414(): 246-259. doi: 10.1016/j.palaeo.2014.09.004 | |
[46] | Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 18(10/11): 1787-1816. | |
[47] | 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30. | Zhang Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Journal of Sedimentology, 1985, 3(4): 17-30. |
[48] | 刘德良, 孙先如, 李振生. 鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J]. 石油实验地质, 2006, 28(2): 155-161. doi: 10.3969/j.issn.1001-6112.2006.02.012 | Liu Deliang, Sun Xianru, Li Zhensheng. Analysis of carbon and oxygen isotope on the Ordovician dolostones in the Ordos Basin[J]. Petroleum Geology & Experiment, 2006, 28(2): 155-161. doi: 10.3969/j.issn.1001-6112.2006.02.012 |
[49] | Woo J, Chough S K. Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton[J]. Sedimentary Geology, 2010, 229(1/2): 1-8. | |
[50] | Laval B, Cady S L, Pollack J C. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804): 626-629. doi: 10.1038/35036579 | |
[51] | Adachi N, Ezaki Y, Liu J B. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 407(): 45-55. doi: 10.1016/j.palaeo.2014.04.013 | |
[52] | Adachi N, Kotani A, Ezaki Y. Cambrian series 3 lithistid sponge-microbial reefs in Shandong province, North China: Reef development after the disappearance of archaeocyaths[J]. Lethaia, 2015, 48(3): 405-416. doi: 10.1111/let.12118 | |
[53] | Luchinina V A, Terleev A A. The morphology of the genus Epiphyton bornemann[J]. Geologia Croatica, 2008, 61(2/3): 105-111. | |
[54] | Latif K, Xiao E Z, Riaz M. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong (North China Platform)[J]. Carbonates and Evaporites, 2019, 34(): 825-843. doi: 10.1007/s13146-018-0472-8 | |
[55] | Pratt B R. Epiphyton and Renalcis; diagenetic microfossils from calcification of coccoid blue-green algae[J]. Journal of Sedimentary Research, 1984, 54(3): 948-971. | |
[56] | Riding R. Temporal variation in calcification in marine cyanobacteria[J]. Journal of the Geological Society, 1991, 149(6): 979-989. | |
[57] | Riding R. Calcified cyanobacteria[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Heidelberg: Springer, 2011: 211-223. | |
[58] | Săsăran E, Bucur I I, Pleş G. Late Jurassic Epiphyton-like cyanobacteria: Indicators of long-term episodic variation in marine bioinduced microbial calcification[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 401(): 122-131. doi: 10.1016/j.palaeo.2014.02.026 | |
[59] | Adame M F, Pettit N E, Valdez D. The contribution of epiphyton to the primary production of tropical floodplain wetlands[J]. Biotropica, 2017, 49(4): 461-471. doi: 10.1111/btp.12445 | |
[60] | Hughes G W. Late Permian to Late Jurassic "microproblematica" of Saudi Arabia: Possible palaeobiological assignments and roles in the palaeoenviromental reconstructions[J]. GeoArabia, 2013, 18(1): 57-92. | |
[61] | 常玉光, 孙凤余, 郑伟. 豫西寒武纪叠层石微生物化石及其钙化特征[J]. 现代地质, 2014, 28(2): 271-280. doi: 10.3969/j.issn.1000-8527.2014.02.004 | Chang Yuguang, Sun Fengyu, Zheng Wei. Microorganism fossils and calcification characteristics of Cambrian stromatolites, western Henan[J]. Geoscience, 2014, 28(2): 271-280. doi: 10.3969/j.issn.1000-8527.2014.02.004 |
[62] | Liu L J, Wu Y S, Yang H J. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: Systematics and significance[J]. Journal of Systematic Palaeontology, 2016, 14(3): 183-210. doi: 10.1080/14772019.2015.1030128 | |
[63] | Liu L J, Wu Y S, Jiang H X. Paleoenvironmental distribution of Ordovician calcimicrobial associations in the Tarim Basin, Northwest China[J]. Palaios, 2017, 32(7): 462-489. doi: 10.2110/palo.2016.054 | |
[64] | Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in the laboratory[J]. Geomicrobiology Journal, 2006, 23(7): 545-550. doi: 10.1080/01490450600897302 | |
[65] | Gerdes G, Dunajtschik-Piewak K, Riege H. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6): 1273-1294. doi: 10.1111/j.1365-3091.1994.tb01453.x | |
[66] | Sack P J, Large R R, Gregory D D. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn Basin area, Yukon[J]. Mineralium Deposita, 2018, 53(7): 997-1018. doi: 10.1007/s00126-018-0793-5 | |
[67] | Merinero R, Cárdenes, V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth[J]. Mineralogy and Petrology, 2017, 112(4):577-589. | |
[68] | Baumgartner L K, Reid R P, Dupraz C. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4): 131-145. | |
[69] | Wei H Y, Wei X M, Qiu Z. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440(): 1-14. doi: 10.1016/j.chemgeo.2016.07.009 | |
[70] | 周杰, 邱振, 王红岩. 草莓状黄铁矿形成机制及其研究意义[J]. 地质科学, 2017, 52(1): 242-253. | Zhou Jie, Qiu Zhen, Wang Hongyan. Formation mechanism of pyrite framboid and its research significance[J]. Chinese Journal of Geology, 2017, 52(1): 242-253. |
[71] | Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862. doi: 10.1016/0016-7037(83)90151-5 | |
[72] | Maclean L C, Tyliszczak T, Gilbert P U. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 2010, 6(5): 471-480. | |
[73] | Schieber J. Sedimentary pyrite: A window into the microbial past[J]. Geology, 2002, 30(6): 531-534. doi: 10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2 | |
[74] | Fan R, Deng S H, Zhang X L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China Earth Sciences, 2011, 54(11): 1686-1695. doi: 10.1007/s11430-011-4313-z | |
[75] | 郝松立, 李文厚, 刘建平. 鄂尔多斯南缘奥陶系生物礁相碳酸盐岩碳氧同位素地球化学特征[J]. 地质科技情报, 2011, 30(2): 52-56. doi: 10.3969/j.issn.1000-7849.2011.02.009 | Hao Songli, Li Wenhou, Liu Jianping. Characteristics of carbon and oxygen isotopes geochemistry of organic reef facies carbonates of Ordovician in southern margin of Ordos[J]. Geological Science & Technology Information, 2011, 30(2): 52-56. doi: 10.3969/j.issn.1000-7849.2011.02.009 |
[76] | Perry R S, Mcloughlin N, Lynne B Y. Defining biominerals and organominerals: Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1/2): 157-179. | |
[77] | Dupraz C, Reid R P, Braissant O. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162. doi: 10.1016/j.earscirev.2008.10.005 | |
[78] | Bogs S Jr. Petrology of sedimentary rocks[M]. 2nd edition. Cambridge:Cambridge University Press, 2009, 1-600. |