Advanced Search

LI XiangBo, LIU HuaQing, PAN ShuXin, WANG Jing. The Past,Present and Future of Research on Deep-water Sedimentary Gravity Flow in Lake Basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921. doi: 10.14027/j.issn.1000-0550.2018.193
Citation: LI XiangBo, LIU HuaQing, PAN ShuXin, WANG Jing. The Past,Present and Future of Research on Deep-water Sedimentary Gravity Flow in Lake Basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921. doi: 10.14027/j.issn.1000-0550.2018.193

The Past,Present and Future of Research on Deep-water Sedimentary Gravity Flow in Lake Basins of China

doi: 10.14027/j.issn.1000-0550.2018.193
Funds:  National Natural Science Foundation of China, No. 41772099, 41872116; National Science and Technology Major Proect,No.2017ZX05001-003; Major Science and Technology Projects of China Petroleum and Natural Gas Corporation, No.2016B-0302
  • Received Date: 2018-04-11
  • Rev Recd Date: 2018-12-12
  • Publish Date: 2019-10-10
  • Deep-water gravity flow deposition is the hotspot of current global oil and gas exploration and research. The study of deep-water gravity flow sedimentation in continental basins in China has been conducted over the past 50 years. It has occurred in three stages:exploration and development of turbidity flow theory (1970-1980s);the industrial application of turbidity flow theory (1990-2000);and sandy debris flow (since 2010). In the past decade,with the development of international deep-water deposition theory and the progress of oil and gas exploration technology in China,research on deep-water sedimentation in lacustrine basins has progressed rapidly and a great deal of new achievements and new understandings have emerged. There are mainly four aspects: (1)There are at least four kinds of gravity flow and traction flow deposition in the deep waters of the center of a lacustrine basin:turbidity flow,hyperpycnal flow,sandy debris flow and bottom flow. (2)Transformations of different types of fluids in the lacustrine occur during the processes of transportation and deposition,forming a hybrid event bed. (3)It has been established that the presence of mud-coated intraclasts indicates sediment transport in lacustrine sandy debris flows. (4)The theories and techniques of seismic sedimentology have been widely used in the analysis of internal sedimentary units of lacustrine gravity flow and to establish sedimentary models in deep-water lacustrine basins,and have achieved great success. Looking to the future,in order to meet the exploration and development needs of the oil and gas industry,the research and development trends of deep-water sediments in lacustrine basins are mainly as follows: (a)the genetic type division of deepwater sandbody,the transportation-deposition process,and the establishment and improvement of it sedimentary model; (b)the genetic mechanism,type division and its significance to oil and gas in deep-water shale (fine sediments); (c)studies of "source-sink" systems and seismic response and evaluation and prediction; (d)experimental simulation of the process of transportation-sedimentation of deep-water sediments;and (e)the establishment of new theories about systems of deep-water deposition and their application in oil and gas exploration and development.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.3 %FULLTEXT: 15.3 %META: 60.4 %META: 60.4 %PDF: 24.3 %PDF: 24.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %其他: 1.0 %其他: 1.0 %Canada: 0.1 %Canada: 0.1 %China: 0.9 %China: 0.9 %Morocco: 0.1 %Morocco: 0.1 %Rochester: 0.2 %Rochester: 0.2 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %United States: 0.7 %United States: 0.7 %[]: 1.2 %[]: 1.2 %上海: 1.4 %上海: 1.4 %东京: 0.1 %东京: 0.1 %东莞: 0.8 %东莞: 0.8 %东营: 1.2 %东营: 1.2 %临汾: 0.2 %临汾: 0.2 %临沂: 0.1 %临沂: 0.1 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %九江: 0.2 %九江: 0.2 %佛山: 0.1 %佛山: 0.1 %保山: 0.1 %保山: 0.1 %克拉玛依: 0.7 %克拉玛依: 0.7 %兰州: 3.9 %兰州: 3.9 %凉山: 0.2 %凉山: 0.2 %北京: 8.0 %北京: 8.0 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南昌: 0.5 %南昌: 0.5 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %和田: 0.1 %和田: 0.1 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %城南: 0.1 %城南: 0.1 %大庆: 0.4 %大庆: 0.4 %大连: 0.4 %大连: 0.4 %天津: 2.1 %天津: 2.1 %太原: 0.8 %太原: 0.8 %安康: 0.3 %安康: 0.3 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %巴音郭楞: 0.4 %巴音郭楞: 0.4 %常州: 0.3 %常州: 0.3 %广州: 1.4 %广州: 1.4 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.5 %廊坊: 0.5 %延安: 0.1 %延安: 0.1 %张家口: 3.2 %张家口: 3.2 %成都: 1.5 %成都: 1.5 %扬州: 0.1 %扬州: 0.1 %昆明: 0.7 %昆明: 0.7 %昌吉: 0.1 %昌吉: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.5 %杭州: 0.5 %武汉: 3.2 %武汉: 3.2 %江门: 0.1 %江门: 0.1 %沈阳: 0.4 %沈阳: 0.4 %沧州: 0.1 %沧州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %海口: 0.5 %海口: 0.5 %淄博: 0.2 %淄博: 0.2 %深圳: 1.1 %深圳: 1.1 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湛江: 0.5 %湛江: 0.5 %滨州: 0.1 %滨州: 0.1 %漯河: 0.8 %漯河: 0.8 %烟台: 0.2 %烟台: 0.2 %焦作: 0.2 %焦作: 0.2 %牡丹江: 0.1 %牡丹江: 0.1 %白山: 0.1 %白山: 0.1 %盘锦: 0.5 %盘锦: 0.5 %盘锦市兴隆台区: 0.1 %盘锦市兴隆台区: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.3 %福州: 0.3 %芒廷维尤: 6.3 %芒廷维尤: 6.3 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.2 %苏州: 0.2 %茂名: 0.1 %茂名: 0.1 %荆州: 0.1 %荆州: 0.1 %西宁: 28.3 %西宁: 28.3 %西安: 2.7 %西安: 2.7 %贵阳: 0.5 %贵阳: 0.5 %赤峰: 0.1 %赤峰: 0.1 %运城: 1.7 %运城: 1.7 %遂宁: 0.2 %遂宁: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.8 %郑州: 0.8 %酒泉: 0.2 %酒泉: 0.2 %酒泉市敦煌: 0.1 %酒泉市敦煌: 0.1 %重庆: 1.0 %重庆: 1.0 %锦州: 0.7 %锦州: 0.7 %长春: 1.0 %长春: 1.0 %长沙: 1.9 %长沙: 1.9 %长治: 0.2 %长治: 0.2 %青岛: 1.1 %青岛: 1.1 %首尔: 0.2 %首尔: 0.2 %其他其他CanadaChinaMoroccoRochesterTaiwan, ChinaUnited States[]上海东京东莞东营临汾临沂乌鲁木齐九江佛山保山克拉玛依兰州凉山北京十堰南京南昌厦门台州呼和浩特和田喀什嘉兴城南大庆大连天津太原安康宜春宣城巴音郭楞常州广州库比蒂诺廊坊延安张家口成都扬州昆明昌吉朝阳杭州武汉江门沈阳沧州泰安洛阳济南海口淄博深圳清远温州湖州湛江滨州漯河烟台焦作牡丹江白山盘锦盘锦市兴隆台区石家庄福州芒廷维尤芝加哥苏州茂名荆州西宁西安贵阳赤峰运城遂宁邯郸郑州酒泉酒泉市敦煌重庆锦州长春长沙长治青岛首尔
  • Cited by

    Periodical cited type(34)

    1. 高胜利,高纪杨,魏雪珂. 鄂尔多斯盆地延长组地层底面古构造定量化演化及其石油地质意义. 科学技术与工程. 2024(05): 1782-1788 .
    2. 范洪军,王夏斌,陈飞,詹盛云,岳大力,刘警阳,李伟,任柯宇,张姝琪. 湖相重力流沉积主控因素与分类方案研究进展. 石油科学通报. 2024(02): 167-182 .
    3. 杨鹏,夏青松,杨朝屹,卿山,陈男男. 四川盆地涪陵地区中侏罗统凉高山组重力流沉积特征研究——以TY1井为例. 石化技术. 2024(05): 283-285 .
    4. 尹虎,屈红军,孙晓晗,杨博,张磊岗,朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律. 岩性油气藏. 2024(05): 145-155 .
    5. 崔明明,彭楠,柳永清,王宗秀,旷红伟,许克民,李春麟. 陆相湖盆沉积物滑塌变形研究进展. 地质论评. 2023(02): 701-718 .
    6. 李聪,鲜本忠,王鹏宇,陈蕾,田荣恒,杨荣超,陈思芮. 南堡凹陷东北部东二段重力流砂岩储层发育规律. 地质科技通报. 2023(02): 159-169 .
    7. 王鑫锐,孙雨,刘如昊,李钊. 陆相湖盆细粒沉积岩特征及形成机理研究进展. 沉积学报. 2023(02): 349-377 . 本站查看
    8. 黄军平,杨田,张艳,李相博,董岐石,杨占龙,Guilherme Bozetti,郑泽宇. 湖相细粒沉积岩沉积动力学机制与沉积模式——以鄂尔多斯盆地铜川地区延长组长7油层组露头为例. 沉积学报. 2023(04): 1227-1239 . 本站查看
    9. 王启明,杜晓峰,官大勇,张宏国,付鑫. 辽中凹陷中南部西斜坡东三段湖底扇沉积特征与发育模式. 地球科学. 2023(08): 2979-2992 .
    10. 窦鲁星,张昌民,张莉,毕小龙,杨沁超. 过渡型流体转换对洪水型重力流沉积研究的启示及地质意义. 地质论评. 2023(05): 1952-1966 .
    11. 刘军钊,官大勇,王志萍,王启明,李晓辉. 莱州湾凹陷沙三段低位域湖底扇沉积特征及水道构型. 科学技术与工程. 2023(35): 14979-14987 .
    12. 杨莎莎,黄旭日,贾继生,武志学,李伟华. 黄陵地区延长组长_6段深水砂岩储层特征分析. 西南石油大学学报(自然科学版). 2022(01): 53-65 .
    13. 余烨,蔡灵慧,尹太举,张兴强,许泓,黄俨然,曹涛涛. 湖相重力流沉积特征及沉积模式——以下刚果盆地A区块白垩系Pointe Indienne组为例. 沉积学报. 2022(01): 34-46 . 本站查看
    14. 刘海宁,韩宏伟,操应长,曲志鹏,张云银,杨田. 东营凹陷东坡古近系沙三中亚段异重流沉积特征与沉积模式. 中国石油大学学报(自然科学版). 2022(01): 13-22 .
    15. 李晓路,马芳侠,贺永红,陈义国,李广涛. 鄂尔多斯盆地东南部长6段重力流沉积类型及成因. 断块油气田. 2022(01): 40-46 .
    16. 梁晓伟,鲜本忠,冯胜斌,陈鹏,尤源,吴千然,淡卫东,张文淼. 鄂尔多斯盆地陇东地区长7段重力流砂体构型及其主控因素. 沉积学报. 2022(03): 641-652 . 本站查看
    17. 冯烁,李胜利,于兴河,何发岐,李顺利,齐荣. 四级层序格架内浊流沉积特征及演化模式——以鄂尔多斯盆地镇泾地区三叠系延长组7段为例. 石油与天然气地质. 2022(04): 859-876 .
    18. 杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报. 2021(01): 88-111 . 本站查看
    19. 龚承林,齐昆,徐杰,刘喜停,王英民. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报. 2021(01): 231-252 . 本站查看
    20. 操应长,金杰华,刘海宁,杨田,刘可禹,王艳忠,王健,梁超. 中国东部断陷湖盆深水重力流沉积及其油气地质意义. 石油勘探与开发. 2021(02): 247-257 .
    21. 张倚安,李士祥,田景春,周新平,杨田. 鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型. 沉积学报. 2021(02): 297-309 . 本站查看
    22. CAO Yingchang,JIN Jiehua,LIU Haining,YANG Tian,LIU Keyu,WANG Yanzhong,WANG Jian,LIANG Chao. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China. Petroleum Exploration and Development. 2021(02): 286-298 .
    23. 张家强,李士祥,李宏伟,周新平,刘江艳,郭睿良,陈俊霖,李树同. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探——以城页水平井区长7_3小层为例. 石油学报. 2021(05): 570-587 .
    24. 郭玉新. 渤中凹陷埕岛东坡东三段沉积物重力流类型及沉积模式. 油气地质与采收率. 2021(03): 14-24 .
    25. 王伟,宋渊娟,黄静,李亚辉,陈朝兵,朱玉双. 利用高压压汞实验研究致密砂岩孔喉结构分形特征. 地质科技通报. 2021(04): 22-30+48 .
    26. 周新平,何青,刘江艳,李士祥,杨田. 鄂尔多斯盆地三叠系延长组7段深水碎屑流沉积特征及成因. 石油与天然气地质. 2021(05): 1063-1077 .
    27. 邱振,邹才能. 非常规油气沉积学:内涵与展望. 沉积学报. 2020(01): 1-29 . 本站查看
    28. 杨棵,朱筱敏,刘宇,刘兴周,郭峰. 浊积岩和砂质碎屑流岩关键识别标志及辽河盆地岩心实例. 古地理学报. 2020(03): 483-492 .
    29. 余烨,王莉,尹太举,张兴强,黄俨然,曹涛涛. 下刚果盆地早白垩世巴雷姆晚期深水重力流沉积的发现及意义. 古地理学报. 2020(04): 620-634 .
    30. 毛振强,夏宇,高刚,邓虎成,周明军,滕娟. 博兴洼陷沙三下段湖相沉积岩性特征及识别. 西安石油大学学报(自然科学版). 2020(05): 14-23 .
    31. 余烨,蔡灵慧,尹太举,王莉,张兴强,徐吉丰. 下刚果盆地早白垩世Pointe Indienne组湖相浊积岩特征及石油地质意义. 岩性油气藏. 2020(06): 12-21 .
    32. 张洪安,王长征,蒋飞虎,靳亚勤,胡斌. 河南东濮凹陷古近系沙三中亚段重力流沉积与伴生遗迹化石组合. 古地理学报. 2020(06): 1157-1170 .
    33. 罗静兰,李弛,雷川,曹江骏,宋昆鹏. 碎屑岩储集层成岩作用研究进展与热点问题讨论. 古地理学报. 2020(06): 1021-1040 .
    34. 陈柄屹,林承焰,马存飞,任丽华,王军,李志鹏,杜凯. 陆相断陷湖盆陡坡带深水重力流沉积类型、特征及模式——以东营凹陷胜坨地区沙四段上亚段为例. 地质学报. 2019(11): 2921-2934 .

    Other cited types(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(570) PDF downloads(278) Cited by(52)

Proportional views
Related
Publishing history
  • Received:  2018-04-11
  • Revised:  2018-12-12
  • Published:  2019-10-10

The Past,Present and Future of Research on Deep-water Sedimentary Gravity Flow in Lake Basins of China

doi: 10.14027/j.issn.1000-0550.2018.193
Funds:  National Natural Science Foundation of China, No. 41772099, 41872116; National Science and Technology Major Proect,No.2017ZX05001-003; Major Science and Technology Projects of China Petroleum and Natural Gas Corporation, No.2016B-0302

Abstract: Deep-water gravity flow deposition is the hotspot of current global oil and gas exploration and research. The study of deep-water gravity flow sedimentation in continental basins in China has been conducted over the past 50 years. It has occurred in three stages:exploration and development of turbidity flow theory (1970-1980s);the industrial application of turbidity flow theory (1990-2000);and sandy debris flow (since 2010). In the past decade,with the development of international deep-water deposition theory and the progress of oil and gas exploration technology in China,research on deep-water sedimentation in lacustrine basins has progressed rapidly and a great deal of new achievements and new understandings have emerged. There are mainly four aspects: (1)There are at least four kinds of gravity flow and traction flow deposition in the deep waters of the center of a lacustrine basin:turbidity flow,hyperpycnal flow,sandy debris flow and bottom flow. (2)Transformations of different types of fluids in the lacustrine occur during the processes of transportation and deposition,forming a hybrid event bed. (3)It has been established that the presence of mud-coated intraclasts indicates sediment transport in lacustrine sandy debris flows. (4)The theories and techniques of seismic sedimentology have been widely used in the analysis of internal sedimentary units of lacustrine gravity flow and to establish sedimentary models in deep-water lacustrine basins,and have achieved great success. Looking to the future,in order to meet the exploration and development needs of the oil and gas industry,the research and development trends of deep-water sediments in lacustrine basins are mainly as follows: (a)the genetic type division of deepwater sandbody,the transportation-deposition process,and the establishment and improvement of it sedimentary model; (b)the genetic mechanism,type division and its significance to oil and gas in deep-water shale (fine sediments); (c)studies of "source-sink" systems and seismic response and evaluation and prediction; (d)experimental simulation of the process of transportation-sedimentation of deep-water sediments;and (e)the establishment of new theories about systems of deep-water deposition and their application in oil and gas exploration and development.

LI XiangBo, LIU HuaQing, PAN ShuXin, WANG Jing. The Past,Present and Future of Research on Deep-water Sedimentary Gravity Flow in Lake Basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921. doi: 10.14027/j.issn.1000-0550.2018.193
Citation: LI XiangBo, LIU HuaQing, PAN ShuXin, WANG Jing. The Past,Present and Future of Research on Deep-water Sedimentary Gravity Flow in Lake Basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921. doi: 10.14027/j.issn.1000-0550.2018.193

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return