Advanced Search

JIN Xin, SHI ZhiQiang, WANG YanYan, DUAN Xiong, CHENG Ming. Mid-Carnian (Late Triassic)Extreme Climate Event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115. doi: 10.14027/j.cnki.cjxb.2015.01.011
Citation: JIN Xin, SHI ZhiQiang, WANG YanYan, DUAN Xiong, CHENG Ming. Mid-Carnian (Late Triassic)Extreme Climate Event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115. doi: 10.14027/j.cnki.cjxb.2015.01.011

Mid-Carnian (Late Triassic)Extreme Climate Event: Advances and unsolved problems

doi: 10.14027/j.cnki.cjxb.2015.01.011
  • Received Date: 2014-01-14
  • Rev Recd Date: 2014-04-21
  • Publish Date: 2015-02-10
  • As one of the most pronounced climatic cextremes in the geological history, the mid-Carnian (Late Triassic) extreme climate event, also named the Carnian Pluvial Event (CPE), has been widely recognized from the United States, China, Japan, and many places of Europe over past decades. The known evidence shows that the CPE is characterized by a dramatic increase in rainfalls and could last for nearly one million years. The CPE is represented by the sharp replacement of platform facies carbonates with the siliciclastic succession of mid-Carnian age worldwide. Several scenarios have been proposed to account for the CPE: (1) The plate tectonic activities such as collision and aggregation of the Pangea are believed to have prompted the atmosphere and ocean circulation changes; (2) the coeval large igneous province eruptions such as the Wrangellia Volcanic Province may have triggered a dramatic increase in CO2 contents in atmosphere, which caused a warm, wet climatic condition; (3) Possible global climate disruption such as megamonsoon induced the elevated rainfalls; and integration of all of these factors accounted for the climatic extreme. The strata record from southwestern China suggests that the link among the megamonsoon, tectonic movement and climate changes during the Carnian Stage is worthy studying in detail. In addition, further studies on some critical issues concerning the rise of carbonate compensation depth (CCD), high oceanic productivity reflected by the Carnian black shale, and pulses of humid climate during the mid-Carnian are crucial for better understanding of this deep-time climatic extreme.
  • [1] Schlager W, Schöelnberger W.Das Prinzip stratigraphischer Wenden in der Schichtenfolge der Noedlichen Kalkalpen[J]. Mitteilungen der Geologischen Gesellschaft Wien, 1974, 66/67:165-193.
    [2] Simms M J, Ruffell A H.Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268.
    [3] Hornung T, Brandner R.Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): local black shale events controlled by the regional tectonics, climatic change and plate tectonics[J]. Facies, 2005, 51(1/4): 460-479.
    [4] Hornung T, Krystyn L, Brandner R. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)?[J]. Journal of Asian Earth Sciences, 2007, 30(2): 285-302.
    [5] Hornung T. Multistratigraphy of the Draxllehen quarry near Berchtesgaden(Tuvalian-Lacian 2): implication for halstatt limestone sedimentation and palaeoclimate in the aftermath of the “Carnian Crisis”[J]. Austrian Journal of Earth Science, 2007, 100: 82-89.
    [6] Roghi G, Gianolla P, Minarelli L, et al. Palynological correlation of Carnian humid pulses throughout western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/4):89-106.
    [7] Rigo M, Preto N, Roghi G, et al.A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): Deep-water evidence for the Carnian Pluvial Event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/4): 188-205.
    [8] 时志强,钱利军,曾德勇,等. 晚三叠世卡尼期碳酸盐生产危机在东特提斯地区的地质记录[J]. 地质论评,2010,56(3):321-328.[Shi Zhiqiang, Qian Lijun, Zeng Deyong, et al. Geological records of late Triassic Carnian carbonate productivity crisis in Eastern Tethys Region (SW China)[J]. Geological Review, 2010, 56(3): 321-328.]
    [9] 时志强,钱利军,熊兆军,等. 中国西南部地区卡尼期危机及其形成原因探讨[J]. 矿物岩石地球化学通报,2010,29(3):227-232.[Shi Zhiqiang, Qian Lijun, Xiong Zhaojun, et al.Carnian crisis occurring in SW China and its origin[J]. Bulletin of Mineralogy, Petrology and Geochemistry 2010, 29(3): 227-232.]
    [10] Preto N, Hinnov L A. Unravelling the origin of shallow-water cyclothems in the Upper Triassic Dürrenstein Fm. (Dolomites, Italy)[J]. Journal of Sedimentary Research, 2003, 73(5): 774-789.
    [11] Kozur H W, Bachmann G H.The Middle Carnian wet intermezzo of the stuttgart formation (schilfsandstein), Germanic basin[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/4): 107-119.
    [12] Breda A, Preto N, Roghi G, et al.The carnian pluvial event in the Tofane area (Cortina d'Ampezzo, Dolomites, Italy)[J]. GeoAlp, 2009, 6: 80-115.
    [13] 刘树根,杨荣军,吴熙纯,等. 四川盆地西部晚三叠世海相碳酸盐岩碎屑岩的转换过程[J]. 石油与天然气地质,2009,30(5):556-565.[Liu Shugen, Yang Rongjun, Wu Xichun, et al.The Late Triassic transition from marine carbonate rock to clastics in the western Sichuan Basin[J]. Oil & Gas Geology, 2009, 30(5): 556-565.]
    [14] 李勇,苏德辰,董顺利,等. 晚三叠世龙门山前陆盆地早期(卡尼期)碳酸盐缓坡和海绵礁的淹没过程与动力机制[J]. 岩石学报,2011,27(11):3460-3470.[Li Yong, Su Dechen, Dong Shunli, et al.Dynamic of drowning of the carbonate ramp and sponge build-up in the early stage (Cainian) of Longmen of Shan foreland basin, Late Triassic, China[J]. Acta Petrologica Sinica, 2011, 27(11): 3460-3470.]
    [15] 时志强,欧莉华,罗凤姿,等. 晚三叠世卡尼期黑色页岩事件在龙门山地区的沉积学和古生物学响应[J]. 古地理学报,2009,11(4):375-383.[Shi Zhiqiang, Ou Lihua, Luo Fengzi, et al. Black shale event during the Late Triassic Carnian Age: Implications from sedimentary and palaeontological records in Longmen Mountains region[J]. Journal of Palaeogeography, 2009, 11(4): 375-383.]
    [16] Preto N, Kustatscher E, Wignall P B.Triassic climates-State of the art and perspectives[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 1-10.
    [17] Hornung T, Spatzenegger A, Joachimski M M.Multistratigraphy of condensed ammonoid beds of the Rappoltstein (Berchtesgaden, Southern Germany): unravelling palaeo-environmental conditions on“Hallstatt deep swells”during the Reingraben Event (late Lower Carnian)[J]. Facies, 2007, 53(2): 267-292.
    [18] Rostási Á, Raucsik B, Varga A. Palaeoenvironmental controls on the clay mineralogy of Carnian sections from the Transdanubian Range (Hungary)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300(1/2/3/4): 101-112.
    [19] Simms M J,Ruffell A H. Climatic and biotic change in the late Triassic[J]. Journal of the Geological Society of London, 1990, 147(2): 321-327.
    [20] Korte C, Kozur H W, Veizer J. δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(3/4): 287-306.
    [21] Corso J D, Mietto P, Newton R J, et al.Discovery of a major negative 13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 40(1): 79-82.
    [22] Rigo M, Joachimski M M.Palaeoecology of Late Triassic conodonts: Constraints from oxygen isotopes in biogenic apatite[J]. Acta Palaeontologica Polonica, 2010, 55(3): 471-478.
    [23] Rigo M, Trotter J A, Preto N.Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys[J]. Geology, 2012, 40(6): 515-518.
    [24] Ruttner A W. Southern borderland of Triassic Laurasia in north-eastIran[J]. Geologische Rundschau, 1993, 82(1): 110-120.
    [25] Daryan B S, Stanley G D J, Onoue T. Upper Triassic (Carnian) reef biota from the Sambosan Accretionary Complex, Kyushu, Japan [J]. Facies, 2012, 58(4): 671-684.
    [26] Martini R, Zaninetti L, Villeneuve M, et al. Triassic pelagic deposits of Timor: Palaeogeographic and sea-level implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(1/2): 123-151.
    [27] Prochnow S J, Nordt L C, Atchley S C, et al.Multi-proxy paleosol evidence for Middle and Late Triassic climate trends in eastern Utah[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(1): 53-72.
    [28] Colombi C E, Parrish J T.Late Triassic Environmental evolution in Southwestern Pangea: plant taphonomy of the Ischigualasto Formation[J]. Palaios, 2008, 23(12): 778-795.
    [29] Mazza M, Furin S, Spötl C, et al.Generic turnovers of Carnian/Norian conodonts: Climatic control or competition?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 120-137.
    [30] Fowell S J, Cornet B, Olsen P E. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup[J]. Geological Society ofAmerica, 1994, 288: 197-206.
    [31] Benton M J. More than one event in the late Triassic mass extinction[J]. Nature, 1984, 321(6073): 857-861.
    [32] Furin S, Preto N, Rigo M, et al. High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs[J]. Geology, 2006, 34(1): 1009-1012.
    [33] Taylor E L, Taylor T N, Krings M.Paleobotany: The Biology and Evolution of Fossil Plants[M]. New York: Academic Press, 2009: 806-870.
    [34] Bellanca A, Di Stefano P, Neri R.Sedimentology and isotope geochemistry of Carnian deep-water marl/limestone deposits from the Sicani Mountains, Sicily: environmental implications and evidence from planktonic source of lime mud[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114(1): 111-129.
    [35] Preto N, Willems H, Guaiumi C, et al. Onset of significant pelagic carbonate accumulation after the Carnian Pluvial Event (CPE) in the western Tethys[J]. Facies, 2013, 59(4): 891-914.
    [36] Berner R A.The rise of plants and their effect on weathering and atmospheric CO2[J]. Science, 1997, 276(5312): 544-546.
    [37] Berner R A. Atmospheric oxygen over Phanerozoic time[J]. Proceedings of the National Academy of the Sciences of the United States of America, 1999, 96(20): 10955-10957.
    [38] 吴熙纯. 川西北晚三叠世卡尼期硅质海绵礁—鲕滩组合的沉积相分析[J]. 古地理学报,2009,11(2):125-142.[Wu Xichun. Sedimentary facies analysis of the Late Triassic Carnian siliceous sponge reef-oolite bank complex in northwestern Sichuan province[J]. Journal of Palaeogeography, 2009, 11(2): 125-142.]
    [39] 汪啸风,陈孝红,程龙,等. 关岭及相关生物群沉积与生态环境的探讨[J]. 古生物学报,2009,48(3):509-526.[Wang Xiaofeng, Chen Xiaohong, Cheng Long, et al.Sedimentary and palaeoecological environments of the Guanling and related biotas[J]. Acta Palaeontologica Sinica, 2009, 48(3): 509-526.]
    [40] 时志强,张华,曾德勇,等. 龙门山前缘上三叠统卡尼阶特征及其古环境、古气候意义[J]. 成都理工大学学报:自然科学版,2010,37(4):425-431.[Shi Zhiqiang, Zhang Hua, Zeng Deyong, et al.Characters of Carnian in the frontal area of Mt. Longmenshan:implications for palaeoenvironment and paleoclimate[J]. Journal of Chengdu University of Technology: Social Sciences, 2010, 37(4): 425-431.]
    [41] 王艳艳,张彪,时志强,等. 川西北地区晚三叠世卡尼期洪水事件沉积的碳、氧同位素记[J]. 古地理学报,2012,14(3):375-382.[Wang Yanyan, Zhang Biao, Shi Zhiqiang, et al. Oxygen and carbon isotopic records of the Late Triassic Carnian pluvial event deposits in northwestern Sichuan province[J]. Journal of Palaeogeography, 2012, 14(3): 375-382.]
    [42] 贵州省地质矿产局. 贵州省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.[Guizhou Geology and Mineral Bureau. Rock Strata in Guizhou[M]. Wuhan: China University of Geoscience Press, 1997.]
    [43] 汪啸风,陈孝红,陈立德,等. 贵州关岭生物群研究的进展和存在问题(代序)[J]. 地质通报,2003,22(4):221-227.[Wang Xiaofeng, Chen Xiaohong, Chen Lide, et al. Study of the Guanling biota in Guizhou:progress and problems[J]. Geological Bulletin of China, 2003, 22(4): 221-227.]
    [44] 李荣西,肖家飞,魏家庸,等. 黔南Ladinian-Carnian期海侵与碳酸盐岩台地演化[J]. 地球学报,2005,26(3):249-253.[Li Rongxi, Xiao Jiafei, Wei Jiayong, et al. Ladinian-Carnian transgression and the evolution of Yangtze carbonate platform in southwestern Guizhou[J]. Acta Geoscientica Sinica, 2005, 26(3): 249-253.]
    [45] 郝子文,饶荣标. 全国地层多重划分对比研究(50):西南区区域地层[M]. 武汉:中国地质大学出版社,1999:82-113.[Hao Ziwen, Rao Rongbiao. The Multiple Stratigraphic Division and Comparative Study of the National Rock Strata(50): Strata in Southwest Region[M]. Wuhan: China University of Geoscience Press, 1999: 82-113.]
    [46] Broglio Loriga C, Cirilli S, De Zanche, et al. A GSSP candidate for the Ladinian/Carnian boundary: the Prati di Stuores/Stuores Wiesen section (Dolomites, Italiy) [C]. Albertiana, 1998, 21: 2-18.
    [47] Krystyn L. Eine neue Zonengliederung im alpin mediterranen Unterkarn[M]//Zapfe H. Beiträge zur Biostratigraphie der Tethys-Trias. Schr. Erdwiss. Komm. Österr. Akada. Wiss. 1978, 4: 37-75.
    [48] Asseretom R L, Kendall C G S C. Nature, origin and classification of peritidal tepee structures and related breccias[J]. Sedimentology, 1977, 24(2): 153-210.
    [49] Goldhammer R K, Dunn P A, Hardie L A. High frequency glacioeustatic sea level oscillation with Milankovitch characteristics recorded in Middle Triassic platform carbonates in Northern Italy[J]. American Journal of Science, 1987, 287(9): 853-892.
    [50] Egenhoff S O, Peterhnsel A, Bechstädt T, et al. Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemar(Middle Triassic, Northern Italy)[J]. Sedimentology, 1999, 46(5): 893-912.
    [51] 赵玉峰. 川西地区中晚三叠世多重地层划分对比及沉积体系分析[D]. 成都:成都理工大学,2009:45-55.[Zhao Yufeng. The multiple stratigraphic division and sedimentary system analysis in Middle-late Triassic in western Sichuan[D]. Chengdu: Chengdu University of Technology, 2009: 45-55.]
    [52] Haas J, Budai T, Raucsik B. Climatic controls on sedimentary environments in the Triassic of the Transdanubian Range (Western Hungary)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 31-44.
    [53] Mutti M, Weissert H.Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy)[J]. Journal of Sedimentary Research, 1995, 65(3): 357-367.
    [54] Stefani M, Brack P, Gianolla P, et al. Triassic carbonate platforms of the Dolomites: carbonate production, relative sea-level fluctuations and the shaping of the depositional architecture[C]. // Thirty Second International Geological Congress. Florence, Italy, 2004: 44.
    [55] 颜佳新. 东特提斯地区二叠—三叠纪古气候特征及其古地理意义[J]. 地球科学,1999,24(1):13-18.[Yan Jiaxin. Permian- Triassic paleoclimate of Eastern Tethys and its paleogeographic implication[J]. Earth Science, 1999, 24(1):13-18.]
    [56] Carmignani L, Conti P, Massa G, et al. Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000 "Foglio 249 - Massa Carrara" [M]. Servizio Geologico d'Italia, 2007: 200.
    [57] Roghi G. Palynological investigations in the Carnian of the Cave del Predil area (Julian Alps, NE Italy)[J]. Review of Palaeobotany and Palynology, 2004, 132(1): 1-35.
    [58] Dubiel R F, Parrish J T, Parrish J M, et al. The Pangaean megamonsoon: evidence from the Upper Triassic Chinle Formation, Colorado Plateau[J]. Palaios, 1991, 6(4): 347-370.
    [59] Visscher H,van der Zwan C J. Palynology of the circum Mediterranean Triassic:phytogeographical and palaeoclimatological implications[J]. Geologische Rundschau, 1981, 70(2): 625-634.
    [60] Haas J, Demény A. Early dolomitisation of Late Triassic platform carbonates in theTransdanubian Range (Hungary)[J]. Sedimentary Geology, 2002, 151(3/4): 225-242.
    [61] Kristan T E, Hamedani A. Eine spezifische Mikrofaunen-Vergesellschaftung aus den Opponitzer Schichten des Oberkarn der niederösterreichischen Kalkvoralpen[J]. Neues Jahrbuch für Geologie und Paläontologie, 1973, 143: 193-222.
    [62] Tabor N J, Poulsen C J. Palaeoclimate acroos the Late Pennsylvanian-Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographie climate factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 293-310.
    [63] Parrish J T.Climate of the supercontinent Pangea[J]. Journal of Geology, 1993, 101(2): 215-233.
    [64] Parrish J T, Peterson F.Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-a comparison[J]. Sedimentary Geology, 1988, 56(1/2/3/4): 261-282.
    [65] Royer D L, Berner R A, Montañez I P, et al. CO2 as a primary driver of Phanerozoic climate[J]. GSA Today, 2004, 14(3): 4-10.
    [66] Preto N, Spötl C,Guaiumi C. Evaluation of bulk carbonate δ13C data from Triassic hemipelagites and the initial composition of carbonate mud[J]. Sedimentology, 2009, 56(5): 1329-1345.
    [67] Erba E, Tremolada F. Nannofossil carbonate fluxes during the Early Cretaceous: phytoplankton response to nitrification episodes, atmospheric CO2, and anoxia[J]. Paleoceanography, 2004, 19(1): 1-18.
    [68] Balog A.Climate-controlled early dolomite, Late Triassic cyclic platform carbonates, Hungary[J]. Journal of Sedimentary Research, 1999, 69(1): 267-282.
    [69] Parrish J T, Ziegler A M, Scotese C R. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 40(1/2/3): 67-101.
    [70] 汪品先. 全球季风的地质演变[J]. 科学通报,2009,54(5):535-556.[Wang Pinxian. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 2009, 54(5): 535-556.]
    [71] StefaniM, Furin S, Gianolla P. The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 43-57.
    [72] Yang Rongjun, Liu Shugen, Wu Xichun. Distribution and formation mechanism of lime mudstone in Upper Triassic in northwestern Sichuan, China[J]. Carbonates and Evaporites, 2010, 25(4): 275-281.
    [73] Rüver T, Zamparelli V. Facies and biota of Anisian to Carnian carbonate platforms in the Northern Calcareous Alps (Tyrol and Bavaria)[J]. Facies, 1997, 37(1): 115-136.
    [74] Keim L, Brandner R. Facies interfingering and synsedimentary tectonics on late Ladinian early Carnian carbonate platforms (Dolomites,Italy)[J]. International Journal of Earth Sciences, 2001, 90(4): 813-830.
    [75] 李勇,王成善,伊海生. 西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应[J]. 沉积学报,2003,21(2):191-197.[Li Yong, Wang Chengshan, Yi Haisheng. The Late Triassic collision and sedimentary responses at western segment of Jinshajiang suture, Tibet[J]. Acta Sedimentologica Sinica, 2003, 21(2): 191-197.]
    [76] 彭勇民,汪名杰,陈明. 昌都地区三叠纪事件沉积及其成因[J]. 四川地质学报,1999,19(4):273-280.[Peng Yongmin, Wang Mingjie, Chen Ming. Triassic event sediments and their genesis in Changdo area[J]. Acta Geologica Sichuan, 1999, 19(4): 273-280.]
    [77] 游再平. 巴塘县拉纳山地层剖面的再认识[J]. 四川地质学报,1987,(2):29-38.[You Zaiping. Again know the stratigraphic section of Lana mountain in Batang [J]. Acta Geologica Sichuan, 1987, (2): 29-38.]
    [78] 黄仕华. 川西义敦地区中上三叠统内不整合的发现及意义[J]. 中国地质,2001,28(3):12-15.[Huang Shihua. The discovery and significance of unconformable in the Upper Triassic in Yidui region of western Sichuan[J]. Geology in China, 2001, 28(3): 12-15.]
    [79] 庞艳春,付修根,王新利,等. 川西昌台地区上三叠统勉戈组的瓣鳃类Pergamidia-Halobia群落特征及古环境分析[J]. 古生物学报,2008,47(3):341-351.[Pang Yanchun, Fu Xiugen, Wang Xinli, et al. Characteristics and paleoenvironment of the bivalve pergamidia-halobia community from Mlange Formation of Upper Triassic in Changtai of western Sichuan[J]. Acta Palaeontologica Sinica, 2008, 47(3): 341-351.]
    [80] 崔可信,等. 中国西南区域古地理及其演化图集[M]. 北京:地震出版社,2004:281.[Cui Kexin, et al. The Atlas of Paleogeographic Evolution in Southwest China[M]. Beijing: Earthquake Press, 2004: 281.]
    [81] 吴熙纯. 川西北晚三叠世的灯海绵动物群[J]. 古生物学报,1990,29(3):349-365.[Wu Xichun. Trtadocoelia magyara Vinassa fauna in Late Triassic in Northwest Sichuan [J]. Acta Palaeontologica Sinica, 1990, 29(3): 349-365.]
    [82] 杨荣军,刘树根,吴熙纯,等. 龙门山前缘上三叠统马鞍塘组沉积分布特征及其控制因素[J]. 成都理工大学学报:自然科学版,2008,35(4):455-462.[Yang Rongjun, Liu Shugen, Wu Xichun, et al. Distribution characteristics and controlling factors of Upper Triassic Ma'antang Formation in the front of Longmen Mountians, Sichuan, China[J]. Journal of Chengdu University of Technology: Social Sciences, 2008, 35(4): 455-462.]
    [83] Weissert H, Lini A, Föllmi K B, et al. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 137(3/4): 189-203.
    [84] Wortmann U G, Herrle J O, Weissert H.Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: evidence from integrated carbon isotope and sandstone records of the western Tethys[J]. Earth and Planetary Science Letters, 2004, 220(1/2): 69-82.
    [85] Goddéris Y, Donnadieu Y, de Vargas C, et al. Causal or casual link between the rise of nannoplankton calcication and a tectonically-driven massive decrease in Late Triassic atmospheric CO2?[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 247-255.
    [86] Berner R A.Geocarbsulf: A combined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5653-5664.
    [87] Golonka J.Late Triassic and Early Jurassic palaeogeography of the world[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 297-307.
    [88] Keim L, Spotl C, Brandner R. The aftermath of the Carnian carbonate platform demise: a basinal perspective (Dolomites, Southern Alps)[J]. Sedimentology, 2006, 53(2): 361-386.
    [89] 胡修棉,王成善,李祥辉. 大洋缺氧事件的碳稳定同位素响应[J]. 成都理工学院学报,2001,28(1):1-6.[Hu Xiumian,Wang Chengshan, Li Xianghui. Stable carbon isotope response to oceanic anoxic events[J]. Journal of Chengdu University of Technology: Social Sciences, 2001, 28(1): 1-6.]
    [90] Chen Lan, Yi Haisheng, Hu Ruizhong, et al. Organic geochemistry of the Early Jurassic oil shale from the Shuanghu area in Northern Tibet and the Early Toarcian oceanic anoxic event[J]. Acta Geologica Sinica, 2005, 79(3): 392-397.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1711) PDF downloads(1040) Cited by()

Proportional views
Related
Publishing history
  • Received:  2014-01-14
  • Revised:  2014-04-21
  • Published:  2015-02-10

Mid-Carnian (Late Triassic)Extreme Climate Event: Advances and unsolved problems

doi: 10.14027/j.cnki.cjxb.2015.01.011

Abstract: As one of the most pronounced climatic cextremes in the geological history, the mid-Carnian (Late Triassic) extreme climate event, also named the Carnian Pluvial Event (CPE), has been widely recognized from the United States, China, Japan, and many places of Europe over past decades. The known evidence shows that the CPE is characterized by a dramatic increase in rainfalls and could last for nearly one million years. The CPE is represented by the sharp replacement of platform facies carbonates with the siliciclastic succession of mid-Carnian age worldwide. Several scenarios have been proposed to account for the CPE: (1) The plate tectonic activities such as collision and aggregation of the Pangea are believed to have prompted the atmosphere and ocean circulation changes; (2) the coeval large igneous province eruptions such as the Wrangellia Volcanic Province may have triggered a dramatic increase in CO2 contents in atmosphere, which caused a warm, wet climatic condition; (3) Possible global climate disruption such as megamonsoon induced the elevated rainfalls; and integration of all of these factors accounted for the climatic extreme. The strata record from southwestern China suggests that the link among the megamonsoon, tectonic movement and climate changes during the Carnian Stage is worthy studying in detail. In addition, further studies on some critical issues concerning the rise of carbonate compensation depth (CCD), high oceanic productivity reflected by the Carnian black shale, and pulses of humid climate during the mid-Carnian are crucial for better understanding of this deep-time climatic extreme.

JIN Xin, SHI ZhiQiang, WANG YanYan, DUAN Xiong, CHENG Ming. Mid-Carnian (Late Triassic)Extreme Climate Event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115. doi: 10.14027/j.cnki.cjxb.2015.01.011
Citation: JIN Xin, SHI ZhiQiang, WANG YanYan, DUAN Xiong, CHENG Ming. Mid-Carnian (Late Triassic)Extreme Climate Event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115. doi: 10.14027/j.cnki.cjxb.2015.01.011
Reference (90)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return