Advanced Search

ZHAO YangYang, GAO Shu. Simulation of Tidal Flat Sedimentation in Response to Typhoon-induced Storm Surges: A case study from Rudong Coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79-90. doi: 10.14027/j.cnki.cjxb.2015.01.008
Citation: ZHAO YangYang, GAO Shu. Simulation of Tidal Flat Sedimentation in Response to Typhoon-induced Storm Surges: A case study from Rudong Coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79-90. doi: 10.14027/j.cnki.cjxb.2015.01.008

Simulation of Tidal Flat Sedimentation in Response to Typhoon-induced Storm Surges: A case study from Rudong Coast, Jiangsu, China

doi: 10.14027/j.cnki.cjxb.2015.01.008
  • Received Date: 2013-04-23
  • Rev Recd Date: 2014-04-23
  • Publish Date: 2015-02-10
  • Tidal flat sedimentation is mainly controlled by sediment supply and hydrodynamic conditions, and the resultant sedimentary records are valuable in the study of the evolution of coastal environments at various time-scales ranging from several days associated with extreme events to millenniums related to climate changes. A strong storm surge event may destroy a relatively thick sedimentary sequences formed over a long period of time. Therefore, it is important to evaluate the influence of extreme events on the continuity and temporal resolution of tidal flat sedimentary records. In the present contribution, an approach to the modeling of the spatial distribution patterns of tidal flat accretion/erosion, under both fair weather and storm surge conditions, is proposed. This model is applied to the Rudong coast, Jiangsu Province, which is exposed to frequent typhoon attack, to illustrate the sediment dynamic processes and the modification of normal tidally-dominated sedimentary sequences associated with storm surges. The model consists of four parts that deal with the current velocity and near-bed shear stress due to tides or combined tide-typhoon effects, suspended sediment transport and vertical (settling and erosion) fluxes, bedload transport and accretion/erosion, and morphological evolution of the bed, respectively. Driven by the tidal water level curve reconstructed by using the harmonic analysis of the observed data from the study area, the model output reproduced the zonation pattern of intertidal flat sedimentation under the fair weather conditions. Furthermore, its prediction about the tidal flat cross-shore profile associated with a small bed slope, strong tidal currents and a weak time-velocity asymmetry, which is characterized by a “double convexity” shape, is consistent with the observed shape for the study area. According to the model output, the two convexities are located in the vicinity of mean high water and mean low water, respectively. Subsequently, the model was run taking into account both tides and storm surges. Under the condition that a storm surge occurs in association with astronomical spring tides, which occurred over the study area in 1981 (i.e., Typhoon No. 8114), the model prediction is that the bed is subjected to mud accretion over the supratidal zone and the upper part of the intertidal zone, while sand erosion occurs over the lower-middle parts of the intertidal zone. Thus, an erosion surface is formed within the sedimentary sequence, representing the storm effect. This pattern, once again, is consistent with the in-situ observation made following the typhoon event for the area. The model output implies that storm-induced sedimentary record can be found in the upper parts of the tidal flat. It should be noted that the results presented here are only preliminary: a number of detailed morphological parameters about the storm deposit are not available in the model output. In the future, the model may be further improved by taking into account the factors such as the boundary characteristics under extreme shallow water conditions, variability of grain size distribution curves, combined tidal currents and waves, biological activities, tidal creek migration and artificial land reclamation. In combination with inverse methods, the forward modeling will be beneficial to a better interpretation of the formation of tidal flat sedimentary records.
  • [1] Klein G de V. Intertidalflats and intertidal sand bodies[M]// Davis R A. Coastal Sedimentary Environments. 2nd ed. New York: Springer, 1985: 187-224.
    [2] Gao Shu. Geomorphology and sedimentology of tidal flats[M]// Perillo G M E, Wolanski E, Cahoon D R, et al. Coastal Wetlands: an Integrated Ecosystem Approach. Amsterdam: Elsevier, 2009: 295-316.
    [3] 陈才俊. 江苏淤长型淤泥质潮滩的剖面发育[J]. 海洋与湖沼,1991,22(4):360-367. [Chen Caijun. Development of depositional tidal flat in Jiangsu province[J]. Oceanologia et Limnologia Sinica, 1991, 22(4): 360-367.]
    [4] 高抒,朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报:自然科学版,1988,24(1):75-84. [Gao Shu, Zhu Dakui. The profile of Jiangsu's mud coast[J]. Journal of Nanjing University: Natural Sciences Edition, 1988, 24(1): 75-84.]
    [5] 陈才俊. 围滩造田与淤泥质潮滩的发育[J]. 海洋通报,1990,9(3):69-74. [Chen Caijun. Changes in mud flat after tideland being enclosed[J]. Marine Science Bulletin, 1990, 9(3): 69-74.]
    [6] 王爱军,高抒,贾建军. 互花米草对江苏潮滩沉积和地貌演化的影响[J]. 海洋学报,2006,28(1):92-99. [Wang Aijun, Gao Shu, Jia Jianjun. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China[J]. Acta Oceanologica Sinica, 2006, 28(1): 92-99.]
    [7] Ren Mei'e, Zhang Renshun, Yang Juhai. Sedimentation on tidal flat of China-with special reference to Wanggang area, Jiangsu province[C]// Proceedings of the International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea. Beijing: China Ocean Press, 1983: 1-19.
    [8] Ren Mei'e, Zhang Renshun, Yang Juhai. The influence of storm tide on mud plain coast with special reference to Jiangsu province[J]. Journal of Coastal Research, 1985, 1(1): 21-28.
    [9] 任美锷,张忍顺,杨巨海,等. 风暴潮对淤泥质海岸的影响——以江苏省淤泥质海岸为例[J]. 海洋地质与第四纪地质,1983,3(4):1-24. [Ren Mei'e, Zhang Renshun, Yang Juhai, et al. The influence of storm tide on mud plain coast—with special reference to Jiangsu Province[J]. Marine Geology & Quaternary Geology, 1983, 3(4): 1-24.]
    [10] 任美锷. 江苏省海岸带和海涂资源综合调查(报告)[M]. 北京:海洋出版社,1986. [Ren Mei'e. Comprehensive Investigation of the Coastal Zone and Tidal Flat Resources of Jiangsu Province[M]. Beijing: Ocean Press, 1986.]
    [11] Williams H F L. Magnitude of Hurricane Ike storm surge sedimentation: implications for coastal marsh aggradation[J]. Earth Surface Processes and Landforms, 2012, 37(8): 901-906.
    [12] 邵虚生,严钦尚. 上海潮坪沉积[J]. 地理学报,1982,37(3):241-249. [Shao Xusheng, Yan Qinshang. Intertidal flat sediments in Shanghai coastal region[J]. Acta Geographica Sinica, 1982, 37(3): 241-249.]
    [13] 许世远,邵虚生,洪雪晴,等. 杭州湾北部滨岸的风暴沉积[J]. 中国科学B辑,1984(12):1136-1145. [Xu Shiyuan, Shao Xusheng, Hong Xueqing, et al. Storm deposits along the northern bank of Hangzhou Bay[J]. Science in China (Seri. B), 1984(12): 1136-1145.]
    [14] 许世远,邵虚生,陈中原,等. 长江三角洲风暴沉积系列研究[J]. 中国科学B辑,1989(7):767-773. [Xu Shiyuan, Yan Qinshang, Chen Zhongyuan, et al. Studies of storm deposits in the Yangtze delta[J]. Science in China (Seri. B), 1989(7): 767-773.]
    [15] Shao Xusheng, Yan Qinshang, Xu Shiyuan, et al. Storm deposits in coastal region of Shanghai, the Yangtze Delta, China[J]. Geologie en Mijnbouw, 1991, 70: 45-58.
    [16] 李铁松,李从先. 潮坪沉积与事件[J]. 科学通报,1993,38(19):1778-1782. [Li Tiesong, Li Congxian. Tidal deposits and events[J]. Chinese Science Bulletin, 1993, 38(19): 1778-1782.]
    [17] Wang Jian, Bai Chunguang, Xu Yonghui, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China[J]. Journal of Coastal Research, 2010, 26(5): 976-981.
    [18] Hippensteel S P. Spatio-lateral continuity of hurricane deposits in back-barrier marshes[J]. Geological Society of America Bulletin, 2011, 123(11/12): 2277-2294.
    [19] Harrison E Z, Bloom A L. Sedimentation rates on tidal salt marshes in Connecticut[J]. Journal of Sedimentary Research, 1977, 47(4): 1484-1490.
    [20] 王爱军,叶翔,陈坚. 台风作用下的港湾型潮滩沉积过程——以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报,2009,31(6):77-86. [Wang Aijun, Ye Xiang, Chen Jian. Effects of typhoon on sedimentary processes of embayment tidal flat—A case study from the “Fenghuang” typhoon in 2008[J]. Acta Oceanologica Sinica, 2009, 31(6): 77-86.]
    [21] Stumpf R P. The process of sedimentation on the surface of a salt marsh[J]. Estuarine, Coastal and Shelf Science, 1983, 17(5): 495-508.
    [22] 王爱军,高抒,陈坚,等. 福建泉州湾盐沼对台风“格美”的沉积动力响应[J]. 科学通报,2008,53(22):2814-2823. [Wang Aijun, Gao Shu, Chen Jian, et al. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMI” in Quanzhou Bay, Fujian Province, China[J]. Chinese Science Bulletin, 2008, 53(22): 2814-2823.]
    [23] Morton R A, Barras J A. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from southern Louisiana[J]. Journal of Coastal Research, 2011, 27(6): 27-43.
    [24] Zhang Yong, Swift D J P, Fan Shejun,et al. Two-dimensional numerical modeling of storm deposition on the northern California shelf[J]. Marine Geology, 1999, 154(1/2/3/4): 155-167.
    [25] Walgreen M, Calvete D, De Swart H E. Growth of large-scale bed forms due to storm-driven and tidal currents: a model approach[J]. Continental Shelf Research, 2002, 22(18/19): 2777-2793.
    [26] 高抒. 海洋沉积地质过程模拟:性质与问题及前景[J]. 海洋地质与第四纪地质,2011,31(5):1-7. [Gao Shu. Numerical modeling of marine sedimentary processes: the nature, scientific problems, and prospect[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7.]
    [27] 朱大奎,许廷官. 江苏中部海岸发育和开发利用问题[J]. 南京大学学报:自然科学版,1982,18(3):799-814. [Zhu Dakui, Xu Tingguan. The coast development and exploitation of middle Jiangsu[J]. Journal of Nanjing University: Natural Sciences Edition, 1982, 18(3): 799-814.]
    [28] 朱正年,韩国荣. 南通市土地志[M]. 南京:江苏人民出版社,2001. [Zhu Zhengnian, Han Guorong. Land Records of Nantong[M]. Nanjing: Jiangsu People's Press, 2001.]
    [29] 汪亚平,贾建军,高抒,等. 江苏洋口港沉积动力条件与海底稳定性[R]. 南京:南京大学海岸与海岛开发教育部重点实验室,2003. [Wang Yaping, Jia Jianjun, Gao Shu, et al. Sedimentary dynamic conditions and submarine stability of Yangkou Port, Jiangsu[R]. Nanjing: Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, 2003.]
    [30] 杨巨海. 江苏省大丰县王港附近淤泥质海滩的沉积规律[D]. 南京:南京大学,1982. [Yang Juhai. Depositional laws of mudflat near Wanggang, Dafeng, Jiangsu[D]. Nanjing: Nanjing University, 1982.]
    [31] 张东生,张君伦,张长宽,等. 潮流塑造—风暴破坏—潮流恢复——试释黄海海底辐射沙脊群形成演变的动力机制[J]. 中国科学(D辑):地球科学,1998,28(5):394-402. [Zhang Dongsheng, Zhang Junlun, Zhang Changkuan, et al. Tidal currents develop-storm surges destroy-tidal currents restore—A preliminary explanation for the dynamic mechanism of formation and evolution of radiate sand ridges in Yellow Sea[J]. Science China (Seri.D): Earth Sciences, 1998, 28(5): 394-402.]
    [32] Gao Shu. Modeling the preservation potential of tidal flat sedimentary records,Jiangsu coast, eastern China[J]. Continental Shelf Research, 2009, 29(16): 1927-1936.
    [33] 王颖. 黄海陆架辐射沙脊群[M]. 北京:中国环境科学出版社,2002. [Wang Ying. Radiative Sandy Ridge Field on Continental Shelf of the Yellow Sea[M]. Beijing: China Environment Science Press, 2002.]
    [34] Hardisty J. An assessment and calibration of formulations for Bagnold's bedload equation[J]. Journal of Sedimentary Research, 1983, 53(3):1007-1010.
    [35] 贾建军,高抒. 建立潮汐汊道P-A关系的沉积动力学方法[J]. 海洋与湖沼,2005,36(3):268-276. [Jia Jianjun, Gao Shu. A dynamic sedimentological approach to P-A relationships in tidal inlets[J]. Oceanologia et Limnologia Sinica, 2005, 36(3): 268-276.]
    [36] Wang Yaping, Gao Shu. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and particle size[J]. Journal of Sedimentary Research, 2001, 71(1): 118-121.
    [37] Partheniades E. Erosion and deposition of cohesive soils[J]. Journal of the Hydraulics Division, 1965, 91(1): 105-139.
    [38] Ariathurai C R. A finite element model for sediment transport in estuaries[D].Davis: University of California, 1974.
    [39] Krone R B. Flume studies of the transport of sediment in estuarial shoaling processes[R]. Berkeley: Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, 1962.
    [40] Dyer K R. Coastal and Estuarine Sediment Dynamics[M].Chichester: John Wiley & Sons, 1986.
    [41] Shields A. Anwendungen der hnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung[M]. Berlin: Mitteilungen der preussischen Versuchsanstaltfür Wasserbau und Schiffbau, 1936: 26.
    [42] Soulsby R. Dynamics of Marine Sands: A manual for Practical Applications[M].London: Thomas Telford, 1997.
    [43] Soulsby R L, Whitehouse R J S. Threshold of sediment motion in coastal environments[C]// Pacific Coasts and Ports' 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1.Christchurch, N.Z.: Centre for Advanced Engineering, University of Canterbury, 1997: 145-150.
    [44] Julien P Y. Erosion and Sedimentation[M].Cambridge, UK: Cambridge University Press, 1995.
    [45] Harris P T, Collins M. Estimation of annual bedload flux in a macrotidal estuary:Bristol Channel, U.K.[J]. Marine Geology, 1988, 83(1/2/3/4): 237-252.
    [46] 高抒. 极浅水边界层的沉积环境效应[J]. 沉积学报,2010,28(5):926-932. [Gao Shu. Extremely shallow water benthic boundary layer processes and the resultant sedimentological and morphological characteristics[J]. Acta Sedimentologica Sinica, 2010, 28(5): 926-932.]
    [47] 刘秀娟,高抒,汪亚平. 淤长型潮滩剖面形态演变模拟:以江苏中部海岸为例[J]. 中国地质大学学报:地球科学,2010,35(4):542-550. [Liu Xiujuan, Gao Shu, Wang Yaping. Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu coast[J]. Journal of China University of Geosciences: Earth Science, 2010, 35(4): 542-550.]
    [48] Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics[J]. IBM Journal of Research and Development, 1967, 11(2): 215-234.
    [49] 李占海,高抒,沈焕庭,等. 江苏大丰潮滩悬沙级配特征及其动力响应[J]. 海洋学报,2006,28(4):87-95. [Li Zhanhai, Gao Shu, Shen Huanting, et al. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidalflat, Jiangsu coast in China[J]. Acta Oceanologica Sinica, 2006, 28(4): 87-95.]
    [50] Soulsby R L. The bottom boundary layer of shelf seas[J]. Elsevier Oceanography Series, 1983, 35: 189-266.
    [51] Miller M C, McCave I N, Komar P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology, 1977, 24(4): 507-527.
    [52] Amos C L, Daborn G R, Christian H A,et al. In situ erosion measurements on fine-grained sediments from the Bay of Fundy[J]. Marine Geology, 1992, 108(2): 175-196.
    [53] 高抒. 江苏粉砂淤泥质海岸剖面塑造与动态[D]. 南京:南京大学,1985. [Gao Shu. Profile development and shoreline dynamic of Jiangsu mudflat coast[D]. Nanjing: Nanjing University, 1985.]
    [54] Kreisa R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia[J]. Journal of Sedimentary Research, 1981, 51(3): 823-848.[J]. Acta Geographica Sinica, 1982, 37(3): 241-249.]
    [55] 许世远,邵虚生,洪雪晴,等. 杭州湾北部滨岸的风暴沉积[J]. 中国科学: B辑,1984(12): 1136-1145. [Xu Shiyuan, Shao Xusheng, Hong Xueqing, et al. Storm deposits along the northern bank of Hangzhou Bay[J]. Science in China: Series B, 1984(12): 1136-1145.]
    [56] 许世远,邵虚生,陈中原,等. 长江三角洲风暴沉积系列研究[J]. 中国科学: B辑,1989(7): 767-773. [Xu Shiyuan, Yan Qinshang, Chen Zhongyuan, et al. Studies of storm deposits in the Yangtze delta[J]. Science in China: Series B, 1989(7): 767-773.]
    [57] Shao X S, Yan Q S, Xu S Y, et al. Storm deposits in coastal region of Shanghai, the Yangtze Delta, China[J]. Geologie en Mijnbouw, 1991, 70: 45-58.
    [58] 李铁松,李从先. 潮坪沉积与事件[J]. 科学通报,1993,38(19): 1778-1782. [Li Tiesong, Li Congxian. Tidal deposits and events[J]. Chinese Science Bulletin, 1993, 38(19): 1778-1782.]
    [59] Wang Jian, Bai Chunguang, Xu Yonghui, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China[J]. Journal of Coastal Research, 2010, 26(5): 976-981.
    [60] Hippensteel S P. Spatio-lateral continuity of hurricane deposits in back-barrier marshes[J]. Geological Society of America Bulletin, 2011, 123(11/12): 2277-2294.
    [61] Harrison E Z, Bloom A L. Sedimentation rates on tidal salt marshes in Connecticut[J]. Journal of Sedimentary Research, 1977, 47(4): 1484-1490.
    [62] 王爱军,叶翔,陈坚. 台风作用下的港湾型潮滩沉积过程——以2008年"凤凰"台风对福建省罗源湾的影响为例[J]. 海洋学报,2009,31(6): 77-86. [Wang Aijun, Ye Xiang, Chen Jian. Effects of typhoon on sedimentary processes of embayment tidal flat—A case study from the "Fenghuang" typhoon in 2008[J]. Acta Oceanologica Sinica, 2009, 31(6): 77-86.]
    [63] Stumpf R P. The process of sedimentation on the surface of a salt marsh[J]. Estuarine, Coastal and Shelf Science, 1983, 17(5): 495-508.
    [64] 王爱军,高抒,陈坚,等. 福建泉州湾盐沼对台风"格美"的沉积动力响应[J]. 科学通报,2008,53(22): 2814-2823. [Wang Aijun, Gao Shu, Chen Jian, et al. Sediment dynamic responses of coastal salt marsh to typhoon "KAEMI" in Quanzhou Bay, Fujian Province, China[J]. Chinese Science Bulletin, 2009, 54(1): 120-130.]
    [65] Morton R A, Barras J A. Hurricane impacts on coastal wetlands: A half-century record of storm-generated features from southern Louisiana[J]. Journal of Coastal Research, 2011, 27(6): 27-43.
    [66] Zhang Yong, Swift D J P, Fan Shejun, et al. Two-dimensional numerical modeling of storm deposition on the northern California shelf[J]. Marine Geology, 1999, 154(1/2/3/4): 155-167.
    [67] Walgreen M, Calvete D, De Swart H E. Growth of large-scale bed forms due to storm-driven and tidal currents: a model approach[J]. Continental Shelf Research, 2002, 22(18/19): 2777-2793.
    [68] 高抒. 海洋沉积地质过程模拟: 性质与问题及前景[J]. 海洋地质与第四纪地质,2011,31(5): 1-7. [Gao Shu. Numerical modeling of marine sedimentary processes: the nature, scientific problems, and prospect[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 1-7.]
    [69] 朱大奎,许廷官. 江苏中部海岸发育和开发利用问题[J]. 南京大学学报: 自然科学版,1982,18(3): 799-814. [Zhu Dakui, Xu Tingguan. The cast development and exploit of middle Jiangsu[J]. Journal of Nanjing University: Natural Sciences Edition, 1982, 18(3): 799-814.]
    [70] 朱正年,韩国荣. 南通市土地志[M]. 南京: 江苏人民出版社,2001. [Zhu Zhengnian, Han Guorong. Land Records of Nantong[M]. Nanjing: Jiangsu People's Press, 2001.]
    [71] 汪亚平,贾建军,高抒,等. 江苏洋口港沉积动力条件与海底稳定性[R]. 南京: 南京大学海岸与海岛开发教育部重点实验室,2003. [Wang Yaping, Jia Jianjun, Gao Shu, et al. Sedimentary dynamic conditions and submarine stability of Yangkou Port, Jiangsu[R]. Nanjing: Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, 2003.]
    [72] 杨巨海. 江苏省大丰县王港附近淤泥质海滩的沉积规律[D]. 南京: 南京大学,1982. [Yang Juhai. Depositional laws of mudflat near Wanggang, Dafeng, Jiangsu[D]. Nanjing: Nanjing University, 1982.]
    [73] 张东生,张君伦,张长宽,等. 潮流塑造—风暴破坏—潮流恢复——试释黄海海底辐射沙脊群形成演变的动力机制[J]. 中国科学: D 辑,1998,28(5): 394-402. [Zhang Dongsheng, Zhang Junlun, Zhang Changkuan, et al. Tidal currents develop-storm surges destroy-tidal currents restore—A preliminary explanation for the dynamic mechanism of formation and evolution of radiate sand ridges in Yellow Sea[J]. Science in China: Series D, 1998, 28(5): 394-402.]
    [74] Gao Shu. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China[J]. Continental Shelf Research, 2009, 29(16): 1927-1936.
    [75] 王颖. 黄海陆架辐射沙脊群[M]. 北京: 中国环境科学出版社,2002. [Wang Ying. Radiative Sandy Ridge Field on Continental Shelf of the Yellow Sea[M]. Beijing: China Environment Science Press, 2002.]
    [76] Hardisty J. An assessment and calibration of formulations for Bagnold's bedload equation[J]. Journal of Sedimentary Research, 1983, 53(3): 1007-1010.
    [77] 贾建军,高抒. 建立潮汐汊道P-A关系的沉积动力学方法[J]. 海洋与湖沼,2005,36(3): 268-276. [Jia Jianjun, Gao Shu. A dynamic sedimentological approach to P-A relationships in tidal inlets[J]. Oceanologia et Limnologia Sinica, 2005, 36(3): 268-276.]
    [78] Wang Yaping, Gao Shu. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and particle size[J]. Journal of Sedimentary Research, 2001, 71(1): 118-121.
    [79] Partheniades E. Erosion and deposition of cohesive soils[J]. Journal of the Hydraulics Division, 1965, 91(1): 105-139.
    [80] Ariathurai C R. A finite element model for sediment transport in estuaries[D]. Davis: University of California, 1974.
    [81] Krone R B. Flume studies of the transport of sediment in estuarial shoaling processes[R]. Berkeley: Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, 1962.
    [82] Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: John Wiley & Sons, 1986.
    [83] Shields A. Anwendungen der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung[M]. Berlin: Mitteilungen der preussischen Versuchsanstaltfür Wasserbau und Schiffbau, 1936: 26.
    [84] Soulsby R. Dynamics of Marine Sands: A manual for Practical Applications[M]. London: Thomas Telford, 1997.
    [85] Soulsby R L, Whitehouse R J S. Threshold of sediment motion in coastal environments[C]// Pacific Coasts and Ports' 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1. Christchurch, N.Z.: Centre for Advanced Engineering, University of Canterbury, 1997: 145-150.
    [86] Julien P Y. Erosion and Sedimentation[M]. Cambridge, UK: Cambridge University Press, 1995.
    [87] Harris P T, Collins M. Estimation of annual bedload flux in a macrotidal estuary: Bristol Channel, U.K.[J]. Marine Geology, 1988, 83(1/2/3/4): 237-252.
    [88] 高抒. 极浅水边界层的沉积环境效应[J]. 沉积学报,2010,28(5): 926-932. [Gao Shu. Extremely shallow water benthic boundary layer processes and the resultant sedimentological and morphological characteristics[J]. Acta Sedimentologica Sinica, 2010, 28(5): 926-932.]
    [89] 刘秀娟,高抒,汪亚平. 淤长型潮滩剖面形态演变模拟: 以江苏中部海岸为例[J]. 地球科学-中国地质大学学报,2010,35(4): 542-550. [Liu Xiujuan, Gao Shu, Wang Yaping. Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu coast[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 542-550.]
    [90] Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics[J]. IBM Journal of Research and Development, 1967, 11(2): 215-234.
    [91] 李占海,高抒,沈焕庭,等. 江苏大丰潮滩悬沙级配特征及其动力响应[J]. 海洋学报,2006,28(4): 87-95. [Li Zhanhai, Gao Shu, Shen Huanting, et al. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidalflat, Jiangsu coast in China[J]. Acta Oceanologica Sinica, 2006, 28(4): 87-95.]
    [92] Soulsby R L. The bottom boundary layer of shelf seas[J]. Elsevier Oceanography Series, 1983, 35: 189-266.
    [93] Miller M C, McCave I N, Komar P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology, 1977, 24(4): 507-527.
    [94] Amos C L, Daborn G R, Christian H A, et al. In situ erosion measurements on fine-grained sediments from the Bay of Fundy[J]. Marine Geology, 1992, 108(2): 175-196.
    [95] 高抒. 江苏粉砂淤泥质海岸剖面塑造与动态[D]. 南京: 南京大学,1985. [Gao Shu. Profile development and shoreline dynamic of Jiangsu mudflat coast[D]. Nanjing: Nanjing University, 1985.]
    [96] Kreisa R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia[J]. Journal of Sediment Research, 1981, 51(3): 823-848.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1106) PDF downloads(1024) Cited by()

Proportional views
Related
Publishing history
  • Received:  2013-04-23
  • Revised:  2014-04-23
  • Published:  2015-02-10

Simulation of Tidal Flat Sedimentation in Response to Typhoon-induced Storm Surges: A case study from Rudong Coast, Jiangsu, China

doi: 10.14027/j.cnki.cjxb.2015.01.008

Abstract: Tidal flat sedimentation is mainly controlled by sediment supply and hydrodynamic conditions, and the resultant sedimentary records are valuable in the study of the evolution of coastal environments at various time-scales ranging from several days associated with extreme events to millenniums related to climate changes. A strong storm surge event may destroy a relatively thick sedimentary sequences formed over a long period of time. Therefore, it is important to evaluate the influence of extreme events on the continuity and temporal resolution of tidal flat sedimentary records. In the present contribution, an approach to the modeling of the spatial distribution patterns of tidal flat accretion/erosion, under both fair weather and storm surge conditions, is proposed. This model is applied to the Rudong coast, Jiangsu Province, which is exposed to frequent typhoon attack, to illustrate the sediment dynamic processes and the modification of normal tidally-dominated sedimentary sequences associated with storm surges. The model consists of four parts that deal with the current velocity and near-bed shear stress due to tides or combined tide-typhoon effects, suspended sediment transport and vertical (settling and erosion) fluxes, bedload transport and accretion/erosion, and morphological evolution of the bed, respectively. Driven by the tidal water level curve reconstructed by using the harmonic analysis of the observed data from the study area, the model output reproduced the zonation pattern of intertidal flat sedimentation under the fair weather conditions. Furthermore, its prediction about the tidal flat cross-shore profile associated with a small bed slope, strong tidal currents and a weak time-velocity asymmetry, which is characterized by a “double convexity” shape, is consistent with the observed shape for the study area. According to the model output, the two convexities are located in the vicinity of mean high water and mean low water, respectively. Subsequently, the model was run taking into account both tides and storm surges. Under the condition that a storm surge occurs in association with astronomical spring tides, which occurred over the study area in 1981 (i.e., Typhoon No. 8114), the model prediction is that the bed is subjected to mud accretion over the supratidal zone and the upper part of the intertidal zone, while sand erosion occurs over the lower-middle parts of the intertidal zone. Thus, an erosion surface is formed within the sedimentary sequence, representing the storm effect. This pattern, once again, is consistent with the in-situ observation made following the typhoon event for the area. The model output implies that storm-induced sedimentary record can be found in the upper parts of the tidal flat. It should be noted that the results presented here are only preliminary: a number of detailed morphological parameters about the storm deposit are not available in the model output. In the future, the model may be further improved by taking into account the factors such as the boundary characteristics under extreme shallow water conditions, variability of grain size distribution curves, combined tidal currents and waves, biological activities, tidal creek migration and artificial land reclamation. In combination with inverse methods, the forward modeling will be beneficial to a better interpretation of the formation of tidal flat sedimentary records.

ZHAO YangYang, GAO Shu. Simulation of Tidal Flat Sedimentation in Response to Typhoon-induced Storm Surges: A case study from Rudong Coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79-90. doi: 10.14027/j.cnki.cjxb.2015.01.008
Citation: ZHAO YangYang, GAO Shu. Simulation of Tidal Flat Sedimentation in Response to Typhoon-induced Storm Surges: A case study from Rudong Coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79-90. doi: 10.14027/j.cnki.cjxb.2015.01.008
Reference (96)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return