[1] |
Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158. |
[2] |
Lupton J E, Baker E T, Massoth G J. Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges[J]. Earth and Planetary Science Letters, 1999, 171(3): 343-350. |
[3] |
Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: Interaction with the Crozet hotspot?[J]. Geophysical Journal International, 2009, 179(2): 687-699. |
[4] |
张涛,林间,高金耀. 90Ma以来热点与西南印度洋中脊的交互作用:海台与板内海山的形成[J]. 中国科学(D辑):地球科学,2011,41(6):760-772.
Zhang Tao, Lin Jian, Gao Jinyao. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts[J]. Science China (Seri. D): Earth Sciences, 2011, 41(6): 760-772. |
[5] |
Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets[J]. Earth and Planetary Science Letters, 2001, 187(3/4): 283-300. |
[6] |
Tao C H, Lin J, Guo S Q, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1): 47-50. |
[7] |
Muller M R, Minshull T A, White R S. Segmentation and melt supply at the Southwest Indian Ridge[J]. Geology, 1999, 27(10): 867-870. |
[8] |
Sauter D, Mendel V, Rommevaux-Jestin C, et al. Focused magmatism versus amagmatic spreading along the ultra‐slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(10): Q10K09. |
[9] |
Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E)[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 22825-22843. |
[10] |
Meyzen C M, Toplis M J, Humler E, et al. A discontinuity in mantle composition beneath the Southwest Indian Ridge[J]. Nature, 2003, 421(6924): 731-733. |
[11] |
Seyler M, Cannat M, Mével C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 69°E)[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2): 9101. |
[12] |
Font L, Murton B J, Roberts S, et al. Variations in melt productivity and melting conditions along SWIR (70°E-49°E): Evidence from olivine-hosted and plagioclase-hosted melt inclusions[J]. Journal of Petrology, 2007, 48(8): 1471-1494. |
[13] |
Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between 49°15′E and 57°E: Focused accretion and magma redistribution[J]. Earth and Planetary Science Letters, 2001, 192(3): 303-317. |
[14] |
Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters, 2003, 206(3/4): 509-528. |
[15] |
Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64. |
[16] |
韦刚健,刘颖,邵磊,等. 南海碎屑沉积物化学组成的气候记录[J]. 海洋地质与第四纪地质,2003,23(3):1-4.
Wei Gangjian, Liu Ying, Shao Lei, et al. Climatic records in the major elements of the terrestrial detritus from the South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 1-4. |
[17] |
任景玲,张经,刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展,2005,20(12):1314-1320.
Ren Jingling, Zhang Jing, Liu Sumei. A review on aluminum to titanium ratio as a geochemical proxy to reconstruct paleoproductivity[J]. Advance in Earth Science, 2005, 20(12): 1314-1320. |
[18] |
张俊,孟宪伟,王湘芹. 晚第四纪南海北部陆坡沉积物常量元素比值对气候变冷事件的指示意义[J]. 海洋学报,2013,35(4):106-111.
Zhang Jun, Meng Xianwei, Wang Xiangqin. The record of major element ratios in Late Quaternary at northern slope of the South China Sea and its indicative significance on the cooling events[J]. Acta Oceanologica Sinica, 2013, 35(4): 106-111. |
[19] |
刘广虎,李军,陈道华,等. 台西南海域表层沉积物元素地球化学特征及其物源指示意义[J]. 海洋地质与第四纪地质,2006,26(5):61-68.
Liu Guanghu, Li Jun, Chen Daohua, et al. Geochemistry of surface sediments in the Taixinan (southwestern Taiwan) sea area in the northeastern South China Sea [J]. Marine Geology & Quaternary Geology, 2006, 26(5): 61-68. |
[20] |
王振波,武光海,韩沉花. 西南印度洋脊49.6°E热液区热液产物和玄武岩地球化学特征[J]. 海洋学研究,2014,32(1):64-73.
Wang Zhenbo, Wu Guanghai, Han Chenhua. Geochemical characteristics of hydrothermal deposits and basalts at 49.6°E the Southwest Indian Ridge[J]. Journal of Marine Sciences, 2014, 32(1): 64-73. |
[21] |
陶春辉,李怀明,金肖兵,等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报,2014,59(19):1812-1822.
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian ridge[J]..Chinese Science Bulletin, 2014, 59(19): 1812-1822. |
[22] |
Yu Z H, Li H M, Li M X, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the Northwest Indian Ocean[J]. Journal of Marine Systems, 2018, 180: 173-181. |
[23] |
Cave R R, German C R, Thomson J, et al. Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1905-1923. |
[24] |
Seyfried Jr W E, Bischoff J L. Low temperature basalt alteration by sea water: An experimental study at 70°C and 150°C[J]. Geochimica et Cosmochimica Acta, 1979, 43(12): 1937-1947. |
[25] |
于淼,苏新,陶春辉,等. 西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J]. 现代地质,2013,27(3):497-508.
Yu Miao, Su Xin, Tao Chunhui, et al. Petrological and geochemical features of basalts at 49.6°E and 50.5°E hydrothermal fields along the Southwest Indian Ridge[J]. Geoscience, 2013, 27(3): 497-508. |
[26] |
韩宗珠,张贺,范德江,等. 西南印度洋中脊50°E基性超基性岩石地球化学特征及其成因初探[J]. 中国海洋大学学报,2012,42(9):69-76.
Han Zongzhu, Zhang He, Fan Dejiang, et al. The characteristic of geochemistry and genesis for Mafic and utrlmafic rocks from the 50°E of Southwest Indian Ridge[J]. Periodical of Ocean University of China, 2012, 42(9): 69-76. |