[1] 马璐,张智礼,王冠,等. 塔里木柯坪地层区中—上奥陶统萨尔干组碳酸盐岩微相和古地理[J]. 微体古生物学报,2013,30(4):344-352.

Ma Lu, Zhang Zhili, Wang Guan, et al. Microfacies of the carbonates and palaeogeography of the Saergan Formation (Middle-Upper Ordovician), Kalpin stratigraphic region, Tarim, NW China[J]. Acta Micropalaeontologica Sinica, 2013, 30(4): 344-352.
[2] 姚尧,何治亮,李慧莉,等. 塔里木盆地阿瓦提断陷中—上奥陶统萨尔干组沉积地质模型与烃源岩分布预测[J]. 石油与天然气地质,2020,41(4):763-775.

Yao Yao, He Zhiliang, Li Huili, et al. Sedimentary geological model and distribution prediction of source rocks in the Saergan Formation (Middle-Upper Ordovician) in Awati fault depression, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(4): 763-775.
[3] 张水昌,张宝民,王飞宇,等. 中—上奥陶统:塔里木盆地的主要油源层[J]. 海相油气地质,2000,5(1/2):16-22.

Zhang Shuichang, Zhang Baomin, Wang Feiyu, et al. Middle-Upper Ordovician: Main source rock of the Tarim Basin[J]. Marine Origin Petroleum Geology, 2000, 5(1/2): 16-22.
[4] 王大锐,宋力生. 论我国海相中上奥陶统烃源岩的形成条件:以塔里木盆地为例[J]. 石油学报,2002,23(1):31-34,39.

Wang Darui, Song Lisheng. A thesis about forming conditions of marine Middle-Upper Ordovian source rocks in China[J]. Acta Petrolei Sinica, 2002, 23(1): 31-34, 39.
[5] 赵宗举,周新源,郑兴平,等. 塔里木盆地主力烃源岩的诸多证据[J]. 石油学报,2005,26(3):10-15.

Zhao Zongju, Zhou Xinyuan, Zheng Xingping, et al. Evidences of chief source rock in Tarim Basin[J]. Acta Petrolei Sinica, 2005, 26(3): 10-15.
[6] 王飞宇,杜治利,张宝民,等. 柯坪剖面中上奥陶统萨尔干组黑色页岩地球化学特征[J]. 新疆石油地质,2008,29(6):687-689.

Wang Feiyu, Du Zhili, Zhang Baomin, et al. Geochemistry of Salgan black shales of Middle-Upper Ordovician in Keping outcrop, Tarim Basin[J]. Xinjiang Petroleum Geology, 2008, 29(6): 687-689.
[7] 高志前,樊太亮,李岩,等. 塔里木盆地寒武系—奥陶系烃源岩发育模式及分布规律[J]. 现代地质,2006,20(1):69-76.

Gao Zhiqian, Fan Tailiang, Li Yan, et al. Development pattern and distribution rule of source rock of Cambrian-Ordovician in Tarim Basin[J]. Geoscience, 2006, 20(1): 69-76.
[8] 高志勇,张水昌,李建军,等. 塔里木盆地西部中上奥陶统萨尔干页岩与印干页岩的空间展布与沉积环境[J]. 古地理学报,2010,12(5):599-608.

Gao Zhiyong, Zhang Shuichang, Li Jianjun, et al. Distribution and sedimentary environments of Salgan and Yingan shales of the Middle-Upper Ordovician in western Tarim Basin[J]. Journal of Palaeogeography, 2010, 12(5): 599-608.
[9] 高志勇,张水昌,刘烨,等. 新疆柯坪大湾沟剖面中—上奥陶统烃源岩高频海平面变化与有机质的关系[J]. 石油学报,2012,33(2):232-240.

Gao Zhiyong, Zhang Shuichang, Liu Ye, et al. Relationship between high-frequency sea-level changes and organic matter of Middle-Upper Ordovician marine source rocks from the Dawangou section in the Keping area, Xinjiang[J]. Acta Petrolei Sinica, 2012, 33(2): 232-240.
[10] 林畅松,杨海军,蔡振中,等. 塔里木盆地奥陶纪碳酸盐岩台地的层序结构演化及其对盆地过程的响应[J]. 沉积学报,2013,31(5):907-919.

Lin Changsong, Yang Haijun, Cai Zhenzhong, et al. Evolution of depositional architecture of the Ordovician carbonate platform in the Tarim Basin and its response to basin processes[J]. Acta Sedimentologica Sinica, 2013, 31(5): 907-919.
[11] 赵宗举. 全球海平面变化指标及海相构造层序研究方法:以塔里木盆地奥陶系为例[J]. 石油学报,2015,36(3):262-273.

Zhao Zongju. Indicators of global sea-level change and research methods of marine tectonic sequences: Take Ordovician of Tarim Basin as an example[J]. Acta Petrolei Sinica, 2015, 36(3): 262-273.
[12]

Zhang Y D, Munnecke A. Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 154-175.
[13] Zhang Y D, Chen Xu, Yu G H, et al. Ordovician and Silurian rocks of northwest Zhejiang and northeast Jiangxi provinces, SE China[M]. Hefei: University of Science and Technology of China Press, 2007.
[14]

Bergström S M, Finney S C, Chen X, et al. A proposed global boundary stratotype for the base of the Upper series of the Ordovician System: The Fågelsång section, Scania, southern Sweden[J]. Episodes, 2000, 23(2): 102-109.
[15] 贾承造. 塔里木盆地及周边地层[M]. 北京:科学出版社,2004.

Jia Chengzao. Stratigraphy of the Tarim Basin and adjacent areas[M]. Beijing: Science Press, 2004.
[16] Chen X, Zhang Y D, Wang Z H, et al. Biostratigraphy[M]//Chen X, Bergström S M, Finney S C, et al. Darriwilian to Katian (Ordovician) graptolites from northwest China. Elsevier, 2017: 7-38.
[17] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428.
[18]

Fang Q, Wu H C, Wang X L, et al. An astronomically forced cooling event during the Middle Ordovician[J]. Global and Planetary Change, 2019, 173: 96-108.
[19]

Zhong Y Y, Wu H C, Fan J X, et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109520.
[20] 任传真. 华南宜昌地区中—晚奥陶世地层旋回地层学研究[D]. 北京:中国地质大学(北京),2020.

Ren Chuanzhen. Cyclostratigraphy study of the Middle-Late Ordovician in Yichang, South China[D]. Beijing: China University of Geosciences (Beijing), 2020.
[21] 陈旭,张元动,李越,等. 塔里木盆地及周缘奥陶系黑色岩系的生物地层学对比[J]. 中国科学:地球科学,2012,42(8):1173-1181.

Chen Xu, Zhang Yuandong, Li Yue, et al. Biostratigraphic correlation of the Ordovician black shales in Tarim Basin and its peripheral regions[J]. Science China: Earth Sciences, 2012, 42(8): 1173-1181.
[22]

Klootwijk C. Middle-Late Paleozoic Australia-Asia convergence and tectonic extrusion of Australia[J]. Gondwana Research, 2013, 24(1): 5-54.
[23]

Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117: 40-79.
[24]

Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
[25] 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京:石油工业出版社,1997.

Jia Chengzao. Tectonic characteristics and petroleum, Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1997.
[26] 何文渊,李江海,钱祥麟,等. 塔里木盆地柯坪断隆断裂构造分析[J]. 中国地质,2002,29(1):37-43.

He Wenyuan, Li Jianghai, Qian Xianglin, et al. Analysis of fault structures in the Kalpin fault uplift, Tarim Basin[J]. Geology in China, 2002, 29(1): 37-43.
[27] Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Chichester: John Wiley & Sons, 2015: 1-160.
[28]

Zhang S H, Wang X L, Zhu H. Magnetic susceptibility variations of carbonates controlled by sea-level changes[J]. Science in China Series D: Earth Sciences, 2000, 43(3): 266-276.
[29]

Racki G, Racka M, Matyja H, et al. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins: Integrated event-stratigraphical approach[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 251-297.
[30]

Lean C M B, McCave I N. Glacial to interglacial mineral magnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 247-260.
[31]

Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1/2): 33-48.
[32] Weedon G P. Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles[M]. Cambridge: Cambridge University Press, 2003.
[33]

Thomson D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
[34] Core Team R. R: A language and environment for statistical computing[M]. Vienna: R Foundation for Statistical Computing, 2014.
[35] Meyers S R. Astrochron: An R package for astrochronology[M/OL]. [2014]. http://cran.r-project.org/package=astrochron.
[36]

Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[37]

Zeebe R E, Lourens L J. Geologically constrained astronomical solutions for the Cenozoic era[J]. Earth and Planetary Science Letters, 2022, 592: 117595.
[38]

Fang Q, Wu H C, Hinnov L A, et al. A record of astronomically forced climate change in a Late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174.
[39]

Waltham D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998.
[40]

Svensen H H, Hammer Ø, Corfu F. Astronomically forced cyclicity in the Upper Ordovician and U-Pb ages of interlayered tephra, Oslo region, Norway[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 150-159.
[41]

Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
[42] Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic time scale 2020[M]. Amsterdam: Elsevier, 2020: 631-694.
[43]

Zhong Y Y, Wu H C, Zhang Y D, et al. Astronomical calibration of the Middle Ordovician of the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 86-99.
[44] Nielsen A. Ordovician sea level changes: A baltoscandian perspective[M]//Webby B, Paris F, Droser M, et al. The great Ordovician biodiversification event. Columbia: Columbia University Press, 2004: 84-94.
[45]

Vandenbroucke T R A, Armstrong H A, Williams M, et al. Ground-truthing Late Ordovician climate models using the paleobiogeography of graptolites[J]. Paleoceanography, 2009, 24(4): PA4202.
[46]

Vandenbroucke T R A, Armstrong H A, Williams M, et al. Epipelagic chitinozoan biotopes map a steep latitudinal temperature gradient for earliest Late Ordovician seas: Implications for a cooling Late Ordovician climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294(3/4): 202-219.
[47]

Nardin E, Godderis Y, Donnadieu Y, et al. Modeling the Early Paleozoic long-term climatic trend[J]. Geological Society of America Bulletin, 2011, 123(5/6): 1181-1192.
[48]

Turner B R, Armstrong H A, Wilson C R, et al. High frequency eustatic sea-level changes during the middle to early Late Ordovician of southern Jordan: Indirect evidence for a Darriwilian ice age in Gondwana[J]. Sedimentary Geology, 2012, 251-252: 34-48.
[49]

Pohl A, Donnadieu Y, Le Hir G, et al. Glacial onset predated Late Ordovician climate cooling[J]. Paleoceanography, 2016, 31(6): 800-821.
[50]

Zachos J C, Shackleton N J, Revenaugh J S, et al. Climate response to orbital forcing across the Oligocene-Miocene boundary[J]. Science, 2001, 292(5515): 274-278.