[1] |
Nowell A R M, Jumars P A. Flumes: Theoretical and experimental considerations for simulation of benthic environments[J]. Oceanography and Marine Biology: An Annual Review, 1987, 25: 91-112. |
[2] |
Middleton G V, Southard J B. Mechanics of sediment movement: Lecture notes for short course no.3[M]. Oklahoma: Society of Economic Paleontologists and Mineralogists, 1984: 1-257. |
[3] |
Williams G P. Aids in designing laboratory flumes[R]. Washington, DC: United States Geological Survey, 1971. |
[4] |
Vogel S, LaBarbera M. Simple flow tanks for research and teaching[J]. Bioscience, 1978, 28(10): 638-643. |
[5] |
Iverson R M. The debris-flow rheology myth[C]//Proceedings of the 3rd international conference on debris-flow hazards mitigation: Mechanics, prediction, and assessment. Rotterdam: Mill Press, 2003: 303-314. |
[6] |
Savage S B, Iverson R M. Surge dynamics coupled to pore-pressure evolution in debris flows[C]//Proceedings of the 3rd international conference on debris-flow hazards mitigation: Mechanics, prediction, and assessment. Rotterdam: IOS Press, 2003: 503-514. |
[7] |
Finkl C W, Makowski C. Encyclopedia of coastal science[M]. 2nd ed. Cham: Springer International Publishing, 2019: 1-2003. |
[8] |
钱宁,万兆惠. 泥沙运动力学[M]. 北京:科学出版社,1991:1-656.
Qian Ning, Wan Zhaohui. Mechanics of sediment transport[M]. Beijing: Science Press, 1991: 1-656. |
[9] |
Chien N, Wan Z H. Mechanics of sediment transport[M]. Virginia: American Society of Civil Engineers Press, 1999: 1-913. |
[10] |
Graf W H. Hydraulics of sediment transport[M]. New York: McGraw-Hill Book Company, 1971: 1-513. |
[11] |
Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, Volume 9, Part II. 1856: 8-106. |
[12] |
Steinour H H. Rate of sedimentation: Nonflocculated suspensions of uniform spheres[J]. Industrial & Engineering Chemistry, 1944, 36(7): 618-624. |
[13] |
Christensen B A. Discussion on “erosion and deposition of cohesive soils”[J]. Journal of the Hydraulics Division, 1965, 91(5): 301-308. |
[14] |
Leliavsky S. An introduction to fluvial hydraulics[M]. London: Constable & Company Limited, 1955: 1-278. |
[15] |
Meyer-Peter E, Müller R. Formulas for bed-load transport[C]//Proceedings of 2nd meeting of the international association for hydraulic structures research, Stockholm, Delft: International Association of Hydraulic Research, 1948: 39-64. |
[16] |
Bagnold R A. An approach to the sediment transport problem from general physics[R]. Washington, DC: United States Geological Survey Professional Paper 422-I, 1966. |
[17] |
Einstein H A. The bed-load function for sediment transportation in open channel flows[R]. Technical Bulletins No. 1026, 1950: 1-71. |
[18] |
Biddle P, Miles J H. The nature of contemporary silts in British estuaries[J]. Sedimentary Geology, 1972, 7(1): 23-33. |
[19] |
Sundborg A. The River Klarälven a study of fluvial processes[J]. Geografiska Annaler, 1956, 38(2/3): 125-316. |
[20] |
窦国仁. 论泥沙起动流速[J]. 水利学报,1960,4(4):44-60.
Dou Guoren. Incipient motion of coarse and fine sediment[J]. Journal of Hydraulic Engineering, 1960, 4(4): 44-60. |
[21] |
唐存本. 泥沙起动规律[J]. 水利学报,1963,2(1):1-12.
Tang Cunben. Laws of sediment incipience motion [J]. Journal of Hydraulic Engineering, 1963, 2(1): 1-12. |
[22] |
沙玉清. 泥沙运动学引论[M]. 北京:中国工业出版社,1965:1-302.
Sha Yuqing. Sediment kinematics discuss [M]. Beijing: China Industrial Press, 1965: 1-302. |
[23] |
Parchure T M, Mehta A J. Erosion of soft cohesive sediment deposits[J]. Journal of Hydraulic Engineering, 1985, 111(10): 1308-1326. |
[24] |
Postma H. Sediment transport and sedimentation in the estuarine environment[M]//Lauff G H. Estuaries. Washington, DC: American Association for the Advancement of Science, 1967: 158-180. |
[25] |
Righetti M, Lucarelli C. May the Shields theory be extended to cohesive and adhesive benthic sediments?[J]. Journal of Geophysical Research, 2007, 112(C5): C05039. |
[26] |
Kamphuis J W, Hall K R. Cohesive material erosion by unidirectional current[J]. Journal of Hydraulic Engineering, 1983, 109(1): 49-61. |
[27] |
张民曦. 基于泥沙流变的粘性泥沙起动与冲刷特性研究[D]. 上海:上海交通大学,2018.
Zhang Minxi. Experimental study on the characteristics of incipient motion and erodibility of cohesive sediment based on sediment rheology[D]. Shanghai: Shanghai Jiao Tong University, 2018. |
[28] |
Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
[29] |
姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.
Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. |
[30] |
周立宏,蒲秀刚,邓远,等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏,2016,28(1):6-15.
Zhou Lihong, Pu Xiugang, Deng Yuan, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15. |
[31] |
陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208.
Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208. |
[32] |
袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.
Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43. |
[33] |
贾承造,郑民,张永峰. 非常规油气地质学重要理论问题[J]. 石油学报,2014,35(1):1-10.
Jia Chengzao, Zheng Min, Zhang Yongfeng. Four important theoretical issues of unconventional petroleum geology[J]. Acta Petrolei Sinica, 2014, 35(1): 1-10. |
[34] |
孙龙德,方朝亮,李峰,等. 油气勘探开发中的沉积学创新与挑战[J]. 石油勘探与开发,2015,42(2):129-136.
Sun Longde, Fang Chaoliang, Li Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2): 129-136. |
[35] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[36] |
Qiu Z, Zou C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194: 103989. |
[37] |
Krumbein W C. The dispersion of fine-grained sediments for mechanical analysis[J]. Journal of Sedimentary Research, 1933, 3(3): 121-135. |
[38] |
Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195. |
[39] |
Blatt H. Sedimentary petrology[M]. New York: W.H. Freeman and Company, 1982: 1-360. |
[40] |
Selley R C, Cocks L R M, Plimer I R. Encyclopedia of geology[M]. Amsterdam: Academic Press, 2005: 1-565. |
[41] |
Partheniades E. Cohesive sediments in open channels. Properties, transport, and applications[M]. Burlington: Butterworth-Heinemann, 2009: 1-384. |
[42] |
Birdi K S. Surface and colloid chemistry: Principles and applications[M]. Boca Raton: CRC Press, 2010: 1-278. |
[43] |
Stumm W. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems[M]. Chichester: John Wiley& Sons incorporated, 1992: 1-428. |
[44] |
刘启贞,李九发,陆维昌,等. 河口细颗粒泥沙有机絮凝的研究综述及机理评述[J]. 海洋通报,2006,25(2):74-80.
Liu Qizhen, Li Jiufa, Lu Weichang, et al. Review on the organic-flocculation of fine sediments in estuaries[J]. Marine Science Bulletin, 2006, 25(2): 74-80. |
[45] |
Ongley E D, Bynoe M C, Percival J B. Physical and geochemical characteristics of suspended solids, Wilton Creek, Ontario[J]. Canadian Journal of Earth Sciences, 1981, 18(8): 1365-1379. |
[46] |
Leppard G G. Size, morphology and composition of particulates in aquatic ecosystems: Solving speciation problems by correlative electron microscopy[J]. Analyst, 1992, 117(3): 595-603. |
[47] |
Woodward J C, Walling D E. A field sampling method for obtaining representative samples of composite fluvial suspended sediment particles for SEM analysis[J]. Journal of Sedimentary Research, 1992, 62(4): 742-744. |
[48] |
Walling D E, Woodward J C. Use of a field-based water elutriation system for monitoring the in situ particle size characteristics of fluvial suspended sediment[J]. Water Research, 1993, 27(9): 1413-1421. |
[49] |
Droppo I G, Ongley E D. Flocculation of suspended sediment in rivers of southeastern Canada[J]. Water Research, 1994, 28(8): 1799-1809. |
[50] |
Liss S N, Droppo I G, Flannigan D T, et al. Floc architecture in wastewater and natural riverine systems[J]. Environmental Science & Technology, 1996, 30(2): 680-686. |
[51] |
Droppo I G, Leppard G G, Flannigan D T, et al. The freshwater floc: A functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties[J]. Water, Air, and Soil Pollution, 1997, 99(1/2/3/4): 43-54. |
[52] |
Droppo I G. Rethinking what constitutes suspended sediment[J]. Hydrological Processes, 2001, 15(9): 1551-1564. |
[53] |
Migniot C. A study on the properties and hydrodynamic characteristic of various forms of very fine sediments and their behaviour under hydrodynamic action [M]. La Houille Blanche, 1968, 7:591-620(in French).] |
[54] |
Drake D E. Suspended sediment transport and mud deposition on continental shelves[M]//Stanley D J, Swift D J P. Marine sediment transport and environmental management New York: Wiley, 1976: 127-158. |
[55] |
Einstein H A, Krone R B. Experiments to determine modes of cohesive sediment transport in salt water[J]. Journal of Geophysical Research, 1962, 67(4): 1451-1461. |
[56] |
Busch P L, Stumm W. Chemical interactions in the aggregation of bacteria bioflocculation in waste treatment[J]. Environmental Science & Technology, 1968, 2(1): 49-53. |
[57] |
Laane R W P M. Characteristics of the organic matter in the Wadden Sea[C]//Proceedings of the 4th international Wadden Sea symposium: The role of organic matter in the Wadden Sea. Texel, Netherlands: Netherlands Institute for Sea Research, 1983: 23-39. |
[58] |
Wolanski E. Estuarine ecohydrology[M]. Amsterdam: Elsevier Science, 2007: 1-168. |
[59] |
Droukers J, van Leussen W. Physical processes in estuaries[M]. Berlin: Springer-Verlag, 1988: 1-572. |
[60] |
Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water-revisiting the delivery system:AAPG Studies in Geology61.Tulsa:AAPG,2011: 1-30. |
[61] |
Kandasamy S, Nath B N. Perspectives on the terrestrial organic matter transport and burial along the Land-Deep Sea Continuum: Caveats in our understanding of Biogeochemical processes and future needs[J]. Frontiers in Marine Science, 2016, 3: 259. |
[62] |
Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: A controversy stimulates new insights[J]. Oceanography, 2009, 22(4): 202-211. |
[63] |
Huang J C, Zhang Y J, Arhonditsis G B, et al. The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: A national-scale characterization[J]. Water Research, 2020, 181: 115902. |
[64] |
van Leussen W. Macroflocs, fine-grained sediment transports, and their longitudinal variations in the ems estuary[J]. Ocean Dynamics, 2011, 61:387⁃401. |
[65] |
Eisma D, Kalf J, Veenhuis M. The formation of small particles and aggregates in the Rhine estuary[J]. Netherlands Journal of Sea Research, 1980, 14(2): 179-191. |
[66] |
Puls W, Kuehl H. Field measurements of the settling velocities of estuarine flocs[C]//Proceedings of the 3rd international symposium on river sedimentation. Oxford, Mississippi: University of Mississippi, 1986: 525-536. |
[67] |
Gibbs R J, Konwar L, Terchunian A. Size of flocs suspended in Delaware Bay[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(S1): s102-s104. |
[68] |
Manning A J, Schoellhamer D H, Mehta A J, et al. Video measurements of flocculated sediment in lakes and estuaries in the USA[C]//Proceedings of the joint federal interagency conference on sedimentation and hydrologic modeling. Las Vegas, Nevada: ACWI’s Subcommittees on Hydrology and Sedimentation, 2010: 1-12. |
[69] |
Hodder K R. Flocculation: A key process in the sediment flux of a large, glacier-fed lake[J]. Earth Surface Processes and Landforms, 2009, 34(8): 1151-1163. |
[70] |
Offen G R, Kline S J. Combined dye-streak and hydrogen-bubble visual observations of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1974, 62(3): 223-239. |
[71] |
Partheniades E, Paaswell R E. Erosion of cohesive soils and channel stabilization. Part I: State of knowledge[R].
Buffalo, N.Y.: Dept. of Civil Engineeering, State University of New York at Buffalo, 1968. |
[72] |
Partheniades E, Paaswell R E. Erodibility of channels with cohesive boundary[J]. Journal of the Hydraulics Division, 1970, 96(3): 755-771. |
[73] |
DuBuat L G. Principes d'Hydraulique: vérifiés par un grand nombre d'Expériences faites par ordre du gouvernment, Tome Premier[M]. Paris: De L’Imprimerie de Monsieur, 1786: 1-453. |
[74] |
Flaxman E M. Channels stability in undisturbed cohesive soils[J]. Journal of the Hydraulics Division, 1963, 89(2): 87-96. |
[75] |
Sundborg Å. The River Klarälven: A study of Fluvial Processes[J]. Geografiska Annalen, 1956, 38(2/3): 125-316. |
[76] |
Grissinger E H. Resistance of selected clay systems to erosion by water[J]. Water Resources Research, 1966, 2(1): 131-138. |
[77] |
Akinola A I, Wynn‐Thompson T, Olgun C G, et al. Fluvial erosion rate of cohesive streambanks is directly related to the difference in soil and water temperatures[J]. Journal of Environmental Quality, 2019, 48(6): 1741-1748. |
[78] |
Partheniades E. A study of erosion and deposition of cohesive soils in salt water[D]. Berkeley: University of California, 1962. |
[79] |
Partheniades E. Erosion and deposition of cohesive soils[J]. Journal of the Hydraulics Division, 1965, 91(1): 105-139. |
[80] |
Mehta A J, Partheniades E. Resuspension of deposited cohesive sediment beds[C]//Proceedings of the 18th international conference on coastal engineering. Cape Town: ASCE, 1982: 1569-1588. |
[81] |
Haan C T, Barfield B J, Hayes J C. Design hydrology and sedimentology for small catchments[M]. San Diego: Academic Press, 1994: 1-608. |
[82] |
Biedenharn D S, Thorne C R, Watson C C. Wash load/bed material load concept in regional sediment management[C]//Proceedings of the 8th federal interagency sedimentation conference. Reno, Nevada: Subcommittee on Sedimentation of the Interagency Advisory Committee on Water Data (IACWD), 2006: 483-490. |
[83] |
Mehta A J, Hayter E J, Parker W R, et al. Cohesive sediment transport. I: Process description[J]. Journal of Hydraulic Engineering, 1989, 115(8): 1076-1093. |
[84] |
Syvitski J P M, Harvey N, Wolanski E, et al. Dynamics of the coastal zone[M]//Crossland C J, Kremer H H, Lindeboom H J, et al. Coastal fluxes in the Anthropocene. Berlin: Springer-Verlag, 2005: 1-231. |
[85] |
Lamb M P, de Leeuw J, Fischer W W, et al. Mud in rivers transported as flocculated and suspended bed material[J]. Nature Geoscience, 2020, 13(8): 566-570. |
[86] |
Fennessy M J, Dyer K R, Huntley D A. INSSEV: An instrument to measure the size and settling velocity of flocs in situ[J]. Marine Geology, 1994, 117(1/2/3/4): 107-117. |
[87] |
Van Leussen W. Estuarine macroflocs and their role in fine-grained sediment transport[D]. Utrecht, Netherlands: University of Utrecht, 1994. |
[88] |
Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
[89] |
Simons D B, Richardson E V. Resistance to flow in alluvial channels[R]. Washington, DC: United States Geological Survey Professional Paper 422-J, 1966. |
[90] |
Baas J H. A flume study on the development and equilibrium morphology of current ripples in very fine sand[J]. Sedimentology, 1994, 41(2): 185-209. |
[91] |
Baas J H, Davies A G, Malarkey J. Bedform development in mixed sand-mud: The contrasting role of cohesive forces in flow and bed[J]. Geomorphology, 2013, 182: 19-32. |
[92] |
Schindler R J, Parsons D R, Ye L P, et al. Sticky stuff: Redefining bedform prediction in modern and ancient environments[J]. Geology, 2015, 43(5): 399-402. |
[93] |
Grant J. bedforms Intertidal, sediment transport and stabilization by benthic microalgae[M]//de Boer P L, van Gelder A, Nio S D. Tide-influenced sedimentary environments and facies. Dordrecht: Riedel Publishing Company, 1988: 499-510. |
[94] |
Andersen T J, Lund-Hansen L C, Pejrup M, et al. Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: A possible cause for seasonal changes in sediment deposition[J]. Journal of Marine Systems, 2005, 55(3/4): 123-138. |
[95] |
Lumborg U, Andersen T J, Pejrup M. The effect of Hydrobia ulvae and microphytobenthos on cohesive sediment dynamics on an intertidal mudflat described by means of numerical modelling[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 208-220. |
[96] |
Zhao H M. Experiment on particle’s surface morphology after biofilm vegetating[C]//Proceedings of the 33rd IAHR congress : water engineering for a sustainable environment. Vancouver, Canada: International Association for Hydro-Environment Engineering and Research, 2009: 4878-4885. |
[97] |
Zhao H M, Fang H W, Chen M H. Floc architecture of bioflocculation sediment by ESEM and CLSM[J]. Scanning, 2011, 33(6): 437-445. |
[98] |
Grabowski R C, Droppo I G, Wharton G. Erodibility of cohesive sediment: The importance of sediment properties[J]. Earth-Science Reviews, 2011, 105(3/4): 101-120. |
[99] |
Fang H W, Cheng W, Fazeli M, et al. Bedforms and flow resistance of cohesive beds with and without biofilm coating[J]. Journal of Hydraulic Engineering, 2017, 143(8): 06017010. |
[100] |
Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6(1): 6257. |
[101] |
Parsons D R, Schindler R J, Hope J A, et al. The role of biophysical cohesion on subaqueous bed form size[J]. Geophysical Research Letters, 2016, 43(4): 1566-1573. |
[102] |
Hagadorn J W, McDowell C. Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow[J]. Sedimentology, 2012, 59(3): 795-808. |
[103] |
Syvitski J P M. Sediment fluxes and rates of sedimentation[M]//Middleton G V. Encyclopedia of sediments and sedimentary rocks. Boston: Kluwer Academic Publishers, 2003: 600-606. |
[104] |
Sturm M, Matter A. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of clastic detritus by density currents[M]//Matter A, Tucker M E. Modern and ancient lake sediments. London: International Association of Sedimentologists, 1978: 174-168. |
[105] |
Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162. |
[106] |
Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299. |
[107] |
Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the central Japan Sea[J]. Journal of Sedimentary Research, 2006, 76(1): 60-73. |
[108] |
Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882. |
[109] |
Zavala C, Arcuri M, Meglio M. D, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water-Revisiting the delivery system:AAPG Studies in Geology61.Tulsa:AAPG, 2011: 31-51. |
[110] |
Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478. |
[111] |
Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep-water sedimentation: Short course. Anaheim, California: SEPM Pacific Section, 1973: 1-38. |
[112] |
Britter R E, Simpson J E. Experiments on the dynamics of a gravity current head[J]. Journal of Fluid Mechanics, 1978, 88(2): 223-240. |
[113] |
Kneller B, Buckee C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications[J]. Sedimentology, 2000, 47(1): 62-94. |
[114] |
Amy L A, Talling P J, Edmonds V O, et al. An experimental investigation of sand-mud suspension settling behaviour: Implications for bimodal mud contents of submarine flow deposits[J]. Sedimentology, 2006, 53(6): 1411-1434. |
[115] |
Middleton G V, Hampton M A. Subaqueous sediment transport and deposition by sediment gravity flows[M]//Stanley D J, Swift D J P. Marine sediment transport and environmental management. New York: Wiley, 1976: 197-218. |
[116] |
Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. |
[117] |
Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. |
[118] |
Mutti E, Tinterri R, Benevelli G, et al. Deltaic, mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 733-755. |
[119] |
Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits⁃Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918. |
[120] |
Haughton P D W, Barker S P, McCaffrey W D. ‘Linked’ debrites in sand-rich turbidite systems-origin and significance[J] Sedimentology, 2003, 50(3): 459-482. |
[121] |
Talling P J, Amy L A, Wynn R B, et al. Beds comprising debrite sandwiched within co-genetic turbidite: Origin and widespread occurrence in distal depositional environments[J]. Sedimentology, 2004, 51(1): 163-194. |
[122] |
Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183. |
[123] |
Baas J H, Best J L, Peakall J, et al. Comparing the transitional behaviour of kaolinite and bentonite suspension flows[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1911-1921. |
[124] |
Craig M J, Baas J H, Amos K J, et al. Biomediation of submarine sediment gravity flow dynamics[J]. Geology, 2020, 48(1): 72-76. |
[125] |
Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 1-168. |
[126] |
Stow D A V, Shanmugam G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42. |
[127] |
Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115. |
[128] |
Eppley R W, Holmes R W, Strickland J D H. Sinking rates of marine phytoplankton measured with a fluorometer[J]. Journal of Experimental Marine Biology and Ecology, 1967, 1(2): 191-208. |
[129] |
Suess E. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization[J]. Nature, 1980, 288(5788): 260-263. |
[130] |
Omand M M, Govindarajan R, He J, et al. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics[J]. Scientific Reports, 2020, 10(1): 5582. |
[131] |
Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339. |
[132] |
Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J]. Geophysical Research Letters, 2005, 32(1): L01602. |
[133] |
张志杰,周玉文,陈嵘,等. 1960年以来青海湖沉积物粒度的时空分布及其控制因素[J]. 高校地质学报,2019,25(4):623-632.
Zhang Zhijie, Zhou Yuwen, Chen Rong, et al. Spatio-temporal distributions and controls of grain size in the sediments from the Qinghai Lake since the 1960 AD[J]. Geological Journal of China Universities, 2019, 25(4): 623-632. |
[134] |
Armstrong D E, Chesters G. Properties of protein-bentonite complexes as influenced by equilibration conditions[J]. Soil Science, 1964, 98(1): 39-52. |
[135] |
蔡进功. 泥质沉积物和泥岩中的有机粘土复合体[D]. 上海:同济大学,2013.
Cai Jingong. Organo-clay complexes in muddy sediments and mudstones[D]. Shanghai: Tongji University, 2013. |
[136] |
Block K A, Trusiak A, Katz A, et al. Exfoliation and intercalation of montmorillonite by small peptides[J]. Applied Clay Science, 2015, 107: 173-181. |
[137] |
Marshman N A, Marshall K C. Bacterial growth on proteins in the presence of clay minerals[J]. Soil Biology and Biochemistry, 1981, 13(2): 127-134. |
[138] |
Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284. |
[139] |
Clark A. The chemisorptive bond: Basic concepts[M]. New York: Academic Press, 1974: 1-207. |
[140] |
郭志刚,杨作升,曲艳慧,等. 东海陆架泥质区沉积地球化学比较研究[J]. 沉积学报,2000,18(2):284-289.
Guo Zhigang, Yang Zuosheng, Qu Yanhui, et al. Study on comparison sedimentary geochemistry of Mud area on East China Sea Continental Shelf[J]. Acta Sedimentologica Sinica, 2000, 18(2): 284-289. |