[1] 李美俊,刘晓强,韩秋雅,等. 分子模拟在油气地球化学中的应用研究进展[J]. 石油与天然气地质,2021,42(4):919-930.

Li Meijun, Liu Xiaoqiang, Han Qiuya, et al. Progress of molecular simulation application research in petroleum geochemistry[J]. Oil & Gas Geology, 2021, 42(4): 919-930.
[2]

le Doan T V, Bostrom N W, Burnham A K, et al. Green river oil shale pyrolysis: Semi-open conditions[J]. Energy & Fuels, 2013, 27(11): 6447-6459.
[3]

Aljariri Alhesan J S, Fei Y, Marshall M, et al. Long time, low temperature pyrolysis of El-Lajjun oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 135-141.
[4]

Al-Harahsheh M, Al-Ayed O, Robinson J, et al. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales[J]. Fuel Processing Technology, 2011, 92(9): 1805-1811.
[5]

Wang S, Liu J, Jiang X, et al. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale[J]. Oil Shale, 2013, 30(1): 27.
[6]

Wang W, Li S Y, Yue C T, et al. Multistep pyrolysis kinetics of North Korean oil shale[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 643-649.
[7]

Yang H S, Sohn H Y. Mathematical analysis of the effect of retorting pressure on oil yield and rate of oil generation from oil shale[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(2): 274-280.
[8] 孙丽娜,张明峰,吴陈君,等. 水对不同生烃模拟实验系统产物的影响[J]. 天然气地球科学,2015,26(3):524-532.

Sun Lina, Zhang Mingfeng, Wu Chenjun, et al. The effect of water medium on the products of different pyrolysis system[J]. Natural Gas Geoscience, 2015, 26(3): 524-532.
[9] 尹嘉,魏琳,李朝阳,等. 水对烃源岩生烃反应的物理—化学影响探讨[J]. 石油科学通报,2019,4(3):254-262.

Yin Jia, Wei Lin, Li Chaoyang, et al. Physical and chemical influence of water on hydrocarbon generation from source rocks[J]. Petroleum Science Bulletin, 2019, 4(3): 254-262.
[10]

Tannenbaum E, Ruth E, Kaplan I R. Steranes and triterpanes generated from kerogen pyrolysis in the absence and presence of minerals[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 805-812.
[11]

Hu M J, Cheng Z Q, Zhang M Y, et al. Effect of calcite, kaolinite, gypsum, and montmorillonite on Huadian oil shale kerogen pyrolysis[J]. Energy & Fuels, 2014, 28(3): 1860-1867.
[12]

Pan C, Geng A S, Zhong N, et al. Kerogen pyrolysis in the presence and absence of water and minerals. 1. Gas components[J]. Energy & Fuels, 2008, 22(1): 416-427.
[13]

Ma X, Zheng G F, Sajjad W, et al. Influence of minerals and iron on natural gases generation during pyrolysis of type-III kerogen[J]. Marine and Petroleum Geology, 2018, 89: 216-224.
[14]

Qian Y N, Zhan J H, Lai D G, et al. Primary understanding of non-isothermal pyrolysis behavior for oil shale kerogen using reactive molecular dynamics simulation[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12093-12100.
[15]

Maginn E J. From discovery to data: What must happen for molecular simulation to become a mainstream chemical engineering tool[J]. AIChE Journal, 2009, 55(6): 1304-1310.
[16] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 1984.
[17] 卢双舫,张敏. 油气地球化学[M]. 2版. 北京:石油工业出版社,2017.

Lu Shuangfang, Zhang Min. Petroleum geochemistry[M]. 2nd ed. Beijing: Petroleum Industry Press, 2017.
[18]

Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833.
[19] 茹鑫. 油页岩热解过程分子模拟及实验研究[D]. 长春:吉林大学,2013.

Ru Xin. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Changchun: Jilin University, 2013.
[20]

Lai D G, Zhan J H, Tian Y, et al. Mechanism of kerogen pyrolysis in terms of chemical structure transformation[J]. Fuel, 2017, 199: 504-511.
[21]

Miknis F P, Netzel D A, Smith J W, et al. 13C NMR measurements of the genetic potentials of oil shales[J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 977-984.
[22]

Qin K Z, Chen D Y, Li Z G. A new method to estimate the oil and gas potentials of coals and kerogens by solid state 13C NMR spectroscopy[J]. Organic Geochemistry, 1991, 17(6): 865-872.
[23]

Miknis F P, Smith J W. An NMR survey of United States oil shales[J]. Organic Geochemistry, 1984, 5(4): 193-201.
[24]

Miknis F P. Combined n.m.r. and Fischer assay study of oil shale conversion[J]. Fuel, 1992, 71(7): 731-738.
[25]

Miknis F P, Szeverenyi N M, Maciel G E. Characterization of the residual carbon in retorted oil shale by solid-state 13C n.m.r[J]. Fuel, 1982, 61(4): 341-345.
[26]

Behar F, Lorant F, Lewan M. Role of NSO compounds during primary cracking of a type II kerogen and a type III lignite[J]. Organic Geochemistry, 2008, 39(1): 1-22.
[27]

Behar F, Roy S, Jarvie D. Artificial maturation of a type I kerogen in closed system: Mass balance and kinetic modelling[J]. Organic Geochemistry, 2010, 41(11): 1235-1247.
[28]

Tissot B P. Premières données sur les mécanismes et la cinétique de la Formation du pétrole dans les sédiments. Simulation d'un schéma réactionnel sur ordinateur[J]. Revue de L'institute Francais du Petrole, 1969, 24: 470-501.
[29]

Ma W J, Hou L H, Luo X, et al. Role of bitumen and NSOs during the decomposition process of a lacustrine type-II kerogen in semi-open pyrolysis system[J]. Fuel, 2020, 259: 116211.
[30]

Song D J, Wang X Q, Wu C J, et al. Petroleum generation, retention, and expulsion in lacustrine shales using an artificial thermal maturation approach: Implications for the in-situ conversion of shale oil[J]. Energy & Fuels, 2021, 35(1): 358-373.
[31] Burnham A K, Braun R L, Taylor R W, et al. Comparison of isothermal and nonisothermal pyrolysis data with various rate mechanisms: Implications for kerogen structure[C]//Symposium on comparative studies of various shale oils symposium. Dallas: American Chemical Society, Division of Petroleum Chemistry, Preprints; (USA), 1989: 36-42.
[32]

Zhang H Y, Ahmed M, Zhan J H. Recent advances in molecular simulation of oil shale kerogen[J]. Fuel, 2022, 316: 123392.
[33]

Obliger A, Valdenaire P L, Capit N, et al. Poroelasticity of methane-loaded mature and immature kerogen from molecular simulations[J]. Langmuir, 2018, 34(45): 13766-13780.
[34]

Bousige C, Ghimbeu C M, Vix-Guterl C, et al. Realistic molecular model of kerogen’s nanostructure[J]. Nature Materials, 2016, 15(5): 576-582.
[35]

Atmani L, Valdenaire P L, Pellenq R J M, et al. Simulating the geological fate of terrestrial organic matter: Lignin vs cellulose[J]. Energy & Fuels, 2020, 34(2): 1537-1547.
[36]

Atmani L, Bichara C, Pellenq R J M, et al. From cellulose to kero-gen: Molecular simulation of a geological process[J]. Chemical Science, 2017, 8(12): 8325-8335.
[37]

Siskin M, Scouten C G, Rose K D, et al. Detailed structural characterization of the organic material in Rundle Ramsay Crossing and Green River oil shales[J]. Fuel and Energy Abstracts, 1996, 37(1): 10.
[38]

Orendt A M, Pimienta I S O, Badu S R, et al. Three-dimensional structure of the siskin green river oil shale kerogen model: A comparison between calculated and observed properties[J]. Energy & Fuels, 2013, 27(2): 702-710.
[39]

Ungerer P, Collell J, Yiannourakou M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1): 91-105.
[40]

Guan X H, Liu Y, Wang D, et al. Three-dimensional structure of a huadian oil shale kerogen model: An experimental and theoretical study[J]. Energy & Fuels, 2015, 29(7): 4122-4136.
[41]

Tong J H, Han X X, Wang S, et al. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy & Fuels, 2011, 25(9): 4006-4013.
[42]

Tong J H, Jiang X M, Han X X, et al. Evaluation of the macromolecular structure of Huadian oil shale kerogen using molecular modeling[J]. Fuel, 2016, 181: 330-339.
[43]

Wang Q, Pan S, Bai J R, et al. Experimental and dynamics simulation studies of the molecular modeling and reactivity of the Yaojie oil shale kerogen[J]. Fuel, 2018, 230: 319-330.
[44]

Wang X H, Huang X F, Lin K, et al. The constructions and pyrolysis of 3D kerogen macromolecular models: Experiments and simulations[J]. Global Challenges, 2019, 3(5): 1900006.
[45]

Wu Z H, Xu Z G. Experimental and molecular dynamics investigation on the pyrolysis mechanism of Chang 7 type-II oil shale kerogen[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109878.
[46]

Zhang Z J, Chai J, Zhang H Y, et al. Structural model of Longkou oil shale kerogen and the evolution process under steam pyrolysis based on ReaxFF molecular dynamics simulation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(2): 252-265.
[47]

Zhao F M, Li B, Zhang L, et al. The mechanism of superheated steam affecting the quality of in-situ pyrolysates of oil shale kero-gen: Part A-saturation of pyrolytic organics[J]. Fuel, 2022, 323: 124331.
[48]

Behar F, Vandenbroucke M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.
[49]

Kelemen S R, Afeworki M, Gorbaty M L, et al. Direct characte-rization of kerogen by x-ray and solid-state 13C nuclear magnetic resonance methods[J]. Energy & Fuels, 2007, 21(3): 1548-1561.
[50]

Sui H, Yao J. Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study[J]. Journal of Na-tural Gas Science and Engineering, 2016, 31: 738-746.
[51]

Zhao T Y, Li X F, Zhao H W, et al. Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content[J]. Fuel, 2017, 190: 198-207.
[52]

Zhou J, Mao Q, Luo K H. Effects of moisture and salinity on methane adsorption in kerogen: A molecular simulation study[J]. Energy & Fuels, 2019, 33(6): 5368-5376.
[53]

Wang Q, Wang X M, Pan S. The three-dimensional molecular structure model of Fushun oil shale kerogen, China[J]. Journal of Molecular Structure, 2022, 1255: 132380.
[54]

Lewan M D. Sulphur-radical control on petroleum formation rates[J]. Nature, 1998, 391(6663): 164-166.
[55]

Pawar G, Meakin P, Huang H. Reactive molecular dynamics simulation of kerogen thermal maturation and cross-linking pathways[J]. Energy & Fuels, 2017, 31(11): 11601-11614.
[56]

Xu H Y, Yu H, Fan J C, et al. Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process[J]. Energy, 2022, 242: 122992.
[57]

Hu S D. Investigation of kerogen thermal decomposition mechanisms and kinetics via ReaxFF molecular dynamics simulations[J]. Journal of Molecular Modeling, 2021, 27(7): 208.
[58]

Zhang Z J, Guo L T, Zhang H Y. A ReaxFF molecular dynamics study on the mechanism and the typical pyrolysis gases in the pyrolysis process of Longkou oil shale kerogen[J]. Molecular Simulation, 2020, 46(15): 1191-1199.
[59]

Zhang Z J, Guo L T, Zhang H Y, et al. Comparing product distribution and desulfurization during direct pyrolysis and hydropyrolysis of Longkou oil shale kerogen using reactive MD simulations[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25335-25346.
[60]

Zhang Z J, Zhang H Y, Chai J, et al. Reactive molecular dynamics simulation of oil shale combustion using the ReaxFF reactive force field[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(3): 349-360.
[61]

van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
[62]

Zheng M, Li X X, Liu J, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951.
[63]

Qian Y N, Zhan J H, Xu W, et al. ReaxFF molecular dynamic simulation of primary and secondary reactions involving in sub-bituminous coal pyrolysis for tar production[J]. Carbon Resources Conversion, 2021, 4: 230-238.
[64]

Liu X P, Zhan J H, Lai D G, et al. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation[J]. Energy & Fuels, 2015, 29(5): 2987-2997.
[65]

Salmon E, van Duin A C T, Lorant F, et al. Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427.
[66]

Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown Coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209.
[67]

Salmon E, Behar F, Lorant F, et al. Thermal decomposition processes in algaenan of Botryococcus braunii race L. Part 1: Experimental data and structural evolution[J]. Organic Geochemistry, 2009, 40(3): 400-415.
[68]

Behar F, Derenne S, Largeau C. Closed pyrolyses of the isoprenoid algaenan of Botryococcus braunii, L race: Geochemical implications for derived kerogens[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2983-2997.
[69]

Hatcher P G, Clifford D J. The organic geochemistry of coal: From plant materials to coal[J]. Organic Geochemistry, 1997, 27(5/6): 251-274.
[70]

Salmon E, Behar F, Lorant F, et al. Early maturation processes in coal. Part 1: Pyrolysis mass balance and structural evolution of coalified wood from the Morwell Brown Coal seam[J]. Organic Geochemistry, 2009, 40(4): 500-509.
[71]

Han Q Y, Li M J, Liu X Q, et al. A maturation scale for molecular simulation of kerogen thermal degradation[J]. Organic Geochemistry, 2023, 175: 104507.
[72]

Chen Z J, Sun W Z, Zhao L. High-temperature and high-pressure pyrolysis of hexadecane: Molecular dynamic simulation based on reactive force field (ReaxFF)[J]. The Journal of Physical Chemistry A, 2017, 121(10): 2069-2078.
[73]

Ballice L, Yüksel M, Saglam M, et al. Evolution of volatile products from oil shales by temperature-programmed pyrolysis[J]. Fuel, 1996, 75(4): 453-458.
[74]

Huang Z K, Liang T, Zhan Z W, et al. Chemical structure evolution of kerogen during oil generation[J]. Marine and Petroleum Geology, 2018, 98: 422-436.
[75]

Liang T, Zou Y R, Zhan Z W, et al. An evaluation of kerogen molecular structures during artificial maturation[J]. Fuel, 2020, 265: 116979.
[76]

Cao H R, Lei Y, Wang X Y, et al. Molecular structure evolution of Type I kerogen during pyrolysis: Case study from the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2021, 134: 105338.
[77]

Behar F, Kressmann S, Rudkiewicz J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/2/3): 173-189.
[78] 徐金泽,陈掌星,周德胜,等. 油页岩原位转化热解反应特征研究综述[J]. 西南石油大学学报(自然科学版),2021,43(5):220-226.

Xu Jinze, Chen Zhangxing, Zhou Desheng, et al. Review on the characteristics of pyrolysis during in-situ conversion of oil shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5): 220-226.
[79]

Zou C Y, Raman S, van Duin A C T. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils[J]. The Journal of Physical Chemistry B, 2014, 118(23): 6302-6315.
[80]

Rajeshwar K. The kinetics of the thermal decomposition of Green River oil shale kerogen by non-isothermal thermogravimetry[J]. Thermochimica Acta, 1981, 45(3): 253-263.
[81]

Raja M A, Zhao Y S, Zhang X P, et al. Practices for modeling oil shale pyrolysis and kinetics[J]. Reviews in Chemical Engineering, 2017, 34(1): 21-42.
[82]

Xu F, Liu H, Wang Q, et al. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019, 256: 115884.
[83]

Wei X, Yu J, Du J X, et al. New insights into the pyrolysis behavior of polycarbonates: A study based on DFT and ReaxFF-MD simulation under nonisothermal and isothermal conditions[J]. Energy & Fuels, 2021, 35(6): 5026-5038.
[84]

Zhang T T, Li X X, Qiao X J, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2016, 30(4): 3140-3150.
[85]

Zhang Z J, Guo L T, Zhang H Y. A ReaxFF molecular dynamics study on the hydropyrolysis process of Huadian oil shale kerogen[J]. Molecular Simulation, 2021, 47(4): 334-345.
[86]

Han X X, Jiang X M, Cui Z G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale[J]. Applied Energy, 2009, 86(11): 2381-2385.
[87]

Williams P T, Ahmad N. Influence of process conditions on the pyrolysis of Pakistani oil shales[J]. Fuel, 1999, 78(6): 653-662.
[88]

Nazzal J M. Influence of heating rate on the pyrolysis of Jordan oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(2): 225-238.
[89]

Lewan M D, Winters J C, McDonald J H. Generation of oil-like pyrolyzates from organic-rich shales[J]. Science, 1979, 203(4383): 897-899.
[90]

Lewan M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723.
[91]

Lewan M D, Roy S. Role of water in hydrocarbon generation from type-I kerogen in Mahogany oil shale of the Green River Formation[J]. Organic Geochemistry, 2011, 42(1): 31-41.
[92] 邹艳荣,帅燕华,孔枫,等. 油气生成过程实验研究的思考与展望[J]. 石油实验地质,2004,26(4):375-382.

Zou Yanrong, Yanhua Shuai, Kong Feng, et al. Experiments on petroleum gene-ration:Considerations and outlook[J]. Petroleum Geology & Experiment, 2004, 26(4): 375-382.
[93]

Li G Y, Ding J X, Zhang H, et al. ReaxFF simulations of hydrothermal treatment of lignite and its impact on chemical structures[J]. Fuel, 2015, 154: 243-251.
[94]

Rismiller S C, Groves M M, Meng M, et al. Water assisted liquefaction of lignocellulose biomass by ReaxFF based molecular dynamic simulations[J]. Fuel, 2018, 215: 835-843.
[95] 彭威龙,胡国艺,刘全有,等. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学,2018,29(9):1252-1263.

Peng Weilong, Hu Guoyi, Liu Quanyou, et al. Research status on thermal simulation experiment and several issues for concerns[J]. Natural Gas Geoscience, 2018, 29(9): 1252-1263.
[96] 郝芳,邹华耀,方勇,等. 超压环境有机质热演化和生烃作用机理[J]. 石油学报,2006,27(5):9-18.

Hao Fang, Zou Huayao, Fang Yong, et al. Kinetics of organic matter maturation and hydrocarbon generation in overpressure environment[J]. Acta Petrolei Sinica, 2006, 27(5): 9-18.
[97]

Corredor E C, Deo M D. Effect of vapor liquid equilibrium on product quality and yield in oil shale pyrolysis[J]. Fuel, 2018, 234: 1498-1506.
[98]

Baruah B, Tiwari P. Effect of high pressure on nonisothermal pyrolysis kinetics of oil shale and product yield[J]. Energy & Fuels, 2020, 34(12): 15855-15869.
[99]

Jackśon K J, Burnham A K, Braun R L, et al. Temperature and pressure dependence of n-hexadecane cracking[J]. Organic Geochemistry, 1995, 23(10): 941-953.
[100]

Fletcher T H, Gillis R, Adams J, et al. Characterization of macro-molecular structure elements from a Green River oil shale, II. Characterization of pyrolysis products by 13C NMR, GC/MS, and FTIR[J]. Energy & Fuels, 2014, 28(5): 2959-2970.
[101]

Hillier J L, Fletcher T H, Solum M S, et al. Characterization of macromolecular structure of pyrolysis products from a Colorado Green River oil shale[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15522-15532.
[102]

Zhang D P, Cao H R, Lei Y, et al. A study on molecular structural evolution of type II kerogen in a gold tube thermal system: Insights from solid-state 13C NMR[J]. Fuel, 2023, 331: 125898.
[103]

Campbell J H, Koskinas G J, Gallegos G, et al. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements[J]. Fuel, 1980, 59(10): 718-726.
[104]

Guan X H, Wang D, Wang Q, et al. Estimation of various chemical bond dissociation enthalpies of large-sized kerogen molecules using DFT methods[J]. Molecular Physics, 2016, 114(11): 1705-1755.
[105]

Yang D, Wang L, Zhao Y S, et al. Investigating pilot test of oil shale pyrolysis and oil and gas upgrading by water vapor injection[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108101.