[1] |
何海清,支东明,雷德文,等. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价[J]. 中国石油勘探,2019,24(2):137-146.
He Haiqing, Zhi Dongming, Lei Dewen, et al. Strategic breakthrough in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin[J]. China Petroleum Exploration, 2019, 24(2): 137-146. |
[2] |
杨迪生,肖立新,阎桂华,等. 准噶尔盆地南缘四棵树凹陷构造特征与油气勘探[J]. 新疆石油地质,2019,40(2):138-144.
Yang Disheng, Xiao Lixin, Yan Guihua, et al. Structural characteristics and petroleum exploration in Sikeshu Sag, southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 138-144. |
[3] |
杜金虎,支东明,李建忠,等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发,2019,46(2):205-215.
Du Jinhu, Zhi Dongming, Li Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215. |
[4] |
关旭同,吴朝东,吴鉴,等. 准噶尔盆地南缘上侏罗统—下白垩统沉积序列及沉积环境演化[J]. 新疆石油地质,2020,41(1):67-79.
Guan Xutong, Wu Chaodong, Wu Jian, et al. Sedimentary sequence and depositional environment evolution of Upper Jurassic-Lower Cretaceous strata in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(1): 67-79. |
[5] |
高志勇,周川闽,冯佳睿,等. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报,2016,34(3):415-435.
Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Relationship between the Tianshan Mountains uplift and depositional environment evolution of the basins in Mesozoic-Cenozoic[J]. Acta Sedimentologica Sinica, 2016, 34(3): 415-435. |
[6] |
谭程鹏,于兴河,李胜利,等. 辫状河—曲流河转换模式探讨:以准噶尔盆地南缘头屯河组露头为例[J]. 沉积学报,2014,32(3):450-458.
Tan Chengpeng, Yu Xinghe, Li Shengli, et al. Discussion on the model of braided river transform to meandering river: As an example of Toutunhe Formation in southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 450-458. |
[7] |
邓胜徽,卢远征,赵怡,等. 中国侏罗纪古气候分区与演变[J]. 地学前缘,2017,24(1):106-142.
Deng Shenghui, Lu Yuanzheng, Zhao Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 2017, 24(1): 106-142. |
[8] |
卢远征,邓胜徽. 准噶尔盆地南缘三叠纪—侏罗纪之交的古气候[J]. 古地理学报,2009,11(6):652-660.
Lu Yuanzheng, Deng Shenghui. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660. |
[9] |
王明振,吴朝东,王陆新,等. 准噶尔盆地南缘侏罗系泥岩黏土矿物组合及地球化学特征[J]. 矿物岩石地球化学通报,2014,33(4):421-430.
Wang Mingzhen, Wu Chaodong, Wang Luxin, et al. Jurassic clay mineral assambleges in mudstones and geochemical characteristics in the southern part of Junggar Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(4): 421-430. |
[10] |
Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88. |
[11] |
Fatima S, Khan M S. Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: Implications for provenance, tectonic setting, and crustal evolution[J]. International Geology Review, 2012, 54(10): 1113-1144. |
[12] |
Peinado F M, Ruano S M, Gonzview, 2012, 54(10): 1113-1144. 113-1144. esoproterozoic Kumbalgarh clastic rocks, NW Indian shield: Implications Mineralogy, Pet)[J]. Geoderma, 2010, 159(1/2): 76-82. |
[13] |
Fisher L, Gazley M F, Baensch A, et al. Resolution of geochemical and lithostratigraphic complexity: A workflow for application of portable X-ray fluorescence to mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2014, 14(2): 149-159. |
[14] |
Klise K A, Moriarty D, Yoon H, et al. Automated contact angle estimation for three-dimensional X-ray microtomography data[J]. Advances in Water Resources, 2016, 95: 152-160. |
[15] |
李一超,李春山,何国贤. X射线荧光分析在岩屑录井中的应用[J]. 岩石矿物学杂志,2009,28(1):58-68.
Li Yichao, Li Chunshan, He Guoxian. The application of XRF analysis to logging[J]. Acta Petrologica et Mineralogica, 2009, 28(1): 58-68. |
[16] |
郑一丁,雷裕红,张立强,等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学,2015,26(7):1395-1404.
Zheng Yiding, Lei Yuhong, Zhang Liqiang, et al. Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience, 2015, 26(7): 1395-1404. |
[17] |
Han Y G, Zhao G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. |
[18] |
Yin J Y, Chen W, Xiao W J, et al. Tracking the multiple-stage exhumation history and magmatic-hydrothermal events of the West Junggar region, NW China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 2018, 159: 130-141. |
[19] |
Yu Y L, Wang X, Rao G, et al. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China[J]. Tectonophysics, 2016, 679: 156-168. |
[20] |
Guan S W, Stockmeyer J M, Shaw J H, et al. Structural inversion, imbricate wedging, and out-of-sequence thrusting in the southern Junggar fold-and-thrust belt, northern Tian Shan, China[J]. AAPG Bulletin, 2016, 100(9): 1443-1468. |
[21] |
Yang W, Jolivet M, Dupont-Nivet G, et al. Source to sink relations between the Tian Shan and Junggar Basin (northwest China) from Late Palaeozoic to Quaternary: Evidence from detrital U-Pb zircon geochronology[J]. Basin Research, 2013, 25(2): 219-240. |
[22] |
马晓潇,黎茂稳,庞雄奇,等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质,2016,38(2):278-286.
Ma Xiaoxiao, Li Maowen, Pang Xiongqi, et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(2): 278-286. |
[23] |
Filella M, Belzile N, Chen Y W. Antimony in the environment: A review focused on natural waters: I. Occurrence[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176. |
[24] |
Janz H, Vennemann T W. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 225(1/2/3/4): 216-247. |
[25] |
Zerfass H, Lavina E L, Schultz C L, et al. Sequence stratigraphy of continental Triassic strata of Southernmost Brazil: A contribution to Southwestern Gondwana palaeogeography and palaeoclimate[J]. Sedimentary Geology, 2003, 161(1/2): 85-105. |
[26] |
Sahajpal R, Zimmerman S R H, Datta S, et al. Assessing Li and other leachable geochemical proxies for paleo-salinity in lake sediments from the Mono Basin, CA (USA)[J]. Geochimica et Cosmochimica Acta, 2011, 75(24): 7855-7863. |
[27] |
López-Buendı́a A M, Bastida J, Querol X, et al. Geochemical data as indicators of palaeosalinity in coastal organic-rich sediments[J]. Chemical Geology, 1999, 157(3/4): 235-254. |
[28] |
Chen Z Y, Chen Z L, Zhang W G. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, eastern China, with special reference to marine transgressions[J]. Quaternary Research, 1997, 47(2): 181-191. |
[29] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[30] |
Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during Late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific[J]. Chemical Geology, 2012, 334: 77-91. |
[31] |
Schenau S J, Reichart G J, De Lange G J. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 919-931. |
[32] |
Moosavirad S M, Janardhana M R, Sethumadhav M S, et al. Geochemistry of Lower Jurassic shales of the Shemshak Formation, Kerman province, Central Iran: Provenance, source weathering and tectonic setting[J]. Geochemistry, 2011, 71(3): 279-288. |
[33] |
Garcia D, Fonteilles M, Moutte J. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites[J]. The Journal of Geology, 1994, 102(4): 411-422. |
[34] |
Yudovich Y E, Ketris M P. Chlorine in coal: A review[J]. International Journal of Coal Geology, 2006, 67(1/2): 127-144. |
[35] |
Nie J S, Horton B K, Saylor J E, et al. Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley Basin, northern Andes, Colombia[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 111-126. |
[36] |
周天琪,吴朝东,袁波,等. 准噶尔盆地南缘侏罗系重矿物特征及其物源指示意义[J]. 石油勘探与开发,2019,46(1):65-78.
Zhou Tianqi, Wu Chaodong, Yuan Bo, et al. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 65-78. |
[37] |
Sha J G, Olsen P E, Pan Y H, et al. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China) [J].Proceedings of the National Academy of Sciences of the United States of America,2015, 112(12): 3624-3629. |
[38] |
Royer D L. CO2-forced climate thresholds during the Phanerozoic[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5665-5675. |
[39] |
Korte C, Hesselbo S P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic[J]. Paleoceanography, 2011, 26(4): PA4219. |
[40] |
Price G D. Carbon-isotope stratigraphy and temperature change during the Early-Middle Jurassic(Toarcian-Aalenian), Raasay,Scotland,UK[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(3/4): 255-263. |
[41] |
De Grave J, Buslov M M, Van den Haute P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia:Constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 188-204. |