[1] Blankenship-Williams L E, Levin L A. Living deep: A synopsis of Hadal Trench ecology[J]. Marine Technology Society Journal, 2009, 43(5): 137-143.
[2] Jamieson A J, Fujii T, Mayor D J, et al. Hadal Trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
[3] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
[4] Nakanishi M, Hashimoto J. A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench[J]. Marine Geophysical Research, 2011, 32(4): 455-463.
[5] Luo M, Algeo T J, Chen L Y, et al. Role of dust fluxes in stimulating ethmodiscus rex giant diatom blooms in the northwestern tropical Pacific during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 319-331.
[6] 张金鹏,邓希光,杨胜雄,等. 马里亚纳海沟挑战者深渊南部7000m水深处发现硅藻化石软泥[J].地质通报, 2015, 34(12): 2352-2354.

Zhang Jinpeng, Deng Xiguang, Yang Shengxiong, et al. Diatom ooze found in 7000m submarine area of Challenger Depth in Mariana Trench[J]. Geological Bulletin of China, 2015, 34(12): 2352-2354.
[7] 朱坤杰,何树平,陈芳,等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因[J]. 地质学刊, 2015, 39(2): 251-257.

Zhu Kunjie, He Shuping, Chen Fang, et al. Engineering geological characteristics and genesis of the sediments from the southern Mariana Trench [J]. Journal of Geology, 2015, 39(2): 251-257.
[8] 王汾连,何高文,王海峰,等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质,2016,36(4): 67-75.

Wang Fenlian, He Gaowen, Wang Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75.
[9] 徐兆凯,李安春,蒋富清,等. 东菲律宾海沉积物的地球化学特征与物质来源[J].科学通报, 2008, 53(6): 695-702.

Xu Zhaokai, Li Anchun, Jiang Fuqing, et al. Geochemical character and material source of sediments in the eastern Philippine Sea[J]. Chinese Science Bulletin, 2008, 53(6): 695-702.
[10]

Xiao C H, Wang Y H, Tian J W, et al. Mineral composition and geochemical characteristics of sinking particles in the Challenger Deep, Mariana Trench: Implications for provenance and sedimentary environment[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 157: 103211.
[11]

Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159.
[12]

Peng X T, Guo Z X, Du M R, et al.Past endolithic life in metamorphic ocean crust[J]. Geochemical Perspectives Letters, 2020, 14: 14-19.
[13]

Glud R N, Wenzhöfer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
[14]

Liu S Q, Peng X T. Organic matter diagenesis in hadal setting: Insights from the pore-water geochemistry of the Mariana Trench sediments[J].Deep Sea Research Part I:Oceanographic Research Papers, 2019, 147: 22-31.
[15] 中华人民共和国国家质量监督检疫总局. GB/T 12763.8—2007海洋调查规范 第8部分:海洋地质地球物理调查[S]. 北京:中国标准出版社,2008.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 12763.8-2007Specifications for oceanographic survey—Part 8: Marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2008.
[16]

Du M, Peng X, Seyfried Jr W E, et al. Fluid discharge linked to bending of the incoming plate at the Mariana subduction zone[J]. Geochemical Perspectives Letters, 2019, 11: 1-5.
[17]

McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[18]

Deng Y N, Guo Q J, Liu C Q, et al. Early diagenetic control on the enrichment and fractionation of rare earth elements in deep-sea sediments[J]. Science Advances, 2022, 8(25): eabn5466.
[19]

Ren J B, Liu Y, Wang F L, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021, 11(2): 196.
[20]

Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535-539.
[21]

Kashiwabara T, Toda R, Nakamura K, et al. Synchrotron X-ray spectroscopic perspective on the formation mechanism of REY-rich muds in the Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2018, 240: 274-292.
[22]

Deng K, Yang S, Du J, et al. Dominance of benthic flux of REEs on continental shelves: Implications for oceanic budgets[J]. Geochemical Perspectives Letters, 2022, 22: 26-30.
[23]

Liao J L, Sun X M, Li D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments:LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 521: 58-68.
[24]

Liao J L, Chen J Y, Sun X M, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments[J]. Chemical Geology, 2022, 595: 120792.
[25]

Paul S A L, Volz J B, Bau M, et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific[J]. Geochimica et Cosmochimica Acta. 2019, 251: 56-72.
[26]

Çağatay M N, Erel L, Bellucci L G, et al. Sedimentary earthquake records in the Izmit Gulf, sea of Marmara, Turkey[J]. Sedimentary Geology, 2012, 282: 347-359.
[27]

McHugh C M, Kanamatsu T, Seeber L, et al. Remobilization of surficial slope sediment triggered by the A-D. 2011 Mw9 Tohoku-Oki earthquake and tsunami along the Japan Trench[J]. Geology, 2016, 44(5): 391-394.
[28]

Turnewitsch R, Falahat S, Stehlikova J, et al. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher- frequency (tidal, near-inertial) fluid dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90: 125-138.
[29]

Karageorgis A P, Anagnostou C L, Kaberi H, et al. Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact[J]. Applied Geochemistry, 2005, 20(1): 69-88.
[30] Wood D A, Mattey D P, Joron J L, et al. A geochemical study of selected samples from the basement cores recovered at sites447, 448, 449, 450, and 451, Deep Sea Drilling Project Leg 59[C]. Washington: US Government Printing Office, 1981: 743-752.
[31]

Jiang Z Z, Sun Z L, Liu Z Q, et al. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep[J]. Journal of Oceanology and Limnology, 2019, 37(3): 998-1009.
[32] 肖春晖,王永红,林间,等. 马里亚纳”沟—盆”深水沉积环境稀土元素特征与物源约束[J].海洋地质与第四纪地质, 2021, 41(1): 102-114.

Xiao Chunhui, Wang Yonghong, Lin Jian, et al. Characteristics of rare earth elements in deep-water sediments in Mariana “Trench-Basin” system and their provenance constraints[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 102-114.
[33] Migdisov A A, Miklishanski A Z, Saveliev B V, et al. Neutronactivation analysis of rare earth elements and some other trace elements in volcanic ashes and pelagic clays Deep Sea Drilling Project Leg 59[M]//Kroenke L, Scott R. Initial reports of the deep sea drilling project. Washington: U.S. Government Printing Office, 1981: 653-668.
[34] 田丽艳,赵广涛,陈佐林,等. 马里亚纳海槽热液活动区玄武岩的岩石地球化学特征[J]. 青岛海洋大学学报, 2003, 33(3): 405-412.

Tian Liyan, Zhao Guangtao, Chen Zuolin, et al. The preliminary study of petrological geochemistry of basalts from hydrothermal activity regions, Mariana Trough[J]. Journal of Ocean University of Qingdao, 2003, 33(3): 405-412.
[35] Bischoff J L, Piper D Z. Marine geology and oceanography of the Pacific manganese nodule province[M]. New York: Plenum Press, 1979: 397-436.
[36] 张富元,章伟艳,张霄宇,等. 深海沉积物分类与命名的关键技术和方案[J]. 地球科学:中国地质大学学报, 2012, 37(1): 93-104.

Zhang Fuyuan, Zhang Weiyan, Zhang Xiaoyuet al. Key technique and scheme of classification and nomenclature for deep sea sediments[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(1): 93-104.
[37]

Luo M, Gieskes J, Chen L Y, et al. Sources, degradation, and transport of organic matter in the New Britain shelf‐trench continuum, Papua New Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6):1680-1695.