[1] Altermann W, Kazmierczak J, Oren A, et al. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history[J]. Geobiology, 2006, 4(3): 147-166.
[2] 李金华,Bernard S,Benzerara K,等. 微生物矿化与微化石识别[C]//2014年中国地球科学联合学术年会:专题30:地球生物学论文集. 北京:中国地球物理学会,2014:1710. [

Li Jinhua, Bernard S, Benzerara K, et al. Microbial mineralization and microfossil recognition[C]//Proceedings of the annual meeting of China geoscience union in 2014. Topic30: Collected Papers on Geobiology. Beijing: Chinese Geophysical Society, 2014: 1710.]
[3] Merz-preiβ M. Calcification in cyanobacteria[M]//Riding R E, Awramik S M. Microbial sediments. Berlin Heidelberg: Springer, 2000: 50-56.
[4] Konhauser K. Introduction to geomicrobiology[M]. Malden: Blackwell Publishing, 2007: 160-166.
[5] Swett K, Knoll A H. Stromatolitic bioherms and microphytolites from the Late proterozoic draken conglomerate formation, spitsbergen[J]. Precambrian Research, 1985, 28(3/4): 327-347.
[6] Knoll A H, Fairchild I J, Swett K. Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition[J]. PALAIOS, 1993, 8(6): 512-525.
[7] Riding R. Evolution of algal and cyanobacterial calcification[M]//Bengtson S. Early life on earth. New York: Columbia University Press, 1994: 426-438.
[8] Stal L J. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments[J]. Geomicrobiology Journal, 2003, 20(5): 463-478.
[9] Richert L, Golubic S, Le Guédès R, et al. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats[J]. Current Microbiology, 2005, 51(6): 379-384.
[10] Nicolaus B, Panico A, Lama L, et al. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria[J]. Phytochemistry, 1999, 52(4): 639-647.
[11] 王龙,Latif K,Riaz M,等. 微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展,2018,33(10):1005-1023.

Wang Long, Latif K, Riaz M, et al. The genesis, classification, problems and prospects of microbial carbonates: Implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1005-1023.
[12] Pentecost A, Riding R. Calcification in cyanobacteria[M]//Leadbeater S C, Riding R. Biomineralization in Lower plants and animals. Oxford: Clarendon Press, 1986: 73-90.
[13] Kamennaya N A, Ajo-franklin C M, Northen T, et al. Cyanobacteria as biocatalysts for carbonate mineralization[J]. Minerals, 2012, 2(4): 338-364.
[14] Dupraz C, Visscher P T. Microbial lithification in marine stromatolites and hypersaline mats[J]. Trends in Microbiology, 2005, 13(9): 429-438.
[15] Kawaguchi T, Decho A W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism[J]. Journal of Crystal Growth, 2002, 240(1/2): 230-235.
[16] Kawaguchi T, Decho A W. Isolation and biochemical characterization of extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamas) and its inhibitory effect on CaCO3 precipitation[J]. Preparative Biochemistry & Biotechnology, 2002, 32(1): 51-63.
[17] 梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评,2012,58(5):937-951.

Mei Mingxiang. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5): 937-951.
[18] Perry R S, McLoughlin N, Lynne B Y, et al. Defining biominerals and organominerals: Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1/2): 157-179.
[19] Défarge C, Trichet J. From biominerals to ‘organominerals’: The example of the modern lacustrine calcareous stromatolites from Polynesian atolls[C]//Allemand D, Cuif J P, (Eds.). Proceedings of the 7th international symposium of biomineralizaiton. Monaco: Bulletin de l'Institut Océanographique, 1995, 14(2): 265-271.
[20] Trichet J, Défarge C. Non-biologically supported organomineralization[C]//Allemand D, Cuif J P, (Eds.). Proceedings of the 7th international symposium of biomineralizaiton. Monaco: Bulletin de l'Institut Océanographique, 1995, 14(2): 203-236.
[21] Golubic S, Hofmann H J. Comparison of holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation[J]. Journal of Paleontology, 1976, 50(6): 1074-1082.
[22] Arp G, Hofmann J, Reitner J. Microbial fabric formation in spring mounds (“Microbialites”) of alkaline Salt Lakes in the Badain Jaran Sand Sea, PR China[J]. PALAIOS, 1998, 13(6): 581-592.
[23] Riding R. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms[J]. Sedimentology, 2000, 47(S1): 179-214.
[24] Whitton B A, Potts M. The ecology of cyanobacteria: Their diversity in time and space[M]. Dordrecht: Springer, 2000: 669.
[25] Herrero A, Flores E. The cyanobacteria: Molecular biology, genomics and evolution[M]. Norwich: Caister Academic Press, 2008: 484.
[26] 贾蓉芬,高梅影,彭先芝,等. 微生物矿化[M]. 北京:科学出版社,2009:19-20.

Jia Rongfen, Gao Meiying, Peng Xianzhi, et al. Microbial mineralization[M]. Beijing: Science Press, 2009: 19-20.
[27] 贡云云. 蓝细菌钙化作用[J]. 地质科技情报,2017,36(2):112-118.

Gong Yunyun. Cyanobacterial calcification[J]. Geological Science and Technology Information, 2017, 36(2): 112-118.
[28] 沈萍,陈向东. 微生物学[M]. 2版. 北京:高等教育出版社,2006:19-20.

Shen Ping, Chen Xiangdong. Microbiology[M]. 2nd ed. Beijing: Higher Education Press, 2006: 19-20.
[29] Schopf J W. The fossil record of cyanobacteria[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 26-27.
[30] Sili C, Torzillo G, Vonshak A. Arthrospira (spirulina)[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 684.
[31] Neu T R. Biofilms and microbial mats[C]//Krumbein W E, Paterson D M, Stal L J(Eds.). Biostabilization of sediments. Oldenburg: Bibliotheks-Informations system (BIS), 1994: 9-16.
[32] Garcia-Pichel F, Johnson S L, Youngkin D, et al. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the colorado plateau[J]. Microbial Ecology, 2003, 46(3): 312-321.
[33] Whitton B A, Potts M. Introduction to the cyanobacteria[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 2.
[34] Hu C X, Gao K S, Whitton B A. Semi-arid regions and deserts[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 345-370.
[35] Zwirglmaier K, Heywood J L, Chamberlain K, et al. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean[J]. Environmental Microbiology, 2007, 9(5): 1278-1290.
[36] Blank C E, Sánchez-baracaldo P. Timing of morphological and ecological innovations in the Cyanobacteria- A key to understanding the rise in atmospheric oxygen[J]. Geobiology, 2010, 8(1): 1-23.
[37] Schopf J W, Klein C. The proterozoic biosphere: A multidisciplinary study[M]. Cambridge: Cambridge University Press, 1992: 445-446.
[38] Riding R. Temporal variation in calcification in marine cyanobacteria[J]. Journal of the Geological Society, 1992, 149(6): 979-989.
[39] Riding R. Calcified cyanobacteria in phanerozoic reefs[C]//Proceedings of the 1st regional symposium on fossil algae. Granada, Spain: Universidad de Granada, 1989: 3-4.
[40] Riding R. Stromatolite decline: A brief reassessment[J]. Facies, 1997, 36: 227-230.
[41] Jansson C, Northen T. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology, 2010, 21(3): 365-371.
[42] Fuhrman J. Genome sequences from the sea[J]. Nature, 2003, 424(6952): 1001-1002.
[43] Partensk F, Blanchot J, Vaulot D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review[C]//Charpy L, Larkum A W D(Eds.). Marine cyanobacteria. Monaco: Musée Océanographique, 1999, 19: 457-475.
[44] 梅冥相,高金汉. 光合作用的起源:一个引人入胜的重大科学命题[J]. 古地理学报,2015,17(5):577-592.

Mei Mingxiang, Gao Jinhan. Origin of photosynthesis: An enchanting and important scientific theme[J]. Journal of Palaeogeography, 2015, 17(5): 577-592.
[45] 梅冥相,孟庆芬. 大气圈氧气含量水平上升的时间进程:一个与地球动力学过程紧密相关的地球生物学过程[J]. 古地理学报,2016,18(1):1-20.

Mei Mingxiang, Meng Qingfen. Timing of the rise of atmospheric oxygen content level: A geobiological process that is closely and genetically related to the geodynamics[J]. Journal of Palaeogeography, 2016, 18(1): 1-20.
[46] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
[47] Défarge C, Trichet J, Jaunet A M, et al. Texture of microbial sediments revealed by cryo-scanning electron microscopy[J]. Journal of Sedimentary Research, 1996, 66(5): 935-947.
[48] Tourney J, Ngwenya B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132.
[49] Sutherland I W. Biofilm exopolysaccharides: A strong and sticky framework[J]. Microbiology, 2001, 147(1): 3-9.
[50] Sutherland I W. Exopolysaccharides in biofilms, flocs and related structures[J]. Water Science & Technology, 2001, 43(6): 77-86.
[51] Sutherland I W. Microbial polysaccharides from Gram-negative bacteria[J]. International Dairy Journal, 2001, 11(9): 663-674.
[52] Sutherland I W. The biofilm matrix - an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5): 222-227.
[53] Wingender J, Neu T R, Flemming H C. What are bacterial extracellular polymeric substances?[M]//Wingender J, Neu T R, Flemming H C. Microbial extracellular polymeric substances. Berlin: Springer, 1999: 1-19.
[54] De Philippis R, Sili C, Paperi R, et al. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review[J]. Journal of Applied Phycology, 2001, 13(4): 293-299.
[55] De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications[J]. FEMS Microbiology Reviews, 1998, 22(3): 151-175.
[56] De Philippis R, Faraloni C, Sili C, et al. Algal biocenosis in the benthic mucilaginous aggregates of the Tyrrhenian sea, with emphasis on the exopolysaccharide-producing microalgal community[J]. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 2003, 109: 487-498.
[57] Sharma N K, Tiwari S P, Tripathi K, et al. Sustainability and cyanobacteria (blue-green algae): Facts and challenges[J]. Journal of Applied Phycology, 2011, 23(6): 1059-1081.
[58] 张云怡. 三株蓝细菌菌株胞外多糖研究和菌种鉴定[D]. 青岛:中国海洋大学,2006.

Zhang Yunyi. Investigation on the exopolysaccharides (EPS) from three cyanobacterial strains and identification of these strains[D]. Qingdao: Ocean University of China, 2006.
[59] Kazmierczak J, Krumbein W E. Identification of calcified coccoid cyanobacteria forming stromatoporoid stromatolites[J]. Lethaia, 1983, 16(3): 207-213.
[60] Williams L A. Subtidal stromatolites in Monterey Formation and other organic-rich rocks as suggested source contributors to petroleum formation[J]. AAPG Bulletin, 1984, 68(12): 1879-1893.
[61] Chalansonnet S, Largeau C, Casadevall E, et al. Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material[J]. Organic Geochemistry, 1988, 13(4/5/6): 1003-1010.
[62] Bianchi T S. Biogeochemistry of estuaries[M]. Oxford: Oxford University Press, 2007: 581-581.
[63] Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms[J]. Annual Review of Microbiology, 1995, 49: 711-745.
[64] Potts M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews, 1994, 58(4): 755-805.
[65] Decho A W. Microbial biofilms in intertidal systems: An overview[J]. Continental Shelf Research, 2000, 20(10/11): 1257-1273.
[66] Cammarota M C, Sant’Anna Jr G L. Metabolic blocking of exopolysaccharides synthesis: Effects on microbial adhesion and biofilm accumulation[J]. Biotechnology Letters, 1998, 20(1): 1-4.
[67] De Winder B, Staats N, Stal L J, et al. Carbohydrate secretion by phototrophic communities in tidal sediments[J]. Journal of Sea Research, 1999, 42(2): 131-146.
[68] De Brouwer J F C, Ruddy G K, Jones T E R, et al. Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries[J]. Biogeochemistry, 2002, 61(1): 57-71.
[69] Decho A W, Visscher P T, Reid R P. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 71-86.
[70] Decho A W. Molecular-scale events influencing the macroscale cohesiveness of exopolymers[M]//Krumbein W E, Paterson D M, Stal L J. Biostabilization of sediments. Oldenburg: BIS, 1994: 135-148.
[71] Défarge C, Trichet J, Maurin A, et al. Kopara in Polynesian atolls: Early stages of formation of calcareous stromatolites[J]. Sedimentary Geology, 1994, 89(1/2): 9-23.
[72] Disnar J R. Etude expérimentale de la fixation de métaux par un matériau sédimentaire actuel d’origine algaire—II. Fixation ‘in vitro’ de UO2+2, Cu2+, Ni2+, Zn2+, Pb2+, Co2+, Mn2+, ainsi que de VO-3, MoO2-4 et GeO2-3[J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 363-379.
[73] Morris E R, Rees D A, Young G, et al. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host[J]. Journal of Molecular Biology, 1977, 110(1): 1-16.
[74] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4): 299-316.
[75] Kaplan A, Reinhold L. CO2 concentrating mechanisms in photosynthetic microorganisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 539-570.
[76] Kaplan A, Badger M R, Berry J A. Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration[J]. Planta, 1980, 149(3): 219-226.
[77] Badger M R, Price G D. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution[J]. Journal of Experimental Botany, 2003, 54(383): 609-622.
[78] Price G D, Howitt S M. The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters[J]. Biochemistry and Cell Biology, 2011, 89(2): 178-188.
[79] Riding R. Cyanophyte calcification and changes in ocean chemistry[J]. Nature, 1982, 299(5886): 814-815.
[80] Riding R. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago?[J]. PALAIOS, 2009, 24(10): 685-696.
[81] Schultze-Lam S, Schultze-Lam S, Beveridge T J, et al. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton[J]. Limnology and Oceanography, 1997, 42(1): 133-141.
[82] Schultze-Lam S, Beveridge T J. Nucleation of celestite and strontianite on a cyanobacterial S-layer[J]. Applied and Environmental Microbiology, 1994, 60(2): 447-453.
[83] Schultze-Lam S, Harauz G, Beveridge T J. Participation of a cyanobacterial S layer in fine-grain mineral formation[J]. Journal of Bacteriology, 1992, 174(24): 7971-7981.
[84] Obst M, Dynes J J, Lawrence J R, et al. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4180-4198.
[85] Price G D, Maeda S, Omata T, et al. Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942[J]. Functional Plant Biology, 2002, 29(3): 131-149.
[86] Yates K K, Robbins L L. Microbial lime-mud production and its relation to climate change[M]//Gerhard L C, Harrison W E, Hanson B M. Geological perspectives of global climate change. Tulsa, Okla: American Association of Petroleum Geologists, 2001: 266-283.
[87] Kah L C, Riding R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 2007, 35(9): 799-802.
[88] Planavsky N, Reid R P, Lyons T W, et al. Formation and diagenesis of modern marine calcified cyanobacteria[J]. Geobiology, 2009, 7(5): 566-576.
[89] Riding R. Calcified cyanobacteria[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Encyclopedia of earth sciences series. Dordrecht: Springer, 2011: 211-223.
[90] Dittrich M, Obst M. Are picoplankton responsible for calcite precipitation in lakes?[J]. AMBIO, 2004, 33(8): 559-564.
[91] Strong A E, Eadie B J. Satellite observations of calcium carbonate precipitations in the Great Lakes[J]. Limnology and Oceanography, 1978, 23(5): 877-887.
[92] Morse J W, Gledhill D K, Millero F J. CaCO3 precipitation kinetics in waters from the Great Bahama Bank:: Implications for the relationship between bank hydrochemistry and whitings[J]. Geochimica et Cosmochimica Acta, 2003, 67(15): 2819-2826.
[93] Broecker W S, Sanyal A, Takahashi T. The origin of Bahamian whitings revisited[J]. Geophysical Research Letters, 2000, 27(22): 3759-3760.
[94] Broecker W S, Langdon C, Takahashi T, et al. Factors controlling the rate of CaCO3 precipitation on Great Bahama Bank[J]. Global Biogeochemical Cycles, 2001, 15(3): 589-596.
[95] Verrecchia E P, Freytet P, Verrecchia K E, et al. Spherulites in calcrete laminar crusts: Biogenic CaCO3 precipitation as a major contributor to crust formation[J]. Journal of Sedimentary Research, 1995, 65A(4): 690-700.
[96] Arp G, Reimer A, Reitner J. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans[J]. Science, 2001, 292(5522): 1701-1704.
[97] Grotzinger J P, Knoll A H. Stromatolites in precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 313-358.
[98] Li F, Deng J T, Kershaw S, et al. Microbialite development through the Ediacaran-Cambrian transition in China: Distribution, characteristics, and paleoceanographic implications[J]. Global and Planetary Change, 2021, 205: 103586.
[99] Arp G, Reimer A, Reitner J. Calcification in cyanobacterial biofilms of alkaline salt lakes[J]. European Journal of Phycology, 1999, 34(4): 393-403.
[100] Dupraz C, Visscher P T, Baumgartner L K, et al. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 2004, 51(4): 745-765.
[101] Raven J A, Giordano M, Beardall J, et al. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1588): 493-507.
[102] Merz M U E. The biology of carbonate precipitation by cyanobacteria[J]. Facies, 1992, 26(1): 81-101.
[103] Couradeau E, Benzerara K, Gérard E, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates[J]. Science, 2012, 336(6080): 459-462.
[104] Benzerara K, Skouri-Panet F, Li J H, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(30): 10933-10938.
[105] Ragon M, Benzerara K, Moreira D, et al. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization[J]. Frontiers in Microbiology, 2014, 5: 331.
[106] Cam N, Georgelin T, Jaber M, et al. In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba- carbonates: What do we learn about intracellular calcification by cyanobacteria?[J]. Geochimica et Cosmochimica Acta, 2015, 161: 36-49.
[107] Riding R. A hard life for cyanobacteria[J]. Science, 2012, 336(6080): 427-428.
[108] Vasconcelos C, Warthmann R, McKenzie J A, et al. Lithifying microbial mats in lagoa Vermelha, Brazil: Modern precambrian relics?[J]. Sedimentary Geology, 2006, 185(3/4): 175-183.
[109] Spadafora A, Perri E, Mckenzie J A, et al. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites[J]. Sedimentology, 2010, 57(1): 27-40.
[110] Défarge C. Organomineralization[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 697-701.
[111] Addadi L, Weiner S. Stereochemical and structural relations between macromolecules and crystals in biomineralisation[M]//Mann S, Webb J, Williams J P. Biomineralization. Weinheim: VCH, 1989: 133-156.
[112] Frankel R B, Bazylinski D A. Biologically induced mineralization by bacteria[M]//Dove P M, Weiner S, De Yoreo J J. Biomineralization. Washington, DC: Mineralogical Society of America, 2003: 95-114.
[113] Weiner S, Dove P M. An overview of biomineralization and the problem of the vital effect[M]//Dove P M, Weiner S, De Yoreo J J. Biomineralization. Washington, DC: Mineralogical Society of America, 2003: 1-31.
[114] Visscher P T, Hoeft S E, Surgeon T M L, et al. Microelectrode measurements in stromatolites: Unraveling the Earth’s past?[M]//Taillefert M, Rozan T F. Environmental electrochemistry: Analyses of trace element biogeochemistry. Washington: American Chemical Society, 2002: 265-282.
[115] Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2007, 5(4): 401-411.
[116] Visscher P T, Stolz J F. Microbial mats as bioreactors: Populations, processes, and products[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 87-100.
[117] Arp G, Reimer A, Reitner J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia[J]. Journal of Sedimentary Research, 2003, 73(1): 105-127.
[118] Kazmierczak J, Kempe S, Altermann W. Microbial origin of Precambrian carbonates: Lessons from modern analogues[M]//Eriksson P G, Altermann W, Nelson D R, et al. The precambrian earth: Tempos and events. Amsterdam: Elsevier, 2004: 545-563.
[119] Kempe S, Kazmierczak J, Landmann G, et al. Largest known microbialites discovered in lake Van, Turkey[J]. Nature, 1991, 349(6310): 605-608.
[120] Chafetz H S, Buczynski C. Bacterially induced lithification of microbial mats[J]. Palaios, 1992, 7(3): 277-293.
[121] Défarge C, Trichet J, Coute A. On the appearance of cyanobacterial calcification in modern stromatolites[J]. Sedimentary Geology, 1994, 94(1/2): 11-19.
[122] Szulc J, Smyk B. Bacterially controlled calcification of freshwater Schizothrix-stromatolites: An example from the Pieniny MTS, southern poland[M]//Bertrand-Sarfati J, Monty C. Phanerozoic stromatolites II. Dordrecht: Springer, 1994: 31-51.
[123] Petrash D A, Lalonde S V, González-arismendi G, et al. Can Mn-S redox cycling drive sedimentary dolomite formation? A hypothesis[J]. Chemical Geology, 2015, 404: 27-40.
[124] Slaughter M, Hill R J. The influence of organic matter in organogenic dolomitization[J]. Journal of Sedimentary Research, 1991, 61(2): 296-303.
[125] Soetaert K, Hofmann A F, Middelburg J J, et al. The effect of biogeochemical processes on PH[J]. Marine Chemistry, 2007, 105(1/2): 30-51.
[126] Sánchez-Román M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882.
[127] Sánchez-Román M, Mckenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
[128] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280.
[129] Deng S C, Dong H L, Lv G, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278(3/4): 151-159.
[130] Shearman D J, Skipwith P A D. Organic matter in recent and ancient limestones and its role in their diagenesis[J]. Nature, 1965, 208(5017): 1310-1311.
[131] Bosak T, Newman D K. Microbial kinetic controls on calcite morphology in supersaturated solutions[J]. Journal of Sedimentary Research, 2005, 75(2): 190-199.
[132] Baldermann A, Deditius A P, Dietzel M, et al. The role of bacterial sulfate reduction during dolomite precipitation: Implications from Upper Jurassic platform carbonates[J]. Chemical Geology, 2015, 412: 1-14.
[133] Shiraishi F, Omori T, Tomioka N, et al. Characteristics of CaCO3 nucleated around cyanobacteria: Implications for calcification process[J]. Geochimica et Cosmochimica Acta, 2020, 285: 55-69.
[134] Shiraishi F, Hanzawa Y, Okumura T, et al. Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics[J]. Scientific Reports, 2017, 7(1): 11805.
[135] Addadi L, Weiner S. Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization[J]. Proceeding of the National Academy of Sciences of the United States of America, 1985, 82(12): 4110-4114.
[136] Westbroek P, Buddemeier B, Coleman M, et al. Strategies for the study of climate forcing by calcification[C]//Doumenge F, Allemand D, Toulemont A (Eds.). Past and present biomineralization processes. Monaco: Bulletin de l’Institut Océanographique, 1994: 37-60.
[137] Decho A W. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes[J]. Oceanography and Marine Biology, 1990, 28: 73-154.
[138] Decho A W, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems[J]. Frontiers in Microbiology, 2017, 8: 922.
[139] Braissant O, Decho A W, Przekop K M, et al. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat[J]. FEMS Microbiology Ecology, 2009, 67(2): 293-307.
[140] Stal L J. Cyanobacterial mats and stromatolites[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 65-125.
[141] Aizenberg J, Addadi L, Weiner S, et al. Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates[J]. Advantge Materials, 1996, 8(3): 222-226.
[142] Raz S, Weiner S, Addadi L. Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications[J]. Advanced Materials, 2000, 12(1): 38-42.
[143] Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1197-1213.
[144] Zavarzin G A. Microbial geochemical calcium cycle[J]. Microbiology, 2002, 71(1): 1-17.
[145] Kulak A N, Iddon P, Li Y T, et al. Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization[J]. Journal of the American Chemical Society, 2007, 129(12): 3729-3736.
[146] Braissant O, Cailleau G, Dupraz C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 2003, 73(3): 485-490.
[147] Fernandez-Diaz L, Putnis A, Prieto M, et al. The role of magnesium in the crystallization of calcite and aragonite in a porous medium[J]. Journal of Sedimentary Research, 1996, 66(3): 482-491.
[148] Chekroun K B, Rodriguez-Navarro C, Gonzalez-Munoz M T, et al. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates[J]. Journal of Sedimentary Research, 2004, 74(6): 868-876.
[149] Vasconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[150] Bontognali T R R, Mckenzie J A, Warthmann R J, et al. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria[J]. Terra Nova, 2014, 26(1): 72-77.
[151] Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545.
[152] Kenward P A, Fowle D A, Goldstein R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125.
[153] Gebauer D, Cölfen H, Verch A, et al. The multiple roles of additives in CaCO3 crystallization: A quantitative case study[J]. Advanced Materials, 2009, 21(4): 435-439.
[154] Han Y J, Aizenberg J. Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer[J]. Journal of the American Chemical Society, 2003, 125(14): 4032-4033.
[155] Gibert P U P A. The organic-mineral interface in biominerals[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1): 157-185.
[156] Wang D B, Wallace A F, De Yoreo J J, et al. Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification[J]. Proceeding of the National Academy of Sciences of the United States of America, 2009, 106(51): 21511-21516.
[157] Kashchiev D. Nucleation: Basic theory with applications[M]. Oxford: Butterworth-Heinemann, 2000.
[158] Petrash D A, Bialik O M, Bontognali T R R. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
[159] Mitterer R M, Malone M J, Goodfriend G A, et al. Co-generation of hydrogen sulfide and methane in marine carbonate sediments[J]. Geophysical Research Letters, 2001, 28(20): 3931-3934.
[160] Wilms R, Köpke B, Sass H, et al. Deep biosphere-related bacteria within the subsurface of tidal flat sediments[J]. Environmental Microbiology, 2006, 8(4): 709-719.
[161] Wilms R, Sass H, Köpke B, et al. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea[J]. FEMS Microbiology Ecology, 2007, 59(3): 611-621.
[162] Batzke A, Engelen B, Sass H, et al. Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from equatorial Pacific Ocean and Peru margin sediments[J]. Geomicrobiology Journal, 2007, 24(3/4): 261-273.
[163] Wirth R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261(3/4): 217-229.
[164] 李妍,李振兴,侯爱琴,等. 扫描电镜—拉曼光谱联用在文物研究中的应用[J]. 分析仪器,2017,34(6):34-38.

Li Yan, Li Zhenxing, Hou Aiqin, et al. Application of hyphenated SEM-EDX and Raman spectroscopy in cultural relic research[J]. Analytical Instrumentation, 2017, 34(6): 34-38.
[165] 李金华,潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学:地球科学,2015,45(9):1359-1382.

Li Jinhua, Pan Yongxin. Applications of transmission electron microscopy in the earth sciences[J]. Scientia Sinica Terrae, 2015, 45(9): 1359-1382.
[166] Benzerara K, Yoon T H, Tyliszczak T, et al. Scanning transmission X-ray microscopy study of microbial calcification[J]. Geobiology, 2004, 2(4): 249-259.
[167] Pan Y H, Hu L, Zhao T. Applications of chemical imaging techniques in paleontology[J]. National Science Review, 2019, 6(5): 1040-1053.
[168] 梅冥相. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报,2014,16(3):285-304.

Mei Mingxiang. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3): 285-304.