[1] 丁一汇. 论河南“75.8”特大暴雨的研究:回顾与评述[J]. 气象学报,2015,73(3):411-424.

Ding Yihui. On the study of the unprecedented heavy rainfall in Henan province during 4-8 August 1975[J]. Acta Meteorologica Sinica, 2015, 73(3): 411-424.
[2] 郭生练,刘章君,熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报,2016,47(3):302-314.

Guo Shenglian, Liu Zhangjun, Xiong Lihua. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314.
[3]

Kochel R C, Baker V R. Paleoflood hydrology[J]. Science, 1982, 215(4531): 353-361.
[4]

Baker V R. Paleoflood hydrology and extraordinary flood events[J]. Journal of Hydrology, 1987, 96(1/2/3/4): 79-99.
[5] 葛兆帅,杨达源,李徐生,等. 晚更新世晚期以来的长江上游古洪水记录[J]. 第四纪研究,2004,24(5):555-560.

Ge Zhaoshuai, Yang Dayuan, Li Xusheng, et al. The paleoflooding record along the up-reaches of the Changjiang River since the Late Pleistocene Epoch[J]. Quaternary Sciences, 2004, 24(5): 555-560.
[6] 朱诚,郑朝贵,马春梅,等. 长江三峡库区中坝遗址地层古洪水沉积判别研究[J]. 科学通报,2005,50(20):2240-2250.

Zhu Cheng, Zheng Chaogui, Ma Chunmei, et al. Identifying paleoflood deposits archived in Zhongba Site, the Three Gorges reservoir region of the Yangtze River, China[J]. Chinese Science Bulletin, 2005, 50(20): 2240-2250.
[7] 谢远云,李长安,王秋良,等. 江汉平原近3000年来古洪水事件的沉积记录[J]. 地理科学,2007,27(1):81-84.

Xie Yuanyun, Li Chang'an, Wang Qiuliang, et al. Sedimentary records of paleoflood events during the last 3000 years in Jianghan plain[J]. Scientia Geographica Sinica, 2007, 27(1): 81-84.
[8] 张俊娜,夏正楷. 中原地区4ka BP前后异常洪水事件的沉积证据[J]. 地理学报,2011,66(5):685-697.

Zhang Junna, Xia Zhengkai. Deposition evidences of the 4 ka BP flood events in central China plains[J]. Acta Geographica Sinica, 2011, 66(5): 685-697.
[9] 王军,高红山,潘保田,等. 早全新世沙沟河古洪水沉积及其对气候变化的响应[J]. 地理科学,2010,30(6):943-949.

Wang Jun, Gao Hongshan, Pan Baotian, et al. Pleoflood sediment of Shagou river and its response to the climate change during Early Holocene[J]. Scientia Geographica Sinica, 2010, 30(6): 943-949.
[10] 吴立,朱诚,李枫,等. 江汉平原钟桥遗址地层揭示的史前洪水事件[J]. 地理学报,2015,70(7):1149-1164.

Wu Li, Zhu Cheng, Li Feng, et al. Prehistoric flood events recorded at the Zhongqiao neolithic site in the Jianghan plain, central China[J]. Acta Geographica Sinica, 2015, 70(7): 1149-1164.
[11] 张信宝. 青海民和喇家遗址的古地震与古溃决洪水质疑[J]. 山地学报,2017,35(3):255-256.

Zhang Xinbao. On the debate about the evidences of the ancient earthquake and the outburst great flood at Qinghai Minhe Lajia ruins[J]. Mountain Research, 2017, 35(3): 255-256.
[12] 王敏杰,郑洪波,谢昕,等. 长江流域600年来古洪水:水下三角洲沉积与历史记录对比[J]. 科学通报,2010,55(34):3320-3327.

Wang Minjie, Zheng Hongbo, Xie Xin, et al. A 600-year flood history in the Yangtze River drainage: Comparison between a subaqueous delta and historical records[J]. Chinese Science Bulletin, 2010, 55(34): 3320-3327.
[13]

Knox J C. Sensitivity of modern and Holocene floods to climate change[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 439-457.
[14]

Benito G, Lang M, Barriendos M, et al. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods[J]. Natural Hazards, 2004, 31(3): 623-643.
[15]

Turzewski M D, Huntington K W, Licht A, et al. Provenance and erosional impact of Quaternary megafloods through the Yarlung-Tsangpo Gorge from zircon U-Pb geochronology of flood deposits, eastern Himalaya[J]. Earth and Planetary Science Letters, 2020, 535: 116113.
[16]

Borgohain B, Mathew G, Chauhan N, et al. Evidence of episodically accelerated denudation on the Namche Barwa massif (eastern Himalayan syntaxis) by megafloods[J]. Quaternary Science Reviews, 2020, 245: 106410.
[17] 黄春长,庞奖励,查小春,等. 黄河流域关中盆地史前大洪水研究:以周原漆水河谷地为例[J]. 中国科学(D辑):地球科学,2011,41(11):1658-1669.

Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al. Prehistorical floods in the Guanzhong Basin in the Yellow River drainage area: A case study along the Qishuihe River valley over the Zhouyuan loess tableland[J]. Science China (Seri. D): Earth Sciences, 2011, 41(11): 1658-1669.
[18] 黄春长,李晓刚,庞奖励,等. 黄河永和关段全新世古洪水研究[J]. 地理学报,2012,67(11):1493-1504.

Huang Chunchang, Li Xiaogang, Pang Jiangli, et al. Palaeoflood sedimentological and hydrological studies on the Yongheguan reach in the middle Yellow River[J]. Acta Geographica Sinica, 2012, 67(11): 1493-1504.
[19] 黄春长. 若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J]. 地理学报,2021,76(3):612-625.

Huang Chunchang. Palaeoflood deposits in the Zoige Basin and the enlightening on the formation of the Yellow River drainage system on the Tibetan Plateau[J]. Acta Geographica Sinica, 2021, 76(3): 612-625.
[20]

Huang C C, Pang J L, Zha X C, et al. Sedimentary records of extraordinary floods at the ending of the mid-Holocene Climatic Optimum along the upper Weihe River, China[J]. The Holocene, 2012, 22(6): 675-686.
[21]

Huang C C, Pang J L, Zha X C, et al. Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 274-283.
[22]

Zhang Y Z, Huang C C, Pang J L, et al. Holocene palaeoflood events recorded by slackwater deposits along the middle Beiluohe River valley, middle Yellow River Basin, China[J]. Boreas, 2015, 44(1): 127-138.
[23]

Guo Y Q, Huang C C, Zhou Y L, et al. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River Basin, China[J]. Journal of Asian Earth Sciences, 2018, 156: 96-110.
[24]

Wang X L, Yang H, Kitch J L, et al. Grain-size characteristics in Lake Fuxian sediments: Implication for dry-humid transformation of Indian summer monsoon over the past 150 years[J]. Journal of Asian Earth Sciences: X, 2021, 6: 100073.
[25]

Dingle E H, Kusack K M, Venditti J G. The gravel-sand transition and grain size gap in river bed sediments[J]. Earth-Science Reviews, 2021, 222: 103838.
[26]

Lu H Y, Wang X Y, Wang X Y, et al. Formation and evolution of Gobi desert in central and eastern Asia[J]. Earth-Science Reviews, 2019, 194: 251-263.
[27]

Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549.
[28]

Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2): 39-62.
[29]

Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3): 409-424.
[30]

Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180.
[31]

Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
[32]

Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741.
[33] 张晓东,季阳,杨作升,等. 南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J]. 中国科学(D辑):地球科学,2015,45(10):1515-1523.

Zhang Xiaodong, Ji Yang, Yang Zuosheng, et al. End member inversion of surface sediment grain size in the south Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China (Seri. D): Earth Sciences, 2015, 45(10): 1515-1523.
[34] 钟宁,蒋汉朝,李海兵,等. 岷江上游新磨村湖相沉积物粒度端元反演及其记录的构造和气候事件[J]. 地质学报,2020,94(3):968-981.

Zhong Ning, Jiang Hanchao, Li Haibing, et al. End member inversion of Xinmocun lacustrine sediments in the upper reaches of the Minjiang River and its recorded tectonic and climate events[J]. Acta Geologica Sinica, 2020, 94(3): 968-981.
[35] 朱海,张玉芬,李长安. 端元分析在长江武汉段古洪水识别中的应用[J]. 沉积学报,2020,38(2):297-305.

Zhu Hai, Zhang Yufen, Li Chang’an. The application of end-member analysis in identification of paleo-floods in Wuhan section of the Yangtze River[J]. Acta Sedimentologica Sinica, 2020, 38(2): 297-305.
[36]

Ha H J, Chang T S, Ha H K. Using end-member analysis to determine sediment dispersal and depositional processes on the Heuksan mud belt, southwest Korean shelf[J]. Geo-Marine Letters, 2021, 41(1): 7.
[37] 梁爱民,屈建军,董治宝,等. 库姆塔格沙漠沉积物粒度端元特征及其物源启示[J]. 中国沙漠,2020,40(2):33-42.

Liang Aimin, Qu Jianjun, Dong Zhibao, et al. The characteristic of grain size end members in Kumtagh Desert and its implication for sediment source[J]. Journal of Desert Research, 2020, 40(2): 33-42.
[38] 李越,宋友桂,宗秀兰,等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报,2019,74(1):162-177.

Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 162-177.
[39] 陈莹璐,黄春长,张玉柱,等. 汝河全新世古洪水沉积学与光释光测年研究[J]. 地质学报,2017,91(10):2351-2367.

Chen Yinglu, Huang Chunchang, Zhang Yuzhu, et al. Sedimentology and OSL dating study of the Holocene palaeoflood on the Ruhe River[J]. Acta Geologica Sinica, 2017, 91(10): 2351-2367.
[40] 马茜茜,肖建华,姚正毅. 风成沉积物3种粒度参数计算方法比较[J]. 中国沙漠,2020,40(4):95-102.

Ma Qianqian, Xiao Jianhua, Yao Zhengyi. A comparative study on the three calculation methods of grain-size parameters for aeolian sediments[J]. Journal of Desert Research, 2020, 40(4): 95-102.
[41] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in sedimentology. Oxford: Blackwell Science Publishing, 1988: 63-85.
[42]

Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
[43]

Huang C C, Pang J L, Su H X, et al. Holocene environmental change inferred from the loess-palaeosol sequences adjacent to the floodplain of the Yellow River, China[J]. Quaternary Science Reviews, 2009, 28(25/26): 2633-2646.
[44]

Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the Lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275.