[1] |
De Dolomieu D G. Sur un genre des pierres calcaires tres peueffervescentes avec les acides et phosphorescentes par la collision[J]. Journal de Physique, 1791, 39(1): 3-10. |
[2] |
沈安江,郑剑锋,陈永权,等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发,2016,43(3):340-349.
Shen Anjiang, Zheng Jianfeng, Chen Yongquan, et al. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 340-349. |
[3] |
赵文智,沈安江,乔占峰,等. 白云岩成因类型、识别特征及储集空间成因[J]. 石油勘探与开发,2018,45(6):923-935.
Zhao Wenzhi, Shen Anjiang, Qiao Zhanfeng, et al. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935. |
[4] |
胡安平,沈安江,杨翰轩,等. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发,2019,46(5):916-928.
Hu Anping, Shen Anjiang, Yang Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 916-928. |
[5] |
Hsü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25. |
[6] |
Holland H D, Zimmermann H. The dolomite problem Revisited1 [J]. International Geology Review, 2000, 42(6): 481-490. |
[7] |
Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6): 1749-1769. |
[8] |
Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81. |
[9] |
Kaczmarek S E, Gregg J M, Bish D L, et al. Dolomite, very high-magnesium calcite, and microbes-implications for the microbial model of dolomitization[M]//Macneil A J, Lonnee J, Wood R. Characterization and modeling of carbonates–mountjoy symposium. Tulsa: SEPM Special Publication, 2017: 1-14. |
[10] |
Land L S. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368. |
[11] |
Jones G D, Rostron B J. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models[J]. Bulletin of Canadian Petroleum Geology, 2000, 48(3): 230-245. |
[12] |
Patterson R J, Kinsman D J J. Formation of diagenetic dolomite in coastal sabkha along Arabian (Persian) Gulf[J]. AAPG Bulletin, 1982, 66(1): 28-43. |
[13] |
Hanshaw B B, Back W, Deike R G. A geochemical hypothesis for dolomitization by ground water[J]. Economic Geology, 1971, 66(5): 710-724. |
[14] |
Morrow D W. Regional subsurface dolomitization: Models and constraints[J]. Geoscience Canada, 1999, 25(2): 57-70. |
[15] |
Sibley D F. Secular changes in the amount and texture of dolomite[J]. Geology, 1991, 19(2): 151-154. |
[16] |
Zhao D F, Hu G, Wang L C, et al. Sedimentary characteristics and origin of dolomitic ooids of the terminal Ediacaran Dengying Formation at Yulin (Chongqing, South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109601. |
[17] |
Davies G R, Smith L B, Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690. |
[18] |
Neher J, Rohrer E. Dolomitbildung unter mitwirkung von bakterien[J]. Eclogae Geologicae Helvetiae, 1958, 51: 213-215. |
[19] |
Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222. |
[20] |
Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280. |
[21] |
Sánchez-Román M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882. |
[22] |
由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64.
You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64. |
[23] |
由雪莲,孙枢,朱井泉. 塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义[J]. 中国科学(D辑):地球科学,2014,44(8):1777-1790.
You Xuelian, Sun Shu, Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science China (Seri. D): Earth Sciences, 2014, 44(8): 1777-1790. |
[24] |
胡文瑄,朱井泉,王小林,等. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义[J]. 石油与天然气地质,2014,35(6):860-869.
Hu Wenxuan, Zhu Jingquan, Wang Xiaolin, et al. Characteristics, origin and geological implications of the Cambrian microbial dolomite in Keping area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 860-869. |
[25] |
陈娅娜,沈安江,潘立银,等. 微生物白云岩储集层特征、成因和分布:以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发,2017,44(5):704-715.
Chen Yana, Shen Anjiang, Pan Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715. |
[26] |
Daye M, Higgins J, Bosak T. Formation of ordered dolomite in anaerobic photosynthetic biofilms[J]. Geology, 2019, 47(6): 509-512. |
[27] |
Machel H G, Mountjoy E W. Chemistry and environments of dolomitization—a reappraisal[J]. Earth-Science Reviews, 1986, 23(3): 175-222. |
[28] |
Marcus Y. Ionic radii in aqueous solutions[J]. Chemical Reviews, 1988, 88(8): 1475-1498. |
[29] |
Davis K J, Dove P M, De Yoreo J J. The role of Mg2+ as an impurity in calcite growth[J]. Science, 2000, 290(5494): 1134-1137. |
[30] |
Zhang F F, Xu H F, Konishi H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97: 148-165. |
[31] |
Hopkinson L, Kristova P, Rutt K, et al. Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions[J]. Geochimica et Cosmochimica Acta, 2012, 76: 1-13. |
[32] |
Baker P A, Kastner M. Constraints on the formation of sedimentary dolomite[J]. Science, 1981, 213(4504): 214-216. |
[33] |
Slaughter M, Hill R J. The influence of organic matter in organogenic dolomitization[J]. Journal of Sedimentary Research, 1991, 61(2): 296-303. |
[34] |
Wright D T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia[J]. Sedimentary Geology, 1999, 126(1-4): 147-157. |
[35] |
Morse J W, Arvidson R S, Lüttge A. Calcium carbonate formation and dissolution[J]. Chemical Reviews, 2007, 107(2): 342-381. |
[36] |
Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139. |
[37] |
Liu D, Yu N, Papineau D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49. |
[38] |
Lowenstam H A. Minerals formed by organisms[J]. Science, 1981, 211(4487): 1126-1131. |
[39] |
Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2007, 5(4): 401-411. |
[40] |
Schultze-Lam S, Fortin D, Davis B S, et al. Mineralization of bacterial surfaces[J]. Chemical Geology, 1996, 132(1/2/3/4): 171-181. |
[41] |
Krause S, Liebetrau V, Gorb S, et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma[J]. Geology, 2012, 40(7): 587-590. |
[42] |
Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545. |
[43] |
Huang Y R, Yao Q Z, Li H, et al. Aerobically incubated bacterial biomass-promoted formation of disordered dolomite and implication for dolomite formation[J]. Chemical Geology, 2019, 523: 19-30. |
[44] |
Liu D, Fan Q G, Papineau D, et al. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances[J]. Chemical Geology, 2020, 533: 119415. |
[45] |
Kenward P A, Fowle D A, Goldstein R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125. |
[46] |
Petrash D A, Bialik O M, Bontognali T R R, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582. |
[47] |
Van Lith Y, Warthmann R, Vasconcelos C, et al. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation[J]. Geobiology, 2003, 1(1): 71-79. |
[48] |
Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162. |
[49] |
Braissant O, Cailleau G, Dupraz C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 2003, 73(3): 485-490. |
[50] |
Folk R L. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks[J]. Journal of Sedimentary Research, 1993, 63(5): 990-999. |
[51] |
McKay D S, Gibson E K, Jr, Thomas-Keprta K L, et al. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001[J]. Science, 1996, 273(5277): 924-930. |
[52] |
Perri E, Tucker M. Bacterial fossils and microbial dolomite in Triassic stromatolites[J]. Geology, 2007, 35(3): 207-210. |
[53] |
Meister P, McKenzie J A, Vasconcelos C, et al. Dolomite formation in the dynamic deep biosphere: Results from the Peru Margin[J]. Sedimentology, 2007, 54(5): 1007-1031. |
[54] |
Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[M]//Kaplan I R. Natural gases in marine sediments. New York: Plenum Press, 1974. |
[55] |
Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. |
[56] |
Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/2/3): 291-314. |
[57] |
Bontognali T R R, McKenzie J A, Warthmann R J, et al. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria[J]. Terra Nova, 2014, 26(1): 72-77. |
[58] |
Russell W A, Papanastassiou D A, Tombrello T A. Ca isotope fractionation on the earth and other solar system materials[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1075-1090. |
[59] |
Aloisi G, Gloter A, Krüger M, et al. Nucleation of calcium carbonate on bacterial nanoglobules[J]. Geology, 2006, 34(12): 1017-1020. |
[60] |
Krause S, Liebetrau V, Löscher C R, et al. Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation[J]. Geochimica et Cosmochimica Acta, 2018, 243: 116-132. |
[61] |
Gussone N, Eisenhauer A, Heuser A, et al. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1375-1382. |
[62] |
Gussone N, Böhm F, Eisenhauer A, et al. Calcium isotope fractionation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4485-4494. |
[63] |
Bradbury H J, Halloran K H, Lin C Y, et al. Calcium isotope fractionation during microbially induced carbonate mineral precipitation[J]. Geochimica et Cosmochimica Acta, 2020, 277: 37-51. |
[64] |
Beard B L, Johnson C M. High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1653-1660. |
[65] |
Conway T M, John S G. Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7508): 212-215. |
[66] |
Radic A, Lacan F, Murray J W. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle[J]. Earth and Planetary Science Letters, 2011, 306(1/2): 1-10. |
[67] |
Johnson C M, Beard B L, Roden E E, et al. Isotopic constraints on biogeochemical cycling of Fe[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 359-408. |
[68] |
Von Blanckenburg F, Mamberti M, Schoenberg R, et al. The iron isotope composition of microbial carbonate[J]. Chemical Geology, 2008, 249(1/2): 113-128. |
[69] |
Welch S A, Beard B L, Johnson C M, et al. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4231-4250. |
[70] |
Anbar A D, Jarzecki A A, Spiro T G. Theoretical investigation of iron isotope fractionation between Fe(H2O)6 3+ and Fe(H2O)6 2+: Implications for iron stable isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 825-837. |
[71] |
Sun R Y, Wang B L. Iron isotope fractionation during uptake of ferrous ion by phytoplankton[J]. Chemical Geology, 2018, 481: 65-73. |
[72] |
Wiesli R A, Beard B L, Johnson C M. Experimental determination of Fe isotope fractionation between aqueous Fe(Ⅱ), siderite and "green rust" in abiotic systems[J]. Chemical Geology, 2004, 211(3/4): 343-362. |
[73] |
Young E D, Galy A. The isotope geochemistry and cosmochemistry of magnesium[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230. |
[74] |
Jacobson A D, Zhang Z F, Lundstrom C, et al. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 446-452. |
[75] |
Mavromatis V, Meister P, Oelkers E H. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin[J]. Chemical Geology, 2014, 385: 84-91. |
[76] |
Geske A, Goldstein R H, Mavromatis V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149: 131-151. |
[77] |
Carder E A, Galy A, McKenzie J A, et al. Magnesium isotopic evidence for widespread microbial dolomite precipitation in the geological record[C]//Proceedings of fall meeting 2005. San Francisco: American Geophysical Union, 2005. |
[78] |
Carder E A, Galy A, McKenzie J A, et al. Magnesium isotopes in bacterial dolomites: A novel approach to the dolomite problem[C]//Proceedings of Goldschmidt conference. Moscow, Idaho, USA. |
[79] |
Mavromatis V, Pearce C R, Shirokova L S, et al. Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria[J]. Geochimica et Cosmochimica Acta, 2012, 76: 161-174. |
[80] |
Saenger C, Wang Z R. Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies[J]. Quaternary Science Reviews, 2014, 90: 1-21. |
[81] |
Saenger C, Wang Z R, Gaetani G, et al. The influence of temperature and vital effects on magnesium isotope variability in Porites and Astrangia corals[J]. Chemical Geology, 2013, 360-361: 105-117. |
[82] |
Li W Q, Chakraborty S, Beard B L, et al. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions[J]. Earth and Planetary Science Letters, 2012, 333-334: 304-316. |
[83] |
Mavromatis V, Gautier Q, Bosc O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2013, 114: 188-203. |
[84] |
Wombacher F, Eisenhauer A, Böhm F, et al. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5797-5818. |
[85] |
Ra K, Kitagawa H, Shiraiwa Y. Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanica [J]. Marine Micropaleontology, 2010, 77(3/4): 119-124. |
[86] |
Kirkland B L, Leo Lynch F, Rahnis M A, et al. Alternative origins for nannobacteria-like objects in calcite[J]. Geology, 1999, 27(4): 347-350. |
[87] |
Velimirov B. Nanobacteria, ultramicrobacteria and starvation forms: A search for the smallest metabolizing bacterium[J]. Microbes and Environments, 2001, 16(2): 67-77. |
[88] |
Gallagher K L, Braissant O, Kading T J, et al. Phosphate-related artifacts in carbonate mineralization experiments[J]. Journal of Sedimentary Research, 2013, 83(1): 37-49. |
[89] |
Rodriguez-Blanco J D, Shaw S, Benning L G. The kinetics and mechanisms of Amorphous Calcium Carbonate (ACC) crystallization to calcite, via vaterite[J]. Nanoscale, 2011, 3(1): 265-271. |
[90] |
Ruiz-Agudo E, Burgos-Cara A, Ruiz-Agudo C, et al. A non-classical view on calcium oxalate precipitation and the role of citrate[J]. Nature Communications, 2017, 8(1): 768. |
[91] |
Cölfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures[J]. Angewandte Chemie International Edition, 2003, 42(21): 2350-2365. |
[92] |
Gebauer D, Gunawidjaja P N, Ko J Y P, et al. Proto-calcite and proto-vaterite in amorphous calcium carbonates[J]. Angewandte Chemie International Edition, 2010, 49(47): 8889-8891. |
[93] |
Sand K K, Rodriguez-Blanco J D, Makovicky E, et al. Crystallization of CaCO3 in water-alcohol mixtures: Spherulitic growth, polymorph stabilization, and morphology change[J]. Crystal Growth & Design, 2012, 12(2): 842-853. |
[94] |
Rodriguez-Blanco J D, Shaw S, Bots P, et al. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate[J]. Journal of Alloys and Compounds, 2012, 536: S477-S479. |
[95] |
Rodriguez-Blanco J D, Shaw S, Bots P, et al. The role of Mg in the crystallization of monohydrocalcite[J]. Geochimica et Cosmochimica Acta, 2014, 127: 204-220. |
[96] |
Rodriguez-Blanco J D, Shaw S, Benning L G. A route for the direct crystallization of dolomite[J]. American Mineralogist, 2015, 100(5/6): 1172-1181. |
[97] |
Vallina B, Rodriguez-Blanco J D, Brown L G, et al. The role of amorphous precursors in the crystallization of La and Nd carbonates[J]. Nanoscale, 2015, 7(28): 12166-12179. |
[98] |
Gerdes G, Klenke T, Noffke N. Microbial signatures in peritidal siliciclastic sediments: A catalogue[J]. Sedimentology, 2000, 47(2): 279-308. |
[99] |
Prieto-Barajas C M, Valencia-Cantero E, Santoyo G. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application[J]. Electronic Journal of Biotechnology, 2018, 31: 48-56. |
[100] |
Vasconcelos C, Warthmann R, McKenzie J A, et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics?[J]. Sedimentary Geology, 2006, 185(3/4): 175-183. |
[101] |
Sarkar S, Bose P K, Samanta P, et al. Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for proterozoic sedimentation[J]. Precambrian Research, 2008, 162(1/2): 248-263. |
[102] |
Tankéré S P C, Bourne D G, Muller F L L, et al. Microenvironments and microbial community structure in sediments[J]. Environmental Microbiology, 2002, 4(2): 97-105. |
[103] |
戴永定. 生物矿物学[M]. 北京:石油工业出版社,1994.
Dai Yongding. Biomineralogy[M]. Beijing: Petroleum Industry Press, 1994. |
[104] |
Chang B, Li C, Liu D, et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014. |
[105] |
Lumsden D N. Characteristics of deep-marine dolomite[J]. Journal of Sedimentary Research, 1988, 58(6): 1023-1031. |
[106] |
Last F M, Last W M, Halden N M. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada[J]. Sedimentary Geology, 2010, 225(1/2): 34-49. |
[107] |
Last F M, Last W M, Halden N M. Modern and Late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada[J]. Sedimentary Geology, 2012, 281: 222-237. |
[108] |
Meister P, Reyes C, Beaumont W, et al. Calcium and magnesium-limited dolomite precipitation at Deep Springs Lake, California[J]. Sedimentology, 2011, 58(7): 1810-1830. |
[109] |
Mitchell J T, Land L S, Miser D E. Modern marine dolomite cement in a north Jamaican fringing reef[J]. Geology, 1987, 15(6): 557-560. |
[110] |
Van Lith Y, Vasconcelos C, Warthmann R, et al. Bacterial sulfate reduction and salinity: Two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil)[J]. Hydrobiologia, 2002, 485(1): 35-49. |
[111] |
Nascimento G S, Eglinton T I, Haghipour N, et al. Oceanographic and sedimentological influences on carbonate geochemistry and mineralogy in hypersaline coastal lagoons, Rio de Janeiro state, Brazil[J]. Limnology and Oceanography, 2019, 64(6): 2605-2620. |
[112] |
Corzo A, Luzon A, Mayayo M J, et al. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta lake (Spain)[J]. Geomicrobiology Journal, 2005, 22(6): 283-298. |
[113] |
Luzón A, Mayayo M J, Pérez A. Stable isotope characterisation of co-existing carbonates from the Holocene Gallocanta lake (NE Spain): Palaeolimnological implications[J]. International Journal of Earth Sciences, 2009, 98(5): 1129-1150. |
[114] |
Ali-Bik M W, Metwally H I M, Kamel M G, et al. Gypsum and dolomite biomineralization in endoevaporitic microbial niche, EMISAL, Fayium, Egypt[J]. Environmental Earth Sciences, 2011, 62(1): 151-159. |
[115] |
Müller G. High-magnesian calcite and protodolomite in lake balaton (hungary) sediments[J]. Nature, 1970, 226(5247): 749-750. |
[116] |
Tompa É, Nyirő-Kósa I, Rostási Á, et al. Distribution and composition of Mg-calcite and dolomite in the water and sediments of Lake Balaton[J]. Central European Geology, 2014, 57(2): 113-136. |
[117] |
Aharon P, Kolodny Y, Sass E. Recent hot brine dolomitization in the "Solar Lake," gulf of elat, isotopici, chemical, and mineralogical study[J]. The Journal of Geology, 1977, 85(1): 27-48. |
[118] |
Wenk H R, Hu M S, Frisia S. Partially disordered dolomite: Microstructural characterization of abu dhabi sabkha carbonates[J]. American Mineralogist, 1993, 78(7/8): 769-774. |
[119] |
Bontognali T R R, Vasconcelos C, Warthmann R J, et al. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates)[J]. Sedimentology, 2010, 57(3): 824-844. |
[120] |
Sadooni F N, Howari F, El-Saiy A. Microbial dolomites from carbonate-evaporite sediments of the coastal sabkha of Abu Dhabi and their exploration implications[J]. Journal of Petroleum Geology, 2010, 33(4): 289-298. |
[121] |
Qiu X, Wang H M, Yao Y C, et al. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52[J]. Earth and Planetary Science Letters, 2017, 472: 197-205. |
[122] |
Deng S C, Dong H L, Lv G, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai lake, Tibetan plateau, NW China[J]. Chemical Geology, 2010, 278(3/4): 151-159. |
[123] |
Warren J K. Sedimentology of Coorong dolomite in the Salt Creek region, South Australia[J]. Carbonates Evaporites, 1988, 3(2): 175-199. |
[124] |
Rosen M R, Miser D E, Starcher M A, et al. Formation of dolomite in the Coorong region, South Australia[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 661-669. |
[125] |
Nash M C, Opdyke B N, Troitzsch U, et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions[J]. Nature Climate Change, 2013, 3(3): 268-272. |
[126] |
Bose S, Chafetz H S. Morphology and distribution of miss: A comparison between modern siliciclastic and carbonate settings[M]//Noffke N, Chafetz H. Microbial mats in siliciclastic depositional systems through time. Tulsa: SEPM Special Publications, 2012: 101: 3-14. |
[127] |
Dawson K S, Freeman K H, Macalady J L. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions[J]. Organic Geochemistry, 2012, 48: 1-8. |
[128] |
De Philippis R, Vincenzin M. Exocellular polysaccharides from cyanobacteria and their possible applications[J]. FEMS Microbiology Reviews, 1998, 22(3): 151-175. |
[129] |
Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress[J]. Bioresource Technology, 2009, 100(13): 3382-3386. |
[130] |
Ozturk S, Aslim B. Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress[J]. Environmental Science and Pollution Research, 2010, 17(3): 595-602. |
[131] |
Qiu X, Wang H M, Liu D, et al. The Physiological response of Synechococcus elongatus to salinity: A Potential biomarker for ancient salinity in evaporative environments[J]. Geomicrobiology Journal, 2012, 29(5): 477-483. |
[132] |
Madern D, Ebel C, Zaccai G. Halophilic adaptation of enzymes[J]. Extremophiles, 2000, 4(2): 91-98. |
[133] |
Eriksson P G, Banerjee S, Catuneanu O, et al. Secular changes in sedimentation systems and sequence stratigraphy[J]. Gondwana Research, 2013, 24(2): 468-489. |
[134] |
Johnston D T, Wolfe-Simon F, Pearson A, et al. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(40): 16925-16929. |
[135] |
Hood A V S, Wallace M W, Drysdale R N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39(9): 871-874. |
[136] |
Wood R A, Zhuravlev A Y, Sukhov S S, et al. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform[J]. Geology, 2017, 45(1): 27-30. |
[137] |
van Smeerdijk Hood A, Wallace M W. Neoproterozoic marine carbonates and their paleoceanographic significance[J]. Global and Planetary Change, 2018, 160: 28-45. |
[138] |
Wood R, Bowyer F, Penny A, et al. Did anoxia terminate ediacaran benthic communities? Evidence from early diagenesis[J]. Precambrian Research, 2018, 313: 134-147. |
[139] |
Peters S E, Husson J M, Dolomite Wilcots J., very high-magnesium calcite Geology, 2017, 45(6): 487-490. |
[140] |
Burns S J, McKenzie J A, Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47: 49-61. |
[141] |
Ridgwell A J, Kennedy M J, Caldeira K. Carbonate deposition, climate stability, and Neoproterozoic ice ages[J]. Science, 2003, 302(5646): 859-862. |
[142] |
Arvidson R S, MacKenzie F T. The dolomite problem; control of precipitation kinetics by temperature and saturation state[J]. American Journal of Science, 1999, 299(4): 257-288. |
[143] |
Reeder R J. Crystal chemistry of the rhombohedral carbonates[J]. Reviews in Mineralogy and Geochemistry, 1983, 11(1): 1-47. |
[144] |
Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region, South Australia: significance and implications[J]. Sedimentology, 2005, 52: 987-1008. |
[145] |
Vasconcelos C, McKenzie J A, Warthmann R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33: 317-320. |
[146] |
Malone M J, Baker P A, Burns S J. Recrystallization of dolomite: Evidence from the monterey formation (Miocene), California[J]. Sedimentology, 1994, 41(6): 1223-1239. |
[147] |
Kaczmarek S E, Sibley D F. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: An alternative model for the geochemical evolution of natural dolomites[J]. Sedimentary Geology, 2011, 240(1/2): 30-40. |
[148] |
Fang Y H, Xu H F. Study of an ordovician carbonate with alternating dolomite–calcite laminations and its implication for catalytic effects of microbes on the formation of sedimentary dolomite[J]. Journal of Sedimentary Research, 2018, 88(6): 679-695. |