[1] |
Lowe D, Waltham T. Dictionary of karst and caves[M]. 2nd ed. Buxton: British Cave Research Association, 2002: 1-40. |
[2] |
陈伟海. 洞穴研究进展综述[J]. 地质论评,2006,52(6):783-792.
Chen Weihai. An outline of speleology research progress[J]. Geological Review, 2006, 52(6): 783-792. |
[3] |
袁道先,蒋勇军,沈立成,等. 现代岩溶学[M]. 北京:科学出版社,2016.
Yuan Daoxian, Jiang Yongjun, Shen Licheng, et al. Modern karstology[M]. Beijing: Science Press, 2016. |
[4] |
杨景春,李有利. 地貌学原理[M]. 北京:北京大学出版社,2001.
Yang Jingchun, Li Youli. Principles of geomorphology[M]. Beijing: Peking University Press, 2001. |
[5] |
李宗杰,刘群,李海英,等. 地震古岩溶学理论及应用[J]. 西南石油大学学报(自然科学版),2013,35(6):9-19.
Li Zongjie, Liu Qun, Li Haiying, et al. Theory and application of seismic palaeokarst[J]. Journal of Southwest Petroleum University (Science and Technology Edition), 2013, 35(6): 9-19. |
[6] |
曹明达,周忠发,张强,等. 岩溶洞穴水理化性质特征及其环境意义:以贵州织金洞为例[J]. 中国岩溶,2016,35(3):314-321,348.
Cao Mingda, Zhou Zhongfa, Zhang Qiang, et al. Characteristics of physical and chemical properties and associated environmental implications of the karst water in Zhijin Cave of Guizhou province[J]. Carsologica Sinica, 2016, 35(3): 314-321, 348. |
[7] |
陈华鑫,康志宏,康志江. 塔河油田碳酸盐岩油藏古岩溶洞穴层状结构与形成机理[J]. 现代地质,2022,36(2):695-708.
Chen Huaxin, Kang Zhihong, Kang Zhijiang. Stratified structure and formation mechanism of paleokarst cave in carbonate reservoir of Tahe oilfield[J]. Geoscience, 2022, 36(2): 695-708. |
[8] |
裴树文. 中国古人类活动遗址形成过程研究的进展与思考[J]. 人类学学报,2021,40(3):349-362.
Pei Shuwen. The progress and consideration on the study of site formation processes of early human occupation in China[J]. Acta Anthropologica Sinica, 2021, 40(3): 349-362. |
[9] |
Gillieson D. Caves: Processes, development, management[M]. Malden: Blackwell Publishing, 1996: 324. |
[10] |
Goldberg P, Sherwood S C. Deciphering human prehistory through the geoarcheological study of cave sediments[J]. Evolutionary Anthropology: Issues, News, and Reviews, 2006, 15(1): 20-36. |
[11] |
White W B. Geomorphology and hydrology of karst terrains[M]. New York: Oxford University Press, 1988. |
[12] |
Sasowsky I D, Mylroie J. Studies of cave sediments: Physical and chemical records of paleoclimate[M]. Dordrecht: Springer-Verlag GmbH, 2007. |
[13] |
Courty M A, Goldberg P, Macphail R. Soils and micromorphology in archaeology[M]. Cambridge: Cambridge University Press, 1989: 904. |
[14] |
Goldberg P, Berna F. Micromorphology and context[J]. Quaternary International, 2010, 214(1/2): 56-62. |
[15] |
Goldberg P, Aldeias V. Why does (archaeological) micromorphology have such little traction in (geo)archaeology?[J]. Archaeological and Anthropological Sciences, 2018, 10(2): 269-278. |
[16] |
Goldberg P, Macphail R I. Practical and theoretical geoarchaeology[M]. Malden: Blackwell Publishing, 2006. |
[17] |
Karkanas P, Goldberg P. Reconstructing archaeological sites: Understanding the geoarchaeological matrix[M]. Oxford: John Wiley and Sons, Ltd, 2018: 172-189. |
[18] |
Mallol C, Goldberg P. Cave and rock shelter sediments[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 359-381. |
[19] |
Stoops G. Guidelines for analysis and description of soil and regolith thin sections[M]. Madison: Soil Science Society of America, 2003. |
[20] |
Kubiëna W L. Micropedology[M]. Ames, IO: Collegiate Press, 1938. |
[21] |
Cornwall I W. Soils for the archaeologist[M]. London: Phoenix House, 1958. |
[22] |
Goldberg P. Micromorphology of Pech-de-l'Azé II sediments[J]. Journal of Archaeological Science, 1979, 6(1): 17-47. |
[23] |
Goldberg P. Micromorphology of sediments from Hayonim Cave, Israel[J]. Catena, 1979, 6(2): 167-181. |
[24] |
Stoops G. The “fabric” of soil micromorphological research in the 20th century-a bibliometric analysis[J]. Geoderma, 2014, 213: 193-202. |
[25] |
Bullock P, Fedoroff N, Jongerius A, et al. Handbook for soil thin section description[M]. Wolverhampton: Waine Research Publications, 1985: 152. |
[26] |
van der Meer J J M, Menzies J. The micromorphology of unconsolidated sediments[J]. Sedimentary Geology, 2011, 238(3/4): 213-232. |
[27] |
何毓蓉,张丹. 土壤微形态研究理论与实践[M]. 北京:地质出版社,2015:34-57.
He Yurong, Zhang Dan. Theory and practice of soil micromorphology[M]. Beijing: Geological Publishing House, 2015: 34-57. |
[28] |
Macphail R, Romans J C C, Robertoson L. The application of micromorphology to the understanding of Holocene soil development in the British Isles; with special reference to early cultivation[M]//Fedoroff N, Bresson L M, Courty M A. Soil microphology. Plaisir: Association Française pour l’Étude du Sol, 1987: 669-676. |
[29] |
靳桂云. 土壤微形态分析及其在考古学中的应用[J]. 地球科学进展,1999,14(2):197-200.
Jin Guiyun. Soil micromorphology in archaeology[J]. Advances in Earth Science, 1999, 14(2): 197-200. |
[30] |
Storozum M J, Zhang J N, Wang H, et al. Geoarchaeology in China: Historical trends and future prospects[J]. Journal of Archaeological Research, 2019, 27(1): 91-129. |
[31] |
Varela S L L. The encyclopedia of archaeological sciences: Bridging archaeological scholarship and science[M]//Varela S L L. The encyclopedia of archaeological sciences. Malden: Wiley-Blackwell, 2019. |
[32] |
Goldberg P, Miller C E, Mentzer S M. Recognizing fire in the paleolithic archaeological record[J]. Current Anthropology, 2017, 58(S16): S175-S190. |
[33] |
Stoops G. Fluorescence microscopy[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 393-397. |
[34] |
Ligouis B. Reflected light[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 461-469. |
[35] |
Schiegl S, Goldberg P, Bar-Yosef O, et al. Ash deposits in Hayonim and Kebara caves, Israel: Macroscopic, microscopic and mineralogical observations, and their archaeological implications[J]. Journal of Archaeological Science, 1996, 23(5): 763-781. |
[36] |
Karkanas P, Rigaud J P, Simek J F, et al. Ash bones and guano: A study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France[J]. Journal of Archaeological Science, 2002, 29(7): 721-732. |
[37] |
Karkanas P. Preservation of anthropogenic materials under different geochemical processes: A mineralogical approach[J]. Quaternary International, 2010, 214(1/2): 63-69. |
[38] |
Rellini I, Firpo M, Martino G, et al. Climate and environmental changes recognized by micromorphology in Paleolithic deposits at Arene Candide (Liguria, Italy)[J]. Quaternary International, 2013, 315: 42-55. |
[39] |
Wilson C A. Electron Probe X-ray Micro Analysis (SEM-EPMA) techniques[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 451-459. |
[40] |
Weiner S, Goldberg P, Bar-Yosef O. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications[J]. Journal of Archaeological Science, 2002, 29(11): 1289-1308. |
[41] |
Ajas A, Bertran P, Lemée L, et al. Stratigraphy and palaeopedology of the palaeolithic cave site of Combe-Saunière, Southwest France[J]. Geoarchaeology, 2013, 28(5): 432-449. |
[42] |
Berthold C, Mentzer S M. X-ray microdiffraction[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 417-429. |
[43] |
McAdams C, Morley M W, Fu X, et al. The Pleistocene geoarchaeology and geochronology of Con Moong Cave, North Vietnam: Site formation processes and hominin activity in the humid tropics[J]. Geoarchaeology, 2020, 35(1): 72-97. |
[44] |
Mentzer S M, Quade J. Compositional and isotopic analytical methods in archaeological micromorphology[J]. Geoarchaeology, 2013, 28(1): 87-97. |
[45] |
Mentzer S M. Micro XRF[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 431-440. |
[46] |
Haaland M M, Miller C E, Unhammer O F, et al. Geoarchaeological investigation of occupation deposits in Blombos Cave in South Africa indicate changes in site use and settlement dynamics in the southern Cape during MIS 5b-4[J]. Quaternary Research, 2021, 100: 170-223. |
[47] |
Weiner S, Goldberg P, Bar-Yosef O. Bone preservation in Kebara Cave, Israel using on-site Fourier transform infrared spectrometry[J]. Journal of Archaeological Science, 1993, 20(6): 613-627. |
[48] |
Berna F, Goldberg P, Horwitz L K, et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, northern Cape province, South Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): E1215-E1220. |
[49] |
Berna F, Boaretto E, Wiebe M C, et al. Site formation processes at Manot Cave, Israel: Interplay between strata accumulation in the occupation area and the talus[J]. Journal of Human Evolution, 2021, 160: 102883. |
[50] |
Berna F. FTIR microscopy[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 411-415. |
[51] |
Morley M W, Goldberg P, Sutikna T, et al. Initial micromorphological results from Liang Bua, Flores (Indonesia): Site formation processes and hominin activities at the type locality of Homo floresiensis [J]. Journal of Archaeological Science, 2017, 77: 125-142. |
[52] |
Haaland M M, Friesem D E, Miller C E, et al. Heat-induced alteration of glauconitic minerals in the Middle Stone Age levels of Blombos Cave, South Africa: Implications for evaluating site structure and burning events[J]. Journal of Archaeological Science, 2017, 86: 81-100. |
[53] |
Monnier G F. A review of infrared spectroscopy in microarchaeology: Methods, applications, and recent trends[J]. Journal of Archaeological Science: Reports, 2018, 18: 806-823. |
[54] |
Patania I, Goldberg P, Cohen D J, et al. Micromorphological analysis of the deposits at the early pottery Xianrendong Cave site, China: Formation processes and site use in the Late Pleistocene[J]. Archaeological and Anthropological Sciences, 2019, 11(8): 4229-4249. |
[55] |
Lambrecht G, Rodríguez de Vera C, Jambrina-Enríquez M, et al. Characterisation of charred organic matter in micromorphological thin sections by means of Raman spectroscopy[J]. Archaeological and Anthropological Sciences, 2021, 13(1): 13. |
[56] |
Rodríguez de Vera C, Herrera-Herrera A V, Jambrina-Enríquez M, et al. Micro-contextual identification of archaeological lipid biomarkers using resin-impregnated sediment slabs[J]. Scientific Reports, 2020, 10(1): 20574. |
[57] |
Ngan-Tillard D J M, Huisman D J. Micro-CT scanning[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 441-449. |
[58] |
Haaland M M, Strauss A M, Velliky E C, et al. Hidden in plain sight: A microanalytical study of a Middle Stone Age ochre piece trapped inside a micromorphological block sample[J]. Geoarchaeology, 2021, 36(2): 283-313. |
[59] |
Ward I, Veth P, Prossor L, et al. 50,000 years of archaeological site stratigraphy and micromorphology in Boodie Cave, Barrow Island, western Australia[J]. Journal of Archaeological Science: Reports, 2017, 15: 344-369. |
[60] |
Ward I, Merigot K, McInnes B I A. Application of quantitative mineralogical analysis in archaeological micromorphology: A case study from Barrow Is., western Australia[J]. Journal of Archaeological Method and Theory, 2018, 25(1): 45-68. |
[61] |
Villagran X S, Giannini P C F, Deblasis P. Archaeofacies analysis: Using depositional attributes to identify anthropic processes of deposition in a monumental shell mound of Santa Catarina State, southern Brazil[J]. Geoarchaeology, 2009, 24(3): 311-335. |
[62] |
Villagran X S, Balbo A L, Madella M, et al. Stratigraphic and spatial variability in shell middens: Microfacies identification at the ethnohistoric site Tunel VII (Tierra del Fuego, Argentina)[J]. Archaeological and Anthropological Sciences, 2011, 3(4): 357-378. |
[63] |
Karkanas P, Pavlopoulos K, Kouli K, et al. Palaeoenvironments and site formation processes at the Neolithic lakeside settlement of Dispilio, Kastoria, northern Greece[J]. Geoarchaeology, 2011, 26(1): 83-117. |
[64] |
Karkanas P, van de Moortel A. Micromorphological analysis of sediments at the bronze age site of Mitrou, Central Greece: Patterns of floor construction and maintenance[J]. Journal of Archaeological Science, 2014, 43: 198-213. |
[65] |
Aldeias V, Bicho N. Embedded behavior: Human activities and the construction of the mesolithic shellmound of Cabeço da Amoreira, Muge, Portugal[J]. Geoarchaeology, 2016, 31(6): 530-549. |
[66] |
Karkanas P, Goldberg P. Site formation processes at Pinnacle Point Cave 13B (Mossel Bay, western Cape province, South Africa): Resolving stratigraphic and depositional complexities with micromorphology[J]. Journal of Human Evolution, 2010, 59(3/4): 256-273. |
[67] |
Karkanas P, Brown K S, Fisher E C, et al. Interpreting human behavior from depositional rates and combustion features through the study of sedimentary microfacies at site Pinnacle Point 5-6, South Africa[J]. Journal of Human Evolution, 2015, 85: 1-21. |
[68] |
Karkanas P, Marean C, Bar-Matthews M, et al. Cave life histories of non-anthropogenic sediments help us understand associated archaeological contexts[J]. Quaternary Research, 2021, 99: 270-289. |
[69] |
Goldberg P, Miller C E, Schiegl S, et al. Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa[J]. Archaeological and Anthropological Sciences, 2009, 1(2): 95-122. |
[70] |
Wadley L, Sievers C, Bamford M, et al. Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa[J]. Science, 2011, 334(6061): 1388-1391. |
[71] |
Wadley L, Esteban I, de la Peña P, et al. Fire and grass-bedding construction 200 thousand years ago at Border Cave, South Africa[J]. Science, 2020, 369(6505): 863-866. |
[72] |
Herries A I R, Martin J M, Leece A B, et al. Contemporaneity of Australopithecus, Paranthropus, and Early Homo erectus in South Africa[J]. Science, 2020, 368(6486): eaaw7293. |
[73] |
Inglis R H, French C, Farr L, et al. Sediment micromorphology and site formation processes during the Middle to Later Stone Ages at the Haua Fteah Cave, Cyrenaica, Libya[J]. Geoarchaeology, 2018, 33(3): 328-348. |
[74] |
Albert R M, Berna F, Goldberg P. Insights on Neanderthal fire use at Kebara Cave (Israel) through high resolution study of prehistoric combustion features: Evidence from phytoliths and thin sections[J]. Quaternary International, 2012, 247: 278-293. |
[75] |
Karkanas P, Shahack-Gross R, Ayalon A, et al. Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-Formation processes at Qesem Cave, Israel[J]. Journal of Human Evolution, 2007, 53(2): 197-212. |
[76] |
Karkanas P. Geology, stratigraphy and site formation processes of the Upper Palaeolithic and later sequence in Klissoura Cave1[J]. Eurasian Prehistory, 2010, 7(2): 15-36. |
[77] |
Sessa E, Rellini I, Traverso A, et al. Microstratigraphic records as tools for the detection of climatic changes in Tana di Badalucco Cave (Liguria, NW Italy)[J]. Geosciences, 2019, 9(6): 276. |
[78] |
Mallol C, Cabanes D, Baena J. Microstratigraphy and diagenesis at the Upper Pleistocene site of Esquilleu Cave (Cantabria, Spain)[J]. Quaternary International, 2010, 214(1/2): 70-81. |
[79] |
Bergadà M M, Villaverde V, Román D. Microstratigraphy of the Magdalenian sequence at Cendres Cave (Teulada-Moraira, Alicante, Spain): Formation and diagenesis[J]. Quaternary International, 2013, 315: 56-75. |
[80] |
Aldeias V, Goldberg P, Dibble H L, et al. Deciphering site formation processes through soil micromorphology at Contrebandiers Cave, Morocco[J]. Journal of Human Evolution, 2014, 69: 8-30. |
[81] |
Potì A, Kehl M, Broich M, et al. Human occupation and environmental change in the western Maghreb during the Last Glacial Maximum(LGM) and the Late Glacial. New evidence from the Iberomaurusian site Ifri El Baroud (northeast Morocco)[J]. Quaternary Science Reviews, 2019, 220: 87-110. |
[82] |
Jacobs Z, Li B, Shunkov M V, et al. Timing of archaic hominin occupation of Denisova Cave in southern Siberia[J]. Nature, 2019, 565(7741): 594-599. |
[83] |
Morley M W, Goldberg P, Uliyanov V A, et al. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia)[J]. Scientific Reports, 2019, 9(1): 13785. |
[84] |
Zavala E I, Jacobs Z, Vernot B, et al. Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave[J]. Nature, 2021, 595(7867): 399-403. |
[85] |
吴汝康,任美锷,朱显谟,等. 北京猿人遗址综合研究[M]. 北京:科学出版社,1985:234-237.
Wu Rukang, Ren Mei'e, Zhu Xianmo, et al. Multi-disciplinary study of the Peking man site at Zhoukoudian[M]. Beijing: Science Press, 1985: 234-237. |
[86] |
Karkanas P, Schepartz L A, Miller-Antonio S, et al. Late Middle Pleistocene climate in southwestern China: Inferences from the stratigraphic record of Panxian Dadong Cave, Guizhou[J]. Quaternary Science Reviews, 2008, 27(15/16): 1555-1570. |
[87] |
Patania I, Goldberg P, Cohen D J, et al. Micromorphological and FTIR analysis of the Upper Paleolithic early pottery site of Yuchanyan Cave, Hunan, South China[J]. Geoarchaeology, 2020, 35(2): 143-163. |
[88] |
Wu X H, Zhang C, Goldberg P, et al. Early pottery at 20,000 years ago in Xianrendong Cave, China[J]. Science, 2012, 336(6089): 1696-1700. |
[89] |
Stephens M, Rose J, Gilbertson D D. Post-depositional alteration of humid tropical cave sediments: Micromorphological research in the Great Cave of Niah, Sarawak, Borneo[J]. Journal of Archaeological Science, 2017, 77: 109-124. |
[90] |
靳桂云,郭正堂. 北京王府井东方广场旧石器文化遗址:沉积物的土壤微形态学研究[J]. 东方考古,2011(00):349-352.
Jin Guiyun, Guo Zhengtang. Soilmicromorphology study of the sediment from the palaeolithic site at Wangfujing, Beijing[J]. East Asia Archaeology, 2011 (00): 349-352. |
[91] |
Zhuang Y J, Bao W B, French C. River floodplain aggradation history and cultural activities: Geoarchaeological investigation at the Yuezhuang site, Lower Yellow River, China[J]. Quaternary International, 2013, 315: 101-115. |
[92] |
董广辉,夏正楷,刘德成. 青海喇家遗址内外的土壤微形态初步分析[J]. 水土保持研究,2005,12(4):5-6,81.
Dong Guanghui, Xia Zhengkai, Liu Decheng. Preliminary soil micromorphological analysis in Lajia site, Qinghai province[J]. Research of Soil and Water Conservation, 2005, 12(4): 5-6, 81. |
[93] |
张玉柱,黄春长,庞奖励,等. 青海民和官亭盆地喇家遗址古耕作土壤层微形态研究[J]. 土壤学报,2015,52(5):1002-1013.
Zhang Yuzhu, Huang Chunchang, Pang Jiangli, et al. Micromorphology of ancient plow layer of paleosol in the Lajia ruins in the Guanting Basin, Minhe county, Qinghai province[J]. Acta Pedologica Sinica, 2015, 52(5): 1002-1013. |
[94] |
张海,庄奕杰,方燕明,等. 河南禹州瓦店遗址龙山文化壕沟的土壤微形态分析[J]. 华夏考古,2016(4):86-95.
Zhang Hai, Zhuang Yijie, Fang Yanming, et al. Micromorphological analysis of the soil samples from a ditch of the Longshan culture on the Wadian site in Yuzhou, Henan[J]. Huaxia Archaeology, 2016(4): 86-95. |
[95] |
姜钰,吴克宁,查理思,等. 土壤微形态分析在考古应用方面的研究进展[J]. 土壤通报,2016,47(4):1007-1015.
Jiang Yu, Wu Kening, Zha Lisi, et al. Review of soil micromorphological analysis in archaeological research[J]. Chinese Journal of Soil Science, 2016, 47(4): 1007-1015. |
[96] |
姜钰. 仰韶文化遗址区古土壤微形态特征研究[D]. 北京:中国地质大学(北京),2016.
Jiang Yu. Soil micromorphological Characteristics research on ancient agriculture in Yangshao cultural relics[D]. Beijing: China University of Geosciences (Beijing), 2016. |
[97] |
宿凯,靳桂云,吴卫红. 凌家滩遗址外壕沟沉积物反映的土地利用变化:土壤微形态研究案例[J]. 南方文物,2020(3):136-150.
Su Kai, Jin Guiyun, Wu Weihong. Land use change reflected by sediments from the Outside Ditch of the Lingjiatan site:A case study on soil micromorphology[J]. Cultural Relics in Southern China, 2020(3): 136-150. |
[98] |
马志坤,刘舒,任萌,等. 新疆东天山地区巴里坤石人子沟遗址储粮坑分析[J]. 第四纪研究,2021,41(1):214-223.
Ma Zhikun, Liu Shu, Ren Meng, et al. Analysis of grain storage pit of the Shirenzigou site in Balikun county, East Tianshan area, Xinjiang[J]. Quaternary Sciences, 2021, 41(1): 214-223. |
[99] |
柏哲人,王守功,党浩,等. 山东潍坊前埠下新石器时代遗址文化层沉积物微形态分析[J]. 海岱考古,2020(00):379-385.
Bo Zheren, Wang Shougong, Dang Hao, et al. Micromorphological analysis of sediments in the cultural layer of the Qianbuxia Neolithic site in Weifang, Shandong province[J]. Haidai Archaeology, 2020(00): 379-385. |
[100] |
饶宗岳,王芬,庄奕杰,等. 焦家遗址大汶口文化城墙与壕沟使用过程的地学考古观察[J]. 南方文物,2022(1):140-151.
Rao Zongyue, Wang Fen, Zhuang Yijie, et al. Geoarchaeological observation research on the use of the rammed earth wall and moat in Jiaojia site, Dawenkou culture[J]. Cultural Relics in Southern China, 2022(1): 140-151. |
[101] |
Stoof C R, Wesseling J G, Ritsema C J. Effects of fire and ash on soil water retention[J]. Geoderma, 2010, 159(3/4): 276-285. |
[102] |
Karkanas P, Goldberg P. Cave settings[M]//Gilbert A S. Encyclopedia of geoarchaeology. Dordrecht: Springer, 2017: 108-118. |
[103] |
Goldberg P, Laville H, Meignen L. Stratigraphy and geoarchaeological history of Kebara Cave[M]//Bar-Yosef O, Meignen L. Kebara Cave, Mt Carmel, Israel: The Middle and Upper Paleolithic archaeology, part 1. Cambridge: American School of Prehistoric Research, Peabody Museum, Harvard University, 2007: 49-89. |
[104] |
Karkanas P. Site formation processes in Theopetra Cave: A record of climatic change during the Late Pleistocene and Early Holocene in Thessaly, Greece[J]. Geoarchaeology, 2001, 16(4): 373-399. |
[105] |
Macphail R I, Goldberg P. Gough’s Cave, Cheddar, Somerset: Microstratigraphy of the Late Pleistocene/Earliest Holocene sediments[J]. Bulletin of the Natural History Museum: Geology Series, 2003, 58(S1): 51-58. |
[106] |
孙萌. 房山地质公园岩溶洞穴群特征和成因及利用研究[D]. 北京:中国地质大学(北京),2014.
Sun Meng. Characteristic, formation mechanism and planning suggestions of Karst Cave in Fangshan global geopark[D]. Beijing: China University of Geosciences (Beijing), 2014. |
[107] |
Lenoble A, Bertran P, Lacrampe F. Solifluction-induced modifications of archaeological levels: Simulation based on experimental data from a modern periglacial slope and application to French Palaeolithic sites[J]. Journal of Archaeological Science, 2008, 35(1): 99-110. |
[108] |
谢悦波,杨达源. 古洪水平流沉积基本特征[J]. 河海大学学报,1998,26(6):5-10.
Xie Yuebo, Yang Dayuan. Basic characteristics of paleoflood slack-water deposits[J]. Journal of Hohai University, 1998, 26(6): 5-10. |
[109] |
郝高建,黄春长,庞奖励,等. 延河全新世古洪水平流沉积物研究[J]. 干旱区资源与环境,2010,24(7):87-92.
Hao Gaojian, Huang Chunchang, Pang Jiangli, et al. Sedimentary characteristics of the palaeoflood slackwater deposits in the Yanhe River valley[J]. Journal of Arid Land Resources and Environment, 2010, 24(7): 87-92. |
[110] |
朱程,谢悦波,成晨光. 高山峡谷大比降河段古洪水沉积物特征研究[J]. 人民长江,2016,47(4):23-26.
Zhu Cheng, Xie Yuebo, Cheng Chenguang. Characteristics of ancient flood deposit at river reach in canyon region with high gradient ratio[J]. Yangtze River, 2016, 47(4): 23-26. |
[111] |
Karkanas P, Goldberg P. Micromorphology of cave sediments[M]//Shroder J F. Treatise on geomorphology. San Diego: Academic Press, 2013: 286-297. |
[112] |
Pickering R, Hancox P J, Lee-Thorp J A, et al. Stratigraphy, U-Th chronology, and paleoenvironments at Gladysvale Cave: Insights into the climatic control of South African hominin- bearing cave deposits[J]. Journal of Human Evolution, 2007, 53(5): 602-619. |
[113] |
Pickering R, Kramers J D. Re-appraisal of the stratigraphy and determination of new U-Pb dates for the Sterkfontein hominin site, South Africa[J]. Journal of Human Evolution, 2010, 59(1): 70-86. |
[114] |
程海,张海伟,赵景耀,等. 中国石笋古气候研究的回顾与展望[J]. 中国科学(D辑):地球科学,2019,49(10):1565-1589.
Cheng Hai, Zhang Haiwei, Zhao Jingyao, et al. Chinese stalagmite paleoclimate researches: A review and perspective[J]. Science China (Seri. D): Earth Sciences, 2019, 49(10): 1565-1589. |
[115] |
Dumitru O A, Austermann J, Polyak V J, et al. Constraints on global mean sea level during Pliocene warmth[J]. Nature, 2019, 574(7777): 233-236. |
[116] |
Horwitz L K, Goldberg P. A study of Pleistocene and Holocene hyaena coprolites[J]. Journal of Archaeological Science, 1989, 16(1): 71-94. |
[117] |
Poinar H, Fiedel S, King C E, et al. Comment on “DNA from Pre‐Clovis human coprolites in oregon, North America”[J]. Science, 2009, 325(5937): 148. |
[118] |
Ellingham S T D, Thompson T J U, Islam M, et al. Estimating temperature exposure of burnt bone — A methodological review[J]. Science and Justice, 2015, 55(3): 181-188. |
[119] |
黄超,张双权. 旧石器遗址出土烧骨的技术分析及其考古学应用[J]. 人类学学报,2020,39(2):249-260.
Huang Chao, Zhang Shuangquan. Technological analysis of the burned bones and its implications for Paleolithic archaeology[J]. Acta Anthropologica Sinica, 2020, 39(2): 249-260. |
[120] |
黄超,张双权. X射线衍射技术在烧骨实验研究中的初步应用[J]. 人类学学报,2021,40(3):513-525.
Huang Chao, Zhang Shuangquan. Preliminary application of the X-rays diffraction technique in experimental study of burnt bones[J]. Acta Anthropologica Sinica, 2021, 40(3): 513-525. |
[121] |
孙楠,李小强. 木炭研究方法[J]. 人类学学报,2016,35(1):149-160.
Sun Nan, Li Xiaoqiang. Methodology in fossil charcoal analysis[J]. Acta Anthropologica Sinica, 2016, 35(1): 149-160. |
[122] |
Angelucci D E. The recognition and description of knapped lithic artifacts in thin section[J]. Geoarchaeology, 2010, 25(2): 220-232. |
[123] |
Miller C E, Sievers C. An experimental micromorphological investigation of bedding construction in the Middle Stone Age of Sibudu, South Africa[J]. Journal of Archaeological Science, 2012, 39(10): 3039-3051. |
[124] |
Sarcinelli T S, Schaefer C E G R, Lynch L D S, et al. Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil[J]. Catena, 2009, 76(2): 107-113. |
[125] |
Miller C E, Conard N J, Goldberg P, et al. Dumping, sweeping and trampling: Experimental micromorphological analysis of anthropogenically modified combustion features[J]. Palethnologie, 2010, 2: 25-37. |
[126] |
Weiner S. Microarchaeology: Beyond the visible archaeological record[M]. Cambridge: Cambridge University Press, 2010. |
[127] |
Martini J, Kavalieris I. Mineralogy of the transvaal caves[J]. Transactions of the Geological Society of South Africa, 1978, 81(1): 47-54. |
[128] |
Shahack-Gross R, Berna F, Karkanas P, et al. Bat guano and preservation of archaeological remains in cave sites[J]. Journal of Archaeological Science, 2004, 31(9): 1259-1272. |
[129] |
Karkanas P. Guano[M]//Nicosia C, Stoops G. Archaeological soil and sediment micromorphology. Oxford: John Wiley and Sons, Ltd, 2017: 83-89. |
[130] |
Mcadams C, Morley M W, Roberts R G. The acid test: An experimental microarchaeological study of guano-driven diagenesis in tropical cave sediments[J]. Journal of Archaeological Science: Reports, 2021, 37: 102947. |
[131] |
Laville H, Rigaud J P, Sackett J. Rock shelters of the perigord: Geological stratigraphy and archeological succession[M]. New York: Academic Press, 1980. |
[132] |
Courty M A, Vallverdu J. The microstratigraphic record of abrupt climate changes in cave sediments of the western Mediterranean[J]. Geoarchaeology, 2001, 16(5): 467-499. |
[133] |
Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959. |
[134] |
Courty M A. Microfacies analysis assisting archaeological stratigraphy[M]//Goldberg P, Holliday V T, Ferring C R. Earth sciences and archaeology. New York: Kluwer Academic/Plenum, 2001: 205-239. |
[135] |
Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2004: 1-882. |
[136] |
Miller C E,, Goldberg P, Berna F. Geoarchaeological investigations at Diepkloof Rock Shelter, western Cape, South Africa[J]. Journal of Archaeological Science, 2013, 40(9): 3432-3452. |
[137] |
冯增昭. 沉积相的一些术语定义的评论[J]. 古地理学报,2020,22(2):207-220.
Feng Zengzhao. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(2): 207-220. |
[138] |
葛俊逸,邓成龙,邵庆丰,等. 中国古人类遗址年代学的研究进展与问题[J]. 人类学学报,2021,40(3):393-410.
Ge Junyi, Deng Chenglong, Shao Qingfeng, et al. Progress and issues of chronological studies of human fossil sites in China[J]. Acta Anthropologica Sinica, 2021, 40(3): 393-410. |
[139] |
Kuhn S L, Pigati J, Karkanas P, et al. Radiocarbon dating results for the early Upper Paleolithic of Klissoura Cave 1[J]. Eurasian Prehist, 2010, 7(2): 37-46. |
[140] |
Zacharias N, Polymeris G, Koumouzelis M, et al. Detecting Middle Palaeolithic sequences at the Klissoura Cave 1 in Argolid, Greece using OSL dating[M]//4th ARCH_RNT symposium proceedings, May 2016. Kalamata: University of the Peloponnese Publications Series, 2018. |
[141] |
Liu W, Martinón-Torres M, Cai Y J, et al. The earliest unequivocally modern humans in southern China[J]. Nature, 2015, 526(7575): 696-699. |
[142] |
Sun X F, Wen S Q, Lu C Q, et al. Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(8): e2019158118. |
[143] |
Martinón-Torres M, Cai Y J, Tong H W, et al. On the misidentification and unreliable context of the new “human teeth” from Fuyan Cave (China)[J]. Proceedings of the National Academy of Sciences, 2021, 118 (22): e2102961118 |
[144] |
周振宇,关莹,王春雪,等. 旧石器时代的火塘与古人类用火[J]. 人类学学报,2012,31(1):24-40.
Zhou Zhenyu, Guan Ying, Wang Chunxue, et al. Remains of human fire-use: An overview of Paleolithic hearth and human fire-use behavior[J]. Acta Anthropologica Sinica, 2012, 31(1): 24-40. |
[145] |
Hlubik S, Berna F, Feibel C, et al. Researching the nature of fire at 1.5 mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry[J]. Current Anthropology, 2017, 58(Suppl.16): S243-S257. |
[146] |
Mentzer S M. Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites[J]. Journal of Archaeological Method and Theory, 2014, 21(3): 616-668. |
[147] |
Stahlschmidt M C, Miller C E, Ligouis B, et al. On the evidence for human use and control of fire at Schöningen[J]. Journal of Human Evolution, 2015, 89: 181-201. |
[148] |
戴静雯,张双权,张乐. 史前人类对动物骨骼油脂的开发和利用[J]. 人类学学报,2021,40(3):503-512.
Dai Jingwen, Zhang Shuangquan, Zhang Yue. Exploitation of animal bone fat by prehistoric human DAI[J]. Acta Anthropologica Sinica, 2021, 40(3): 503-512. |
[149] |
杨益民. 中国有机残留物分析的研究进展及展望[J]. 人类学学报,2021,40(3):535-545.
Yang Yimin. The research progress and prospect of organic residue analysis in China[J]. Acta Anthropologica Sinica, 2021, 40(3): 535-545. |
[150] |
Wade L. DNA from cave soil reveals ancient human occupants[J]. Science, 2017, 356(6336): 363. |
[151] |
Zhang D J, Xia H, Chen F H, et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau[J]. Science, 2020, 370(6516): 584-587. |
[152] |
Gibbons A. DNA from cave dirt traces Neanderthal upheaval[J]. Science, 2021, 372(6539): 222-223. |
[153] |
Vernot B, Zavala E I, Gómez-Olivencia A, et al. Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments[J]. Science, 2021, 372(6542): eabf1667. |
[154] |
平婉菁,刘逸宸,付巧妹. 沉积物古DNA探秘灭绝古人类演化[J]. 遗传,2022,44(5):362-369.
Ping Wanjing, Liu Yichen, Fu Qiaomei. Exploring the evolution of archaic humans through sedimentary ancient DNA[J]. Hereditas (Beijing), 2022, 44(5): 362-369. |
[155] |
Massilani D, Morley M W, Mentzer S M, et al. Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2113666118. |
[156] |
Shahack-Gross R. Archaeological micromorphology self-evaluation exercise[J]. Geoarchaeology, 2016, 31(1): 49-57. |
[157] |
胡修棉,赖文,许艺炜,等. 沉积岩显微数字图像数据的获取与信息收集标准[J]. 中国科学数据,2020,5(3):10-20.
Hu Xiumian, Lai Wen, Xu Yiwei, et al. Standards for digital micrograph of the sedimentary rocks[J]. China Scientific Data, 2020, 5(3): 10-20. |