[1] Henderson P. Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 347-378.
[2]

Murray R W, Buchholtz ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271.
[3] 陈宇轩,刘建波. 微生物岩稀土元素恢复古海洋环境的研究综述[J]. 古生物学报,2020,59(4):499-511.

Chen Yuxuan, Liu Jianbo. Review on the research of rare earth elements in microbialites[J]. Acta Palaeontologica Sinica, 2020, 59(4): 499-511.
[4] 曹剑,吴明,王绪龙,等. 油源对比微量元素地球化学研究进展[J]. 地球科学进展,2012,27(9):925-936.

Cao Jian, Wu Ming, Wang Xulong, et al. Advances in research of using trace elements of crude oil in oil-source correlation[J]. Advances in Earth Science, 2012, 27(9): 925-936.
[5]

Parnell J. Metal enrichments in solid bitumens: A review[J]. Mineralium Deposita, 1988, 23(3): 191-199.
[6]

Manning L K, Frost C D, Branthaver J F. A neodymium isotopic study of crude oils and source rocks: Potential applications for petroleum exploration[J]. Chemical Geology, 1991, 91(2): 125-138.
[7] Ramirez-Caro D. Rare earth elements (REE) as geochemical clues to reconstruct hydrocarbon generation history[D]. Manhattan: Kansas State University, 2013: 1-77.
[8] Mcintire M C. Rare earth elements (REE) in crude oil in the Lansing-Kansas city formations in central Kansas: Potential indications about their sources, locally derived or long-distance derived[D]. Manhattan: Kansas State University, 2014: 1-55.
[9] Kwasny B. An investigation of the crude oil in the Spivey-Grabs field of south-central Kansas: An insight into oil type and origin[D]. Manhattan: Kansas State University, 2015: 1-75.
[10]

Jiao W W, Yang H J, Zhao Y, et al. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim Basin, China[J]. Energy Exploration & Exploitation, 2010, 28(6): 451-466.
[11]

Akinlua A, Torto N, Ajayi T R. Determination of rare earth elements in Niger Delta crude oils by inductively coupled plasma-mass spectrometry[J]. Fuel, 2008, 87(8/9): 1469-1477.
[12]

Shi C H, Cao J, Bao J P, et al. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry: Sinian-Paleozoic paleo-oil reservoirs in South China[J]. Organic Geochemistry, 2015, 83-84: 77-93.
[13]

Gao P, Liu G D, Jia C Z, et al. Evaluating rare earth elements as a proxy for oil–source correlation. A case study from Aer Sag, Erlian Basin, northern China[J]. Organic Geochemistry, 2015, 87: 35-54.
[14]

Gao P, Liu G D, Wang Z C, et al. Rare earth elements (REEs) geochemistry of Sinian–Cambrian reservoir solid bitumens in Sichuan Basin, SW China: Potential application to petroleum exploration[J]. Geological Journal, 2017, 52(2): 298-316.
[15]

Chen Z H, Simoneit B R T, Wang T G, et al. Molecular markers, carbon isotopes, and rare earth elements of highly mature reservoir pyrobitumens from Sichuan Basin, southwestern China: Implications for Precambrian–Lower Cambrian petroleum systems[J]. Precambrian Research, 2018, 317: 33-56.
[16]

Niu Z C, Meng W, Wang Y S, et al. Characteristics of trace elements in crude oil in the east section of the south slope of Dongying Sag and their application in crude oil classification[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109833.
[17] 赵野,杨海风,黄振,等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率,2020,27(4):35-44.

Zhao Ye, Yang Haifeng, Huang Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44.
[18] 薛永安,王飞龙,汤国民,等. 渤海海域页岩油气地质条件与勘探前景[J]. 石油与天然气地质,2020,41(4):696-709.

Xue Yong’an, Wang Feilong, Tang Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4): 696-709.
[19] 孙哲,于海波,彭靖淞,等. 渤海湾盆地庙西中南洼围区原油成因类型及分布主控因素[J]. 吉林大学学报(地球科学版),2021,51(6):1665-1677.

Sun Zhe, Yu Haibo, Peng Jingsong, et al. Genetic types and main controlling factors of crude oil distribution in south-central Miaoxi Depression of Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1665-1677.
[20] 刘丹丹,汤国民,王飞龙. 渤海海域东部凹陷烃源岩特征及油源分析[J]. 西安石油大学学报(自然科学版),2020,35(1):9-17,27.

Liu Dandan, Tang Guomin, Wang Feilong. Characteristics of hydrocarbon source rocks and analysis of oil source in eastern sag of Bohai Sea area[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2020, 35(1): 9-17, 27.
[21] 孙哲,彭靖淞,江尚昆,等. 渤海海域庙西中南洼围区烃源岩有机相与测井评价[J]. 岩性油气藏,2020,32(1):102-110.

Sun Zhe, Peng Jingsong, Jiang Shangkun, et al. Organic facies and well logging evaluation of source rocks in centeral-south sag of Miaoxi Depression and its surrounding areas, Bohai Sea[J]. Lithologic Reservoirs, 2020, 32(1): 102-110.
[22] 汤国民,王飞龙,万琳,等. 渤海海域莱州湾凹陷油源特征及原油成因类型[J]. 西安石油大学学报(自然科学版),2021,36(1):28-36,44.

Tang Guomin, Wang Feilong, Wan Lin, et al. Characteristics of oil source and genetic types of crude oil in Laizhouwan Depression, Bohai Sea[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(1): 28-36, 44.
[23] Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. 2nd ed. New York: Cambridge University Press, 2004.
[24]

Larter S, Wilhelms A, Head I, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part 1: Biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34(4): 601-613.
[25]

Larter S, Huang H P, Adams J, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part II-Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction[J]. AAPG Bulletin, 2006, 90(6): 921-938.
[26]

Larter S, Huang H P, Adams J, et al. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76.
[27]

Sun P, Cai C F, Tang Y J, et al. A new approach to investigate effects of biodegradation on pyrrolic compounds by using a modified Manco scale[J]. Fuel, 2020, 265: 116937.
[28] 肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.

Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19~C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
[29]

Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17(1): 47-61.
[30]

Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2): 83-99.
[31]

Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352.
[32]

Wang W F, Qin Y, Sang S X, et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China[J]. International Journal of Coal Geology, 2008, 76(4): 309-317.
[33]

Abanda P A, Hannigan R E. Effect of diagenesis on trace element partitioning in shales[J]. Chemical Geology, 2006, 230(1/2): 42-59.
[34]

Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[35]

Pan C C, Feng J H, Tian Y M, et al. Interaction of oil components and clay minerals in reservoir sandstones[J]. Organic Geochemistry, 2005, 36(4): 633-654.
[36]

Barth T, Høiland S, Fotland P, et al. Acidic compounds in biodegraded petroleum[J]. Organic Geochemistry, 2004, 35(11/12): 1513-1525.
[37]

Tomczyk N A, Winans R E, Shinn J H, et al. On the nature and origin of acidic species in petroleum. 1. Detailed acid type distribution in a California crude oil[J]. Energy & Fuels, 2001, 15(6): 1498-1504.
[38] 窦立荣,侯读杰,程顶胜,等. 高酸值原油的成因与分布[J]. 石油学报,2007,28(1):8-13.

Dou Lirong, Hou Dujie, Cheng Dingsheng, et al. Origin and distribution of high-acidity oils[J]. Acta Petrolei Sinica, 2007, 28(1): 8-13.
[39]

Chai Z, Chen, Z H, Patience R., et al. Light hydrocarbons and diamondoids in deep oil from Tabei of Tarim Basin: Implications on petroleum alteration and mixing[J]. Marine and Petroleum Geology, 2022,138:105565.
[40]

Chang X C, Wang T G, Li Q M, et al. Charging of Ordovician reservoirs in the Halahatang Depression (Tarim Basin, NW China) determined by oil geochemistry[J]. Journal of Petroleum Geology, 2013, 36(4): 383-398.
[41]

Zhu G Y, Zhang S C, Su J, et al. Alteration and multi-stage accumulation of oil and gas in the Ordovician of the Tabei uplift, Tarim Basin, NW China: Implications for genetic origin of the diverse hydrocarbons[J]. Marine and Petroleum Geology, 2013, 46: 234-250.
[42]

Akinlua A, Ajayi T R, Adeleke B B. Organic and inorganic geochemistry of northwestern Niger Delta oils[J]. Geochemical Journal, 2007, 41(4): 271-281.