[1] |
Henderson P. Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 347-378. |
[2] |
Murray R W, Buchholtz ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271. |
[3] |
陈宇轩,刘建波. 微生物岩稀土元素恢复古海洋环境的研究综述[J]. 古生物学报,2020,59(4):499-511.
Chen Yuxuan, Liu Jianbo. Review on the research of rare earth elements in microbialites[J]. Acta Palaeontologica Sinica, 2020, 59(4): 499-511. |
[4] |
曹剑,吴明,王绪龙,等. 油源对比微量元素地球化学研究进展[J]. 地球科学进展,2012,27(9):925-936.
Cao Jian, Wu Ming, Wang Xulong, et al. Advances in research of using trace elements of crude oil in oil-source correlation[J]. Advances in Earth Science, 2012, 27(9): 925-936. |
[5] |
Parnell J. Metal enrichments in solid bitumens: A review[J]. Mineralium Deposita, 1988, 23(3): 191-199. |
[6] |
Manning L K, Frost C D, Branthaver J F. A neodymium isotopic study of crude oils and source rocks: Potential applications for petroleum exploration[J]. Chemical Geology, 1991, 91(2): 125-138. |
[7] |
Ramirez-Caro D. Rare earth elements (REE) as geochemical clues to reconstruct hydrocarbon generation history[D]. Manhattan: Kansas State University, 2013: 1-77. |
[8] |
Mcintire M C. Rare earth elements (REE) in crude oil in the Lansing-Kansas city formations in central Kansas: Potential indications about their sources, locally derived or long-distance derived[D]. Manhattan: Kansas State University, 2014: 1-55. |
[9] |
Kwasny B. An investigation of the crude oil in the Spivey-Grabs field of south-central Kansas: An insight into oil type and origin[D]. Manhattan: Kansas State University, 2015: 1-75. |
[10] |
Jiao W W, Yang H J, Zhao Y, et al. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim Basin, China[J]. Energy Exploration & Exploitation, 2010, 28(6): 451-466. |
[11] |
Akinlua A, Torto N, Ajayi T R. Determination of rare earth elements in Niger Delta crude oils by inductively coupled plasma-mass spectrometry[J]. Fuel, 2008, 87(8/9): 1469-1477. |
[12] |
Shi C H, Cao J, Bao J P, et al. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry: Sinian-Paleozoic paleo-oil reservoirs in South China[J]. Organic Geochemistry, 2015, 83-84: 77-93. |
[13] |
Gao P, Liu G D, Jia C Z, et al. Evaluating rare earth elements as a proxy for oil–source correlation. A case study from Aer Sag, Erlian Basin, northern China[J]. Organic Geochemistry, 2015, 87: 35-54. |
[14] |
Gao P, Liu G D, Wang Z C, et al. Rare earth elements (REEs) geochemistry of Sinian–Cambrian reservoir solid bitumens in Sichuan Basin, SW China: Potential application to petroleum exploration[J]. Geological Journal, 2017, 52(2): 298-316. |
[15] |
Chen Z H, Simoneit B R T, Wang T G, et al. Molecular markers, carbon isotopes, and rare earth elements of highly mature reservoir pyrobitumens from Sichuan Basin, southwestern China: Implications for Precambrian–Lower Cambrian petroleum systems[J]. Precambrian Research, 2018, 317: 33-56. |
[16] |
Niu Z C, Meng W, Wang Y S, et al. Characteristics of trace elements in crude oil in the east section of the south slope of Dongying Sag and their application in crude oil classification[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109833. |
[17] |
赵野,杨海风,黄振,等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率,2020,27(4):35-44.
Zhao Ye, Yang Haifeng, Huang Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44. |
[18] |
薛永安,王飞龙,汤国民,等. 渤海海域页岩油气地质条件与勘探前景[J]. 石油与天然气地质,2020,41(4):696-709.
Xue Yong’an, Wang Feilong, Tang Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4): 696-709. |
[19] |
孙哲,于海波,彭靖淞,等. 渤海湾盆地庙西中南洼围区原油成因类型及分布主控因素[J]. 吉林大学学报(地球科学版),2021,51(6):1665-1677.
Sun Zhe, Yu Haibo, Peng Jingsong, et al. Genetic types and main controlling factors of crude oil distribution in south-central Miaoxi Depression of Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1665-1677. |
[20] |
刘丹丹,汤国民,王飞龙. 渤海海域东部凹陷烃源岩特征及油源分析[J]. 西安石油大学学报(自然科学版),2020,35(1):9-17,27.
Liu Dandan, Tang Guomin, Wang Feilong. Characteristics of hydrocarbon source rocks and analysis of oil source in eastern sag of Bohai Sea area[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2020, 35(1): 9-17, 27. |
[21] |
孙哲,彭靖淞,江尚昆,等. 渤海海域庙西中南洼围区烃源岩有机相与测井评价[J]. 岩性油气藏,2020,32(1):102-110.
Sun Zhe, Peng Jingsong, Jiang Shangkun, et al. Organic facies and well logging evaluation of source rocks in centeral-south sag of Miaoxi Depression and its surrounding areas, Bohai Sea[J]. Lithologic Reservoirs, 2020, 32(1): 102-110. |
[22] |
汤国民,王飞龙,万琳,等. 渤海海域莱州湾凹陷油源特征及原油成因类型[J]. 西安石油大学学报(自然科学版),2021,36(1):28-36,44.
Tang Guomin, Wang Feilong, Wan Lin, et al. Characteristics of oil source and genetic types of crude oil in Laizhouwan Depression, Bohai Sea[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(1): 28-36, 44. |
[23] |
Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. 2nd ed. New York: Cambridge University Press, 2004. |
[24] |
Larter S, Wilhelms A, Head I, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part 1: Biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34(4): 601-613. |
[25] |
Larter S, Huang H P, Adams J, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part II-Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction[J]. AAPG Bulletin, 2006, 90(6): 921-938. |
[26] |
Larter S, Huang H P, Adams J, et al. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76. |
[27] |
Sun P, Cai C F, Tang Y J, et al. A new approach to investigate effects of biodegradation on pyrrolic compounds by using a modified Manco scale[J]. Fuel, 2020, 265: 116937. |
[28] |
肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.
Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19~C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170. |
[29] |
Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17(1): 47-61. |
[30] |
Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2): 83-99. |
[31] |
Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352. |
[32] |
Wang W F, Qin Y, Sang S X, et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China[J]. International Journal of Coal Geology, 2008, 76(4): 309-317. |
[33] |
Abanda P A, Hannigan R E. Effect of diagenesis on trace element partitioning in shales[J]. Chemical Geology, 2006, 230(1/2): 42-59. |
[34] |
Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55. |
[35] |
Pan C C, Feng J H, Tian Y M, et al. Interaction of oil components and clay minerals in reservoir sandstones[J]. Organic Geochemistry, 2005, 36(4): 633-654. |
[36] |
Barth T, Høiland S, Fotland P, et al. Acidic compounds in biodegraded petroleum[J]. Organic Geochemistry, 2004, 35(11/12): 1513-1525. |
[37] |
Tomczyk N A, Winans R E, Shinn J H, et al. On the nature and origin of acidic species in petroleum. 1. Detailed acid type distribution in a California crude oil[J]. Energy & Fuels, 2001, 15(6): 1498-1504. |
[38] |
窦立荣,侯读杰,程顶胜,等. 高酸值原油的成因与分布[J]. 石油学报,2007,28(1):8-13.
Dou Lirong, Hou Dujie, Cheng Dingsheng, et al. Origin and distribution of high-acidity oils[J]. Acta Petrolei Sinica, 2007, 28(1): 8-13. |
[39] |
Chai Z, Chen, Z H, Patience R., et al. Light hydrocarbons and diamondoids in deep oil from Tabei of Tarim Basin: Implications on petroleum alteration and mixing[J]. Marine and Petroleum Geology, 2022,138:105565. |
[40] |
Chang X C, Wang T G, Li Q M, et al. Charging of Ordovician reservoirs in the Halahatang Depression (Tarim Basin, NW China) determined by oil geochemistry[J]. Journal of Petroleum Geology, 2013, 36(4): 383-398. |
[41] |
Zhu G Y, Zhang S C, Su J, et al. Alteration and multi-stage accumulation of oil and gas in the Ordovician of the Tabei uplift, Tarim Basin, NW China: Implications for genetic origin of the diverse hydrocarbons[J]. Marine and Petroleum Geology, 2013, 46: 234-250. |
[42] |
Akinlua A, Ajayi T R, Adeleke B B. Organic and inorganic geochemistry of northwestern Niger Delta oils[J]. Geochemical Journal, 2007, 41(4): 271-281. |