[1] Anders D E, Robinson W E. Cycloalkane constituents of the bitumen from Green River Shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(7): 661-678.
[2] Seifert W K, Moldowan J M. Paleoreconstruction by biological markers[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 783-794.
[3] Zumberge J E. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1625-1637.
[4] Kruge M A, Hubert J F, Akes R L, et al. Biological markers in Lower Jurassic synrift lacustrine black shales, Hartford Basin, Connecticut, U.S.A.[J]. Organic Geochemistry, 1990, 15(3): 281-289.
[5] Kruge M A, Hubert J F, Bensley D F, et al. Organic geochemistry of a Lower Jurassic synrift lacustrine sequence, Hartford Basin, Connecticut, U.S.A.[J]. Organic Geochemistry, 1990, 16(4/5/6): 689-701.
[6] Xiao H, Wang T G, Li M J, et al. Extended series of tricyclic terpanes in the Mesoproterozoic sediments[J]. Organic Geochemistry, 2021, 156: 104245.
[7] Azevedo D A, Aquino Neto F R, Simoneit B R T. Extended saturated and monoaromatic tricyclic terpenoid carboxylic acids found in Tasmanian tasmanite[J]. Organic Geochemistry, 1994, 22(6): 991-1004.
[8] Azevedo D A, Auino Neto F R, Simoneit B R T, et al. Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite[J]. Organic Geochemistry, 1992, 18(1): 9-16.
[9] Azevedo D A, Aquino Neto F R, Simoneit B R T. Extended ketones of the tricyclic terpane series in a Tasmanian tasmanite bitumen[J]. Organic Geochemistry, 1998, 28(5): 289-295.
[10] Azevedo D A, André Zinu C J, Aquino Neto F R, et al. Possible origin of acyclic (linear and isoprenoid) and tricyclic terpane methyl ketones in a Tasmanian tasmanite bitumen[J]. Organic Geochemistry, 2001, 32(3): 443-448.
[11] Greenwood P F, Arouri K R, George S C. Tricyclic terpenoid composition of tasmanites kerogen as determined by pyrolysis GC-MS[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1249-1263.
[12] 包建平,朱翠山,倪春华. 北部湾盆地不同凹陷原油生物标志物分布与组成特征[J]. 沉积学报,2007,25(4):646-652.

Bao Jianping, Zhu Cuishan, Ni Chunhua. Distribution and composition of biomarkers in crude oils from different sags of Beibuwan Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4): 646-652.
[13] 包建平,吴浩,朱翠山,等. 柴达木盆地北缘牛东地区煤成油及其地球化学特征[J]. 地质学报,2018,92(5): 1056-1069.

Bao Jianping, Wu Hao, Zhu Cuishan, et al. Geochemical characte-ristics of coal-derived oils in the Niudong area in the northern Qaidam Basin[J]. Acta Geologica Sinica, 2018, 92(5): 1056-1069.
[14] 包建平,马安来,黄光辉,等. 三塘湖盆地原油地球化学特征及其成因类型[J]. 石油勘探与开发,1999,26(4): 25-29.

Bao Jianping, Ma Anlai, Huang Guanghui, et al. The origin and geochemical characteristics of crude oils from Santanghu Basin[J]. Petroleum Exploration and Development, 1999, 26(4): 25-29.
[15] 包建平,孔婕,朱翠山,等. 塔里木盆地一类新海相原油的地球化学特征[J]. 沉积学报,2012,30(3):580-587.

Bao Jianping, Kong Jie, Zhu Cuishan, et al. Geochemical characteristics of a novel kind of marine oils from Tarim Basin[J]. Acta Sedimentologica Sinica, 2012, 30(3): 580-587.
[16]

Tao S Z, Wang C Y, Du J G, et al. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467.
[17]

Farrimond P, Bevan J C, Bishop A N. Tricyclic terpane maturity parameters: Response to heating by an igneous intrusion[J]. Organic Geochemistry, 1999, 30(8): 1011-1019.
[18]

Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oils[J]. Geochimica et Cosmochimica Acta, 1979, 43(1): 111-126.
[19]

Palacas J G, Monopolis D, Nicolaou C A, et al. Geochemical correlation of surface and subsurface oils, western Greece[J]. Organic Geochemistry, 1986, 10(1/2/3): 417-423.
[20]

Howell V J, Connan J, Aldridge A K. Tentative identification of demethylated tricyclic terpanes in nonbiodegraded and slightly biodegraded crude oils from the Los Llanos Basin, Colombia[J]. Organic Geochemistry, 1984, 6: 83-92.
[21]

Moldowan J M, Seifert W K, Gallegos E J. Identification of an extended series of tricyclic terpanes in petroleum[J]. Geochimica et Cosmochimica Acta, 1983, 47(8): 1531-1534.
[22]

de Grande S M B, Aquino Neto F R, Mello M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047.
[23]

Ourisson G, Albrecht P, Rohmer M. Predictive microbial biochemistry: From molecular fossils to procaryotic membranes[J]. Trends in Biochemical Sciences, 1982, 7(7): 236-239.
[24] Aquino Neto F R, Trendel J M, Restle A, et al. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums[C] //Bjorøy M, Albrecht C, Cornford C, et al. Advances in organic geochemistry 1981. New York: John Wiley & Sons, 1983: 659-676.
[25]

Peters K E, Moldowan J M, Sundararaman P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members[J]. Organic Geochemistry, 1990, 15(3): 249-265.
[26]

Philp P, Symcox C, Wood M, et al. Possible explanations for the predominance of tricyclic terpanes over pentacyclic terpanes in oils and rock extracts[J]. Organic Geochemistry, 2021, 155: 104220.
[27]

Seifert W K, Moldowan J M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils[J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 77-95.
[28]

Bao J P, Zhu C S, Wang Z F. Typical end-member oil derived from Cambrian-Lower Ordovician source rocks in the Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 1177-1188.
[29]

Guo P, Liu C Y, Gibert L, et al. How to find high-quality petroleum source rocks in saline lacustrine basins: A case study from the Cenozoic Qaidam Basin, NW China[J]. Marine and Petroleum Geology, 2020, 111: 603-623.
[30]

Pan C C, Peng D H, Zhang M, et al. Distribution and isomerization of C31–C35 homohopanes and C29 steranes in Oligocene saline lacustrine sediments from Qaidam Basin, northwest China[J]. Organic Geochemistry, 2008, 39(6): 646-657.
[31]

Zhu Y M, Weng H X, Su A G, et al. Geochemical characteristics of Tertiary saline lacustrine oils in the western Qaidam Basin, northwest China[J]. Applied Geochemistry, 2005, 20(10): 1875-1889.
[32] 管树巍,张水昌,张永庶,等. 柴达木盆地西部古近系生烃凹陷的边界效应与油气聚集模式[J]. 石油学报,2017,38(11):1217-1229.

Guan Shuwei, Zhang Shuichang, Zhang Yongshu, et al. Boundary effect and hydrocarbon accumulation pattern of Paleogene hydrocarbon generation depression in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2017, 38(11): 1217-1229.
[33] 肖飞,包建平,朱翠山,等. 柴达木盆地西部典型油田原油地球化学特征对比[J]. 地球科学与环境学报,2012,34(4):43-52.

Xiao Fei, Bao Jianping, Zhu Cuishan, et al. Comparison of the geochemical characteristics of crude oils from typical oilfields in western Qaidam Basin[J]. Journal of Earth Sciences and Environment, 2012, 34(4): 43-52.
[34] 包建平,朱翠山,汪立群. 柴达木盆地西部原油地球化学特征对比[J]. 石油与天然气地质,2010,31(3):353-359.

Bao Jianping, Zhu Cuishan, Wang Liqun. Geochemical characteristic comparison of crude oil samples from the western Qaidam Basin[J]. Oil & Gas Geology, 2010, 31(3): 353-359.
[35] 包建平,王志峰,朱翠山,等. 柴达木盆地东坪地区一类新的原油及其地球化学特征[J]. 沉积学报,2018,36(4):829-841.

Bao Jianping, Wang Zhifeng, Zhu Cuishan, et al. A new kind of crude oils and the geochemical characteristics in the Dongping area, Qaidam Basin[J]. Acta Sedimentologica Sinica, 2018, 36(4): 829-841.
[36] 包建平,汪立群,朱翠山,等. 柴达木盆地开特米里克油田凝析油成因研究:基于金刚烷烃类化合物[J]. 天然气地球科学,2016,27(2):330-340.

Bao Jianping, Wang Liqun, Zhu Cuishan, et al. Origin of the condensates from Kaitemilike oilfield in the western Qaidam Basin: Diamondoid hydrocarbons[J]. Natural Gas Geoscience, 2016, 27(2): 330-340.
[37] 李国欣,朱如凯,张永庶,等. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义[J]. 石油勘探与开发,2022,49(1):18-31.

Li Guoxin, Zhu Rukai, Zhang Yongshu, et al. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 18-31.
[38] 马达德,陈琰,夏晓敏,等. 英东油田成藏条件及勘探开发关键技术[J]. 石油学报,2019,40(1):115-130.

Ma Dade, Chen Yan, Xia Xiaomin, et al. Reservoir formation conditions and key exploration & development technoloiges in Yingdong oilfield, Qaidam Basin[J]. Acta Petrolei Sinica, 2019, 40(1): 115-130.
[39] 龙国徽,王艳清,朱超,等. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏,2021,33(1):145-160.

Long Guohui, Wang Yanqing, Zhu Chao, et al. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt, Qaidam Basin[J]. Lithologic Reser-voirs, 2021, 33(1): 145-160.
[40] 马新民,吴武军,石亚军,等. 柴达木盆地英雄岭构造带油气成藏模式[J]. 中国矿业大学学报,2021,50(2):289-303.

Ma Xinmin, Wu Wujun, Shi Yajun, et al. Hydrocarbon accumulation mode of Yingxiongling structural belt in Qaidam Basin[J]. Journal of China University of Mining & Technology, 2021, 50(2): 289-303.
[41] 伍坤宇,廖春,李翔,等. 柴达木盆地英雄岭构造带油气藏地质特征[J]. 现代地质,2020,34(2):378-389.

Wu Kunyu, Liao Chun, Li Xiang,et al. Geological characteristics of hydrocarbon pool in Yingxiongling structural zone, Qaidam Basin[J]. Geo-science, 2020, 34(2): 378-389.
[42] 施洋,包建平,朱翠山,等. 柴达木盆地西部七个泉与咸水泉油田原油地球化学特征对比研究[J]. 天然气地球科学,2010,21(1):132-138.

Shi Yang, Bao Jianping, Zhu Cuishan, et al. Comparative study on geochemistry between crude oils from Qigequan and Xianshuiquan oilfields in western Qaidam Basin[J]. Natural Gas Geoscience, 2010, 21(1): 132-138.
[43]

Sun Y G, Chen Z Y, Xu S P, et al. Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: Evidence from a group of progressively biodegraded oils[J]. Organic Geochemistry, 2005, 36(2): 225-238.
[44]

Jiang Z S, Fowler M G. Carotenoid-derived alkanes in oils from northwestern China[J]. Organic Geochemistry, 1986, 10(4/5/6): 831-839.
[45]

Fu J M, Sheng G Y, Xu J Y, et al. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments[J]. Organic Geochemistry, 1990, 16(4/5/6): 769-779.
[46]

Carroll A R. Upper Permian lacustrine organic facies evolution, southern Junggar Basin, NW China[J]. Organic Geochemistry, 1998, 28(11): 649-667.
[47] 朱扬明,苏爱国,梁狄刚,等. 柴达木盆地西部第三系咸水湖相原油地球化学特征[J]. 地质科学,2004,39(4):475-485.

Zhu Yangming, Su Aiguo, Liang Digang, et al. Geochemical characteristics of Tertiary saline lacustrine oils in the Qaidam Basin[J]. Chinese Journal of Geology, 2004, 39(4): 475-485.
[48] 李洪波,张敏,张春明,等. 柴达木盆地西部南区第三系原油成熟度特征[J]. 石油天然气学报,2010,32(1):27-32.

Li Hongbo, Zhang Min, Zhang Chunming, et al. The characteristics of thermal maturity of crude oils from tertiary system in the southwestern part of Qaidam Basin[J]. Journal of Oil and Gas Technology, 2010, 32(1): 27-32.
[49]

Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17(1): 47-61.
[50] 黄第藩,张大江,李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发,1989,16(3):8-15.

Huang Difan, Zhang Dajiang, Li Jinchao. Origin of 4-methyl steranes and pregnanes[J]. Petroleum Exploration and Development, 1989, 16(3): 8-15.
[51]

Requejo A G, Hieshima G B, Hsu C S, et al. Short-chain (C21 and C22) diasteranes in petroleum and source rocks as indicators of maturity and depositional environment[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2653-2667.
[52] 包建平,倪春华,朱翠山,等. 高演化地质样品中三芳甾类标志物及其地球化学意义[J]. 沉积学报,2020,38(4):898-911.

Bao Jianping, Ni Chunhua, Zhu Cuishan, et al. Triaromatic steroids and their geochemical significance in highly mature geological samples in the North Guizhou Depression[J]. Acta Sedimentologica Sinica, 2020, 38(4): 898-911.
[53] 包建平,斯春松,蒋兴超,等 .黔北坳陷过成熟烃源岩和固体沥青中正构烷烃系列的双峰态分布[J]. 沉积学报,2016,34(1):181-190.

Bao Jianping, Si Chunsong, Jiang Xingchao, et al. The bimodal distributions of n-alkanes in the post-mature marine source rocks and solid bitumen from the Northern Guizhou Depression[J]. Acta Sedimentologica Sinica, 2016, 34(1): 181-190.
[54]

Radke M, Welte D H, Willsch H. Geochemical study on a well in the western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10.
[55]

Chen J H, Fu J M, Sheng G Y, et al. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
[56] 包建平,倪春华,朱翠山,等. 黔北坳陷高演化海相烃源岩中金刚烷类化合物及其意义[J]. 地球化学,2021,50(2):133-151.

Bao Jianping, Ni Chunhua, Zhu Cuishan, et al. Diamondoid hydrocarbons in highly mature marine source rocks from the North Guizhou Depression[J]. Geochimica, 2021, 50(2): 133-151.
[57] 包建平,朱翠山,申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学,2018,29(9):1217-1230.

Bao Jianping, Zhu Cuishan, Shen Xu. Study on diamondoids and genetic mechanism of condensates from the Kela 2 structure in the Kuche Depression[J]. Natural Gas Geoscience, 2018, 29(9): 1217-1230.
[58]

Ellis L, Singh R K, Alexander R, et al. Geosynthesis of organic compounds: III. Formation of alkyltoluenes and alkylxylenes in sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5133-5140.
[59]

Sinninghe Damsté J S, Kock-Van Dalen A C, Albrecht P A, et al. Identification of long-chain 1,2-di-n-alkylbenzenes in Amposta crude oil from the Tarragona Basin, Spanish Mediterranean: Implications for the origin and fate of alkylbenzenes[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3677-3683.