[1] |
Hughes J D. Energy: A reality check on the shale revolution[J]. Nature, 2013, 494(7437): 307-308. |
[2] |
郭洪金. 页岩气地质评价技术与实践[M]. 北京:中国石化出版社,2020.
Guo Hongjin. Technology and practice of shale gas geological evaluation[M]. Beijing: China Petrochemical Press, 2020. |
[3] |
邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12.
Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. |
[4] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[5] |
Hu Q H, Ewing R P, Rowe H D. Low nanopore connectivity limits gas production in Barnett Formation[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8073-8087. |
[6] |
宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324.
Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic⁃rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324. |
[7] |
Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
[8] |
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional)[J]. Pure and Applied Chemistry, 1982, 54(11): 2201-2218. |
[9] |
Rouquerol J, Avnir D, Everett D H, et al. Guidelines for the characterization of porous solids[J]. Studies in Surface Science and Catalysis, 1994, 87: 1-9. |
[10] |
Nishiyama N, Yokoyama T. Permeability of porous media: Role of the critical pore size[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 6955-6971. |
[11] |
Pan J N, Niu Q H, Wang K, et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous and Mesoporous Materials, 2016, 224: 245-252. |
[12] |
Mastalerz M, He L L, Melnichenko Y B, et al. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques[J]. Energy & Fuels, 2012, 26(8): 5109-5120. |
[13] |
Bahadur J, Melnichenko Y B, Mastalerz M, et al. Hierarchical pore morphology of cretaceous shale: A Small-Angle neutron scattering and Ultrasmall-Angle neutron scattering study[J]. Energy & Fuels, 2014, 28(10): 6336-6344. |
[14] |
Bahadur J, Radlinski A P, Melnichenko Y B, et al. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) study of new Albany shale: A treatise on microporosity[J]. Energy & Fuels, 2015, 29(2): 567-576. |
[15] |
Sun M D, Yu B S, Hu Q H, et al. Pore structure characterization of organic-rich Niutitang shale from China: Small angle neutron scattering (SANS) study[J]. International Journal of Coal Geology, 2018, 186: 115-125. |
[16] |
Sun M D, Yu B S, Hu Q H, et al. Pore characteristics of Longmaxi shale gas reservoir in the northwest of Guizhou, China: Investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm[J]. International Journal of Coal Geology, 2017, 171: 61-68. |
[17] |
范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,2020, doi:14027/j.issn.1000-0550.2020.041.
Fan Haijing, Deng Hucheng, Fu Meiyan, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica, 2020, doi: 10.14027/j.issn.1000-0550.2020.041. |
[18] |
Radliński A P, Boreham C J, Lindner P, et al. Small angle neutron scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks[J]. Organic Geochemistry, 2000, 31(1): 1-14. |
[19] |
Ilavsky J, Jemian P R. Irena: Tool suite for modeling and analysis of small-angle scattering[J]. Journal of Applied Crystallography, 2009, 42(2): 347-353. |
[20] |
Washburn E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. |
[21] |
Melnichenko Y B. Small-angle scattering from confined and interfacial fluids: Applications to energy storage and environmental science[M]. Cham: Springer, 2016. |
[22] |
Ruppert L F, Sakurovs R, Blach T P, et al. A USANS/SANS study of the accessibility of pores in the Barnett shale to methane and water[J]. Energy & Fuels, 2013, 27(2): 772-779. |
[23] |
Schmidt P W, Avnir D, Levy D, et al. Small‐angle x‐ray scattering from the surfaces of reversed‐phase silicas: Power‐law scattering exponents of magnitudes greater than four[J]. The Journal of Chemical Physics, 1991, 94(2): 1474-1479. |
[24] |
Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. |
[25] |
Lee S, Fischer T B, Stokes M R, et al. Dehydration effect on the pore size, porosity, and fractal parameters of shale rocks: Ultrasmall-Angle x-ray scattering study[J]. Energy & Fuels, 2014, 28(11): 6772-6779. |
[26] |
Anovitz L M, Cole D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164. |
[27] |
Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
[28] |
Cai J G, Du J Z, Chen Z W, et al. Hydrothermal experiments reveal the influence of organic matter on smectite illitization[J]. Clays and Clay Minerals, 2018, 66(1): 28-42. |
[29] |
Zhao J H, Jin Z J, Hu Q H, et al. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs[J]. Scientific Reports, 2017, 7: 15413. |
[30] |
Wu Z R, He S, Han Y J, et al. Effect of organic matter type and maturity on organic matter pore formation of transitional facies shales: A case study on Upper Permian Longtan and Dalong Shales in middle Yangtze Region, China[J]. Journal of Earth Science, 2020, 31(2): 368-384. |
[31] |
Shi M, Yu B S, Zhang J C, et al. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 406-413. |
[32] |
Tang X L, Jiang Z X, Jiang S, et al. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods[J]. Marine and Petroleum Geology, 2016, 78: 99-109. |
[33] |
Sun M D, Zhang L H, Hu Q H, et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM[J]. Marine and Petroleum Geology, 2020, 112: 104101. |
[34] |
Yang R, He S, Hu Q H, et al. Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China)[J]. Fuel, 2017, 197: 91-99. |
[35] |
Sun M D, Zhang L H, Hu Q H, et al. Pore connectivity and water accessibility in Upper Permian transitional shales, southern China[J]. Marine and Petroleum Geology, 2019, 107: 407-422. |
[36] |
Clarkson C R, Freeman M, He L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J]. Fuel, 2012, 95: 371-385. |
[37] |
Zhang Y X, Barber T J, Hu Q H, et al. Complementary neutron scattering, mercury intrusion and SEM imaging approaches to micro- and nano-pore structure characterization of tight rocks: A case study of the Bakken shale[J]. International Journal of Coal Geology, 2019, 212: 103252. |