[1] |
朱如凯,邹才能,袁选俊,等. 中国能源沉积学研究进展与发展战略思考[J]. 沉积学报,2017,35(5):1004-1015.
Zhu Rukai, Zou Caineng, Yuan Xuanjun, et al. Research progress and development strategic thinking on energy sedimen-tology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1004-1015. |
[2] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[3] |
邹才能,张国生,杨智,等. 非常规油气概念、特征、潜力及技术:兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385-399,454.
Zou Caineng, Zhang Guosheng, Yang Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454. |
[4] |
邹才能,杨智,张国生,等. 非常规油气地质学建立及实践[J]. 地质学报,2019,93(1):12-23.
Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1): 12-23. |
[5] |
姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.
Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. |
[6] |
邱振,卢斌,陈振宏,等. 火山灰沉积与页岩有机质富集关系探讨:以五峰组—龙马溪组含气页岩为例[J]. 沉积学报,2019,37(6):1296-1308.
Qiu Zhen, Lu Bin, Chen Zhenhong, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308. |
[7] |
Calvert S E, Pedersen T F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[J]. Developments in Marine Geology, 2007, 1: 567-644. |
[8] |
Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 1980, 2(1): 9-31. |
[9] |
Murphy A E, Sageman B B, Hollander D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3): 280-291. |
[10] |
Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466. |
[11] |
Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273. |
[12] |
Gallego-Torres D, Martínez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/3/4): 424-439. |
[13] |
Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551. |
[14] |
Heckel P H. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of Mid-Continent North America[J]. AAPG Bulletin, 1997, 61(7): 1045-1068. |
[15] |
Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation?[J]. Cretaceous Research, 2007, 28(4): 597-612. |
[16] |
Liu Z H, Algeo T J, Guo X S, et al. Paleo-environmental cyclicity in the early silurian Yangtze Sea (South China): Tectonic or glacio-eustatic control?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 59-76. |
[17] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[18] |
Li Y F, Zhang T W, Ellis G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264. |
[19] |
赵迪斐,郭英海,Wang G,等. 渝东南地区五峰组-龙马溪组页岩笔石沉积特征及其对优质页岩气储层的指示意义[J]. 河南理工大学学报(自然科学版),2020,39(1):26-36,46.
Zhao Difei, Guo Yinghai, Wang G, et al. Sedimentary characteristics of shales graptololite and its implications for high-quality shale gas reservoirs in the Wufeng-Longmaxi Formation in Southeast Chongqing[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(1): 26-36, 46. |
[20] |
邱振,邹才能,王红岩,等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学,2020,31(2):163-175.
Qiu Zhen, Zou Caineng, Wang Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2): 163-175. |
[21] |
邹才能,杨智,孙莎莎,等. “进源找油”:论四川盆地页岩油气[J]. 中国科学:地球科学,2020,50(7):903-920.
Zou Caineng, Yang Zhi, Sun Shasha, et al. "Exploring petroleum inside source kitchen": Shale oil and gas in Sichuan Basin[J]. Science China Earth Sciences, 2020, 50(7): 903-920. |
[22] |
Chen X, Rong J Y, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372. |
[23] |
赵迪斐,郭英海,Wang G,等. 层序地层格架及其对页岩储层发育特征的影响:以四川盆地龙马溪组页岩为例[J]. 沉积学报,2020,38(2):379-397.
Zhao Difei, Guo Yinghai, Wang G, et al. Sequence stratigraphic framework and its influence on the development characteristics of shale reservoirs: Taking the Longmaxi Formation shale in the Sichuan Basin as an example[J]. Acta Sedimentologica Sinica, 2020, 38(2): 379-397. |
[24] |
周恳恳,牟传龙,许效松,等. 华南中上扬子早志留世古地理与生储盖层分布[J]. 石油勘探与开发,2014,41(5):623-632.
Zhou Kenken, Mou Chuanlong, Xu Xiaosong, et al. Early Silurian paleogeography and source-reservoir-cap rocks of the middle-upper Yangtze region in South China[J]. Petroleum Exploration and Development, 2014, 41(5): 623-632. |
[25] |
陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志,2015,39(4):351-358.
Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358. |
[26] |
Li Y Z, Wang X Z, Wu B, et al. Sedimentary facies of marine shale gas formations in southern China: The Lower Silurian Longmaxi Formation in the southern Sichuan Basin[J]. Journal of Earth Science, 2016, 27(5): 807-822. |
[27] |
张元动,詹仁斌,甄勇毅,等. 中国奥陶纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):66-92.
Zhang Yuandong, Zhan Renbin, Zhen Yongyi, et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 49(1): 66-92. |
[28] |
王淑芳,邹才能,董大忠,等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版),2014,50(3):476-486.
Wang Shufang, Zou Caineng, Dong Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. |
[29] |
牟传龙,周恳恳,梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532.
Mou Chuanlong, Zhou Kenken, Liang Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the middle-upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532. |
[30] |
何龙. 四川盆地东南缘五峰组—龙马溪组页岩有机质富集机制及沉积环境演化[D]. 北京:中国科学院大学(中国科学院广州地球化学研究所),2020.
He Long. Organic matter enrichment and evolution of sedimentary environment of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D]. Beijing: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2020. |
[31] |
Wang Y X, Xu S, Hao F, et al. Multiscale petrographic heterogeneity and their implications for the nanoporous system of the Wufeng-Longmaxi shales in Jiaoshiba area, Southeast China: Response to depositional-diagenetic process[J]. GSA Bulletin, 2020, 132(7/8): 1704-1721. |
[32] |
金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.
Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. |
[33] |
陆扬博,马义权,王雨轩, 等. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学,2017,42(7):1169-1184.
Lu Yangbo, Ma Yiquan, Wang Yuxuan, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the upper Yangtze area[J]. Earth Science, 2017, 42(7): 1169-1184. |
[34] |
邓庆杰,胡明毅. 上扬子地区下志留统龙马溪组页岩气成藏条件及有利区预测[J]. 科学技术与工程,2014,14(17):40-47,58.
Deng Qingjie, Hu Mingyi. Reservoir forming conditions and favorable exploration zones of shale gas in Longmaxi Formation of Lower Silurian, the upper Yangtze region[J]. Science Technology and Engineering, 2014, 14(17): 40-47, 58. |
[35] |
李艳芳. 上扬子地区晚奥陶世—早志留世页岩地球化学特征、有机质富集及古环境意义[D]. 兰州:兰州大学,2017.
Li Yanfang. Geochemical characteristics and organic matter accumulation of Late Ordovician-Early Silurian shale in the upper Yangtze Platform, and implications for paleoenvironment[D]. Lanzhou: Lanzhou University, 2017. |
[36] |
Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. |
[37] |
Zhao J H, Jin Z J, Jin Z K, et al. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J]. International Journal of Coal Geology, 2016, 163: 52-71. |
[38] |
Wedepohl K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8: 307-333. |
[39] |
Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. |
[40] |
Taylor S R. Abundance of chemical elements in the continental crust: A new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273-1285. |
[41] |
Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. |
[42] |
Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19. |
[43] |
Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016. |
[44] |
Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. |
[45] |
李艳芳,吕海刚,张瑜,等. 四川盆地五峰组—龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学,2015,44(2):109-116.
Li Yanfang, Haigang Lü, Zhang Yu, et al. U-Mo covariation in marine shales of Wufeng-Longmaxi Formations in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica, 2015, 44(2): 109-116. |
[46] |
Zhang L C, Xiao D S, Lu S F, et al. Effect of sedimentary environment on the formation of organic-rich marine shale: Insights from major/trace elements and shale composition[J]. International Journal of Coal Geology, 2019, 204: 34-50. |
[47] |
常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.
Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. |
[48] |
梁峰,张琴,熊小林,等. 四川盆地及周缘五峰组—龙马溪组富有机质页岩沉积演化模式[J]. 沉积学报,2019,37(4):847-857.
Liang Feng, Zhang Qin, Xiong Xiaolin, et al. Sedimentary evolution model of upper Ordovician Wufeng-Lower Silurian Longmaxi organic-rich shale in the Sichuan Basin and its surrounding area[J]. Acta Sedimentologica Sinica, 2019, 37(4): 847-857. |