[1] 张海霞. 青藏高原东北部黄土记录的释光测年及末次冰消期以来气候变化研究[D]. 兰州:兰州大学,2020.

Zhang Haixia. Paleoclimatic changes revealed by luminescence chronology and proxy indexes of loess records in the northeastern Tibetan Plateau since the last deglaciation[D]. Lanzhou: Lanzhou University, 2020.
[2]

Liu X D, Cheng Z G, Yan L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change, 2009, 68(3): 164-174.
[3] 徐祥德,董李丽,赵阳,等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报,2019,64(27):2830-2841.

Xu Xiangde, Dong Lili, Zhao Yang, et al. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J]. Science Bulletin, 2019, 62(27): 2830-2841.
[4]

Ruddiman W F, Kutzbach J E. Plateau uplift and climate change[J]. Sci Am, 1991, 264(3): 66-75.
[5]

Edmond J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones[J]. Science, 1992, 258(5088): 1594-1597.
[6]

Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
[7]

Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.
[8]

Molnar P. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate[J]. Palaeontologia Electronica, 2005, 8(1): 1-23.
[9]

An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
[10]

Harris N. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 4-15.
[11]

Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of earth’s surface temperature[J]. Journal of Geophysical Research, 1981, 86(C10): 9776-9782.
[12]

Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
[13]

Raymo M E, Ruddiman W F, Froelich P N. Influence of Late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7): 649-653.
[14]

Zachos J C, Kump L R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene[J]. Global and Planetary Change, 2005, 47(1): 51-66.
[15]

Hren M T, Bookhagen B, Blisniuk P M, et al. δ18 O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 20-32.
[16]

Zhang W L, Fang X M, Zhang T, et al. Eocene rotation of the northeastern central Tibetan Plateau indicating stepwise compressions and eastward extrusions[J]. Geophysical Research Letters, 2020, 47(17): e2020GL088989.
[17] 谢树成,梁斌,郭建秋,等. 生物标志化合物与相关的全球变化[J]. 第四纪研究,2003,23(5):521-528.

Xie Shucheng, Liang Bin, Guo Jianqiu, et al. Biomarkers and the related global change[J]. Quaternary Sciences, 2003, 23(5): 521-528.
[18]

Zhang Z H, Zhao M X, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006, 25(5/6): 575-594.
[19]

Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II[J]. Organic Geochemistry, 1987, 11(6): 513-527.
[20]

Xie S C, Chen F H, Wang Z Y, et al. Lipid distributions in loess-paleosol sequences from Northwest China[J]. Organic Geochemistry, 2003, 34(8): 1071-1079.
[21]

Horton B K, Yin A, Spurlin M S, et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. GSA Bulletin, 2002, 114(7): 771-786.
[22]

Su T, Spicer R A, Li S H, et al. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet[J]. National Science Review, 2019, 6(3): 495-504.
[23]

Fang X M, Dupont-Nivet G, Wang C S, et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 2020, 6(50): eaba7298.
[24]

Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry. 2000, 31(7/8): 745-749.
[25]

Eglinton G, Hamilton R J. Leaf Epicuticular Waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents[J]. Science, 1967, 156(3780): 1322-1335.
[26]

Dodd R S, Afzal-Rafii Z. Habitat-related adaptive properties of plant cuticular lipids[J]. Evolution, 2000, 54(4): 1438-1444.
[27] 王永莉. 东亚南北气候区现代土壤及湖相沉积中生物标志物特征与气候意义[D]. 兰州:兰州大学,2006.

Wang Yongli. Characteristics and climatic implications of biomarkers in modern soils along north-south transection of East Asia and lacustrine sediments[D]. Lanzhou: Lanzhou University, 2006.
[28]

Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265.
[29] 蒲阳,张虎才,王永莉,等. 青藏高原冰蚀湖沉积物正构烷烃记录的气候和环境变化信息:以希门错为例[J]. 科学通报,2011,56(14):1132-1139.

Pu Yang, Zhang Hucai, Wang Yongli, et al. Climatic and environmental implications from n-alkanes in glacially eroded lake sediments in Tibetan Plateau: An example from Ximen Co[J]. Chinese Science Bulletin, 2011, 56(14): 1132-1139.
[30]

Duan Y, Xu L. Distributions of n-alkanes and their hydrogen isotopic composition in plants from Lake Qinghai (China) and the surrounding area[J]. Applied Geochemistry, 2012, 27(3): 806-814.
[31]

Hou J Z, D'Andrea W J, Wang M D, et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the Late Pleistocene[J]. Quaternary Science Reviews, 2017, 163: 84-94.
[32]

Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in west China[J]. Organic Geochemistry, 2007, 38(11): 1927-1940.
[33] 崔景伟,黄俊华,谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J]. 科学通报,2008,53(11):1318-1323.

Cui Jingwei, Huang Junhua, Xie Shucheng. Characterstics of seasonal variations of leaf n-alkanes and n-alkenes in modern higher plants in Qingjiang, Hubei province, China[J]. Chinese Science Bulletin, 2008, 53(11): 1318-1323.
[34] 何薇,汪亘,王永莉,等. 四川邛海湖泊沉积物记录的过去30 cal.ka B.P.以来的古气候环境特征[J]. 第四纪研究,2018,38(5):1179-1192.

He Wei, Wang Gen, Wang Yongli, et al. Characteristics of climate and environment over the past 30 cal.ka B.P. recorded in lacustrine deposits of the Qionghai Lake, Sichuan province[J]. Quaternary Sciences, 2018, 38(5): 1179-1192.
[35]

Sorrel P, Eymard I, Leloup P H, et al. Wet tropical climate in SE Tibet during the Late Eocene[J]. Scientific Reports, 2017, 7(1): 7809.
[36]

Wang J, Axia E, Xu Y P, et al. Temperature effect on abundance and distribution of leaf wax n-alkanes across a temperature gradient along the 400 mm isohyet in China[J]. Organic Geochemistry, 2018, 120: 31-41.
[37]

Yuan Q, Vajda V, Li Q K, et al. A Late Eocene palynological record from the Nangqian Basin, Tibetan Plateau: Implications for stratigraphy and paleoclimate[J]. Palaeoworld, 2017, 26(2): 369-379.
[38]

Yuan Q, Barbolini N, Rydin C, et al. Aridification signatures from fossil pollen indicate a drying climate in east-central Tibet during the Late Eocene[J]. Climate of the Past, 2020, 16(6): 2255-2273.
[39]

Long L Q, Fang X M, Miao Y F, et al. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin[J]. Chinese Science Bulletin, 2011, 56(15): 1569-1578.
[40]

Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128): 635-638.
[41]

Miao Y F, Wu F L, Chang H, et al. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation[J]. Gondwana Research, 2016, 31: 241-252.
[42]

Ye C C, Yang Y B, Fang X M, et al. Paleolake salinity evolution in the Qaidam Basin (NE Tibetan Plateau) between ~42 and 29 Ma: Links to global cooling and Paratethys Sea incursions[J]. Sedimentary Geology, 2020, 409: 105778.
[43] 张一伟. 油气藏形成与勘探[M]. 北京:石油工业出版社,2003.

Zhang Yiwei. Formation and exploration of oil and gas reservoirs[M]. Beijing: Petroleum Industry Press, 2003.
[44]

Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American west: Numerical experiments[J]. Journal of Geophysical Research, 1989, 94(D15): 18393-18407.
[45]

Ruddiman W F, Kutzbach J E. Forcing of Late Cenozoic northern Hemisphere climate by plateau uplift in southern Asia and the American west[J]. Journal of Geophysical Research, 1989, 94(D15): 18409-18427.
[46]

Popov S V, Rögl F, Rozanov A Y, et al. Lithological-paleogeographic maps of paratethys: 10 maps Late Eocene to Pliocene[J]. Courier Forschungsinstitut Senckenberg, 2004, 250: 1-46.
[47]

Hasty S. New biomedical engineering study findings have been reported by researchers at university of Miami, department of biomedical engineering[J]. Energy Business Journal, 2011, jan.3(oct.31): 11-12.
[48]

Li L, Fan M, Davila N, et al. Carbonate stable and clumped isotopic evidence for Late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications[J]. Base of the Kiaman Its Definition & Global Stratigraphic Significance, 2019, 131(5/6):831-844..
[49]

Wei W, Lu Y C, Xing F C, et al. Sedimentary facies associations and sequence stratigraphy of source and reservoir rocks of the lacustrine Eocene Niubao Formation (Lunpola Basin, central Tibet)[J]. Marine and Petroleum Geology, 2017, 86: 1273-1290.
[50]

Sun J M, Windley B F, Zhang Z L, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the Late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231.
[51]

Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[52]

Spicer R A. Tibet, the Himalaya, Asian monsoons and biodiversity:in what ways are they related?[J]. Plant Diversity, 2017, 39(5): 233-244.