[1] 郭英海,赵迪斐,陈世悦. 细粒沉积物及其古地理研究进展与展望[J]. 古地理学报,2021,23(2):263-283.

Guo Yinghai, Zhao Difei, Chen Shiyue. Research progress and prospect of fine-grained sediments and palaeogeography[J]. Journal of Palaeogeography, 2021, 23(2): 263-283.
[2]

Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[3] 陈扬,胡钦红,赵建华,等. 渤海湾盆地东营凹陷湖相富有机质页岩纹层特征和储集性能[J]. 石油与天然气地质,2022,43(2):307-324.

Chen Yang, Hu Qinhong, Zhao Jianhua, et al. Lamina characteristics and their influence on reservoir property of lacustrine organic-rich shale in the Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 307-324.
[4] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
[5]

Biddle P, Miles J H. The nature of contemporary silts in British estuaries[J]. Sedimentary Geology, 1972, 7(1): 23-33.
[6] Schwartz M L. Encyclopedia of coastal science[M]. Dordrecht: Springer, 2005: 1-1210.
[7] 王超,张柏桥,舒志国,等. 焦石坝地区五峰组—龙马溪组页岩纹层发育特征及其储集意义[J]. 地球科学,2019,44(3):972-982.

Wang Chao, Zhang Boqiao, Shu Zhiguo, et al. Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J]. Earth Science, 2019, 44(3): 972-982.
[8] 施振生,邱振,董大忠,等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发,2018,45(2):339-348.

Shi Zhensheng, Qiu Zhen, Dong Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348.
[9] 林长木,王红岩,梁萍萍,等. 川南地区五峰组—龙马溪组黑色页岩纹层特征及其储集意义[J]. 地层学杂志,2019,43(2):133-140.

Lin Changmu, Wang Hongyan, Liang Pingping, et al. The characteristics of laminae and its reservoir significance in black shale: Taking the Wufeng-Longmaxi Formations in the Changning-Shuanghe section as an example[J]. Journal of Stratigraphy, 2019, 43(2): 133-140.
[10] 王苗,陆建林,左宗鑫,等. 纹层状细粒沉积岩特征及主控因素分析:以渤海湾盆地东营凹陷沙四上—沙三下亚段为例[J]. 石油实验地质,2018,40(4):470-478.

Wang Miao, Lu Jianlin, Zuo Zongxin, et al. Characteristics and dominating factors of lamellar fine-grained sedimentary rocks: A case study of the upper Es4 member-lower Es3 member, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 470-478.
[11] 王鑫锐,孙雨,刘如昊,等. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报,2023,41(2):349-377.

Wang Xinrui, Sun Yu, Liu Ruhao, et al. Research progress into fine-grained sedimentary rock characteristics and formation in a continental lake basin[J]. Acta Sedimentologica Sinica,2023,41(2):349-377
[12] 聂银兰,谢庆宾,朱筱敏,等. 基于岩相表征的细粒沉积物沉积机制和研究展望[J]. 断块油气田,2021,28(3):305-310.

Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al. The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 305-310.
[13]

Macquaker J H S, Keller M A, Davies S J. Algal blooms and "Marine Snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942.
[14]

Krumbein W C. The dispersion of fine-grained sediments for mechanical analysis[J]. Journal of Sedimentary Research, 1933, 3(3): 121-135.
[15]

Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[16]

Petterson G. Varved sediments in Sweden: A brief review[J]. Geological Society, London, Special Publications, 1996, 116(1): 73-77.
[17]

Zolitschka B, Francus P, Ojala A E K, et al. Varves in lake sediments:A review[J]. Quaternary Science Reviews, 2015, 117: 1-41.
[18]

Breckenridge A, Lowell T V, Stroup J S, et al. A review and analysis of varve thickness records from glacial Lake Ojibway (Ontario and Quebec, Canada)[J]. Quaternary International, 2012, 260: 43-54.
[19]

de Geer G. On Late Quaternary time and climate[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1908, 30(7): 459-464.
[20] 李凯,游海涛,刘兴起. 中国湖泊沉积物纹层年代学研究进展[J]. 湖泊科学,2017,29(2):266-275.

Li Kai, You Haitao, Liu Xingqi. Review on lake sediment varve chronology in China[J]. Journal of Lake Sciences, 2017, 29(2): 266-275.
[21] 王冠民,钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48.

Wang Guanmin, Zhong Jianhua. A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Mineralogica, 2004, 23(1): 43-48.
[22]

Diéguez C, Barrón E. Late Permian flora and vegetation changes near the Permian–Triassic boundary in the Landete section of the Alcotas Formation (SE Iberian Ranges, Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 229(1/2): 54-68.
[23]

van Daele M, Moernaut J, Silversmit G, et al. The 600 yr eruptive history of Villarrica Volcano (Chile) revealed by annually laminated lake sediments[J]. GSA Bulletin, 2014, 126(3/4): 481-498.
[24]

Svensmark H, Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage:A missing link in solar-climate relationships[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(11): 1225-1232.
[25]

Craig A J. Pollen influx to laminated sediments: A pollen diagram from northeastern Minnesota[J]. Ecology, 1972, 53(1): 46-57.
[26] 施振生,董大忠,王红岩,等. 含气页岩不同纹层及组合储集层特征差异性及其成因:以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发,2020,47(4):829-840.

Shi Zhensheng, Dong Dazhong, Wang Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840.
[27] 师良,王香增,范柏江,等. 鄂尔多斯盆地延长组砂质纹层发育特征与油气成藏[J]. 石油与天然气地质,2018,39(3):522-530.

Shi Liang, Wang Xiangzeng, Fan Bojiang, et al. Characte-ristics of sandy lamination and its hydrocarbon accumulation, Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 522-530.
[28] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
[29] 胡月,陈雷,周昊,等. 海相页岩纹层特征及其对页岩储层发育的影响:以川南长宁地区龙马溪组为例[J]. 断块油气田,2021,28(2):145-150.

Hu Yue, Chen Lei, Zhou Hao, et al. Lamina characteristics of marine shale and its influence on shale reservoir development: A case study of Longmaxi Formation, Changning area, south Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 145-150.
[30] 华柑霖,吴松涛,邱振,等. 页岩纹层结构分类与储集性能差异:以四川盆地龙马溪组页岩为例[J]. 沉积学报,2021,39(2):281-296.

Hua Ganlin, Wu Songtao, Qiu Zhen, et al. Lamination texture and its effect on reservoir properties: A case study of Longmaxi shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 281-296.
[31] 孙永超,刘建波. 纹层状细粒碳酸盐岩成因:以贵州习水吼滩剖面下奥陶统为例[J]. 古地理学报,2016,18(5):743-758.

Sun Yongchao, Liu Jianbo. Origin of fine-grained laminated carbonate rocks: A case study of the Lower Ordovician at Houtan section in Xishui county, Guizhou province[J]. Journal of Palaeogeography, 2016, 18(5): 743-758.
[32] 吴靖,姜在兴,吴明昊. 细粒岩层序地层学研究方法综述[J]. 地质科技情报,2015,34(5):16-20.

Wu Jing, Jiang Zaixing, Wu Minghao. Summary of research methods about the sequence stratigraphy of the fine-grained rocks[J]. Geological Science and Technology Information, 2015, 34(5): 16-20.
[33] 张大权,张家强,王玉芳,等. 中国非常规油气勘探开发进展与前景[J]. 资源科学,2015,37(5):1068-1075.

Zhang Daquan, Zhang Jiaqiang, Wang Yufang, et al. China's unconventional oil and gas exploration and development: Progress and prospects[J]. Resources Science, 2015, 37(5): 1068-1075.
[34] Zolitschka B. Dating based on freshwater and marine-laminated sediments[M]//Mackay A, Battarbee R, Birks J, et al. Global change in the Holocene. New York: Hodder Education, 2003: 92-106.
[35]

Er C, Li Y Y, Zhao J Z, et al. Pore formation and occurrence in the organic-rich shales of the Triassic Chang-7 member, Yanchang Formation, Ordos Basin, China[J]. Journal of Natural Gas Geoscience, 2016, 1(6): 435-444.
[36]

Schmidt S, Cochran J K. Radium and radium-daughter nuclides in carbonates: A brief overview of strategies for determining chronologies[J]. Journal of Environmental Radioactivity, 2010, 101(7): 530-537.
[37] 李维,朱筱敏,段宏亮,等. 苏北盆地高邮—金湖凹陷古近系阜宁组细粒沉积岩纹层特征与成因[J]. 古地理学报,2020,22(3):469-482.

Li Wei, Zhu Xiaomin, Duan Hongliang, et al. Characteristics and forming mechanism of laminae fine-grained sedimentary rock of the Paleogene Funing Formation in Gaoyou and Jinhu Sags, Subei Basin[J]. Journal of Palaeogeography, 2020, 22(3): 469-482.
[38] 王玉杰,赵迪斐,卢琪荣,等. 纹层、夹层沉积构造对海相页岩储集空间和储层脆性的影响:以四川盆地龙马溪组页岩为例[J]. 非常规油气,2020,7(6):33-40.

Wang Yujie, Zhao Difei, Lu Qirong, et al. Impact of laminae and interlayer sedimentary structure on the storage and brittleness of shale reservoirs:Taking Longmaxi Formation shale in Sichuan Basin as an example[J]. Unconventional Oil & Gas, 2020, 7(6): 33-40.
[39] 孔祥鑫,姜在兴,韩超,等. 束鹿凹陷沙三段下亚段细粒碳酸盐纹层特征与储集意义[J]. 油气地质与采收率,2016,23(4):19-26.

Kong Xiangxin, Jiang Zaixing, Han Chao, et al. Laminations characteristics and reservoir significance of fine-grained carbonate in the lower 3rd member of Shahejie Formation of Shulu Sag[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 19-26.
[40] Nichols G. Sedimentology and stratigraphy[M]. Chichester: Wiley-Blackwell, 2009: 1-419.
[41] 李泉泉,鲍志东,肖毓祥,等. 混合沉积研究进展与展望[J]. 沉积学报,2021,39(1):153-167.

Li Quanquan, Bao Zhidong, Xiao Yuxiang, et al. Research advances and prospect of mixed deposition[J]. Acta Sedimentologica Sinica, 2021, 39(1): 153-167.
[42]

Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[43] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water:Revisiting the delivery system. Tulsa: AAPG, 2012: 1-30.
[44]

Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478.
[45]

Curran K J, Hill P S, Milligan T G. Fine-grained suspended sediment dynamics in the Eel River flood plume[J]. Continental Shelf Research, 2002, 22(17): 2537-2550.
[46] Haan C T, Barfield B J, Hayes J C. Design hydrology and sedimentology for small catchments[M]. San Diego: Academic Press, 1994: 1-608.
[47]

Mooneyham C, Strom K. Deposition of suspended clay to open and sand-filled framework gravel beds in a laboratory flume[J]. Water Resources Research, 2018, 54(1): 323-344.
[48]

Sturm M, Matter A. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents[J]. Modern and ancient lake sediments, 1978: 147-168.
[49]

Kassem A, Imran J. Simulation of turbid underflows generated by the plunging of a river[J]. Geology, 2001, 29(7): 655-658.
[50] Slatt R M, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system[M]. Tulsa: AAPG, 2012: 31-51.
[51]

Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
[52]

Eppley R W, Holmes R W, Strickland J D H. Sinking rates of marine phytoplankton measured with a fluorometer[J]. Journal of Experimental Marine Biology and Ecology, 1967, 1(2): 191-208.
[53]

Irwin M L. General theory of epeiric clear water sedimentation[J]. AAPG Bulletin, 1965, 49(4): 445-459.
[54]

Hagadorn J W, McDowell C. Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow[J]. Sedimentology, 2012, 59(3): 795-808.
[55]

Zavala C, Ponce J J, Arcuri M, et al. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1): 41-59.
[56]

Schieber J, Southard J B. Bedload transport of mud by floccule ripples:Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[57]

Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
[58] 周川闽,张志杰,邱振,等. 细粒沉积物理模拟研究进展与展望[J]. 沉积学报,2021,39(1):253-267.

Zhou Chuanmin, Zhang Zhijie, Qiu Zhen, et al. Laboratory experiments on sedimentation of fine-grained sediment: A prospect review[J]. Acta Sedimentologica Sinica, 2021, 39(1): 253-267.
[59] 卢斌,邱振,周川闽,等. 泥页岩沉积物理模拟研究进展与发展趋势[J]. 沉积学报,2021,39(4):781-793.

Lu Bin, Qiu Zhen, Zhou Chuanmin, et al. Progress and prospects in the physical simulation of mudstone deposition[J]. Acta Sedimentologica Sinica, 2021, 39(4): 781-793.
[60]

Macquaker J H S, Bohacs K M. On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735.
[61] 方爱民,李继亮,侯泉林. 浊流及相关重力流沉积研究综述[J]. 地质论评,1998,44(3):270-280.

Fang Aimin, Li Jiliang, Hou Quanlin. Sedimentation of turbidity currents and relative gravity flows: A review[J]. Geological Review, 1998, 44(3): 270-280.
[62]

Ducassou E, Migeon S, Capotondi L, et al. Run-out distance and erosion of debris-flows in the Nile deep-sea fan system: Evidence from lithofacies and micropalaeontological analyses[J]. Marine and Petroleum Geology, 2013, 39(1): 102-123.
[63]

Craig M J, Baas J H, Amos K J, et al. Biomediation of submarine sediment gravity flow dynamics[J]. Geology, 2020, 48(1): 72-76.
[64]

Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
[65]

Schieber J. Discussion: “Mud dispersal across a Cretaceous prodelta: Storm‐generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies” by Plint (+), Sedimentology 61, 609-647[J]. Sedimentology, 2015, 62(1): 389-393.
[66] Zavala C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏,2018,30(1):1-18.

Zavala C, Pan Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
[67] 李圯,刘可禹,蒲秀刚,等. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J]. 地球科学,2020,45(10):3779-3796.

Li Yi, Liu Keyu, Pu Xiugang, et al. Lithofacies characteristics and formation environments of mixed finegrained sedimentary rocks in Second member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Earth Science, 2020, 45(10): 3779-3796.
[68] 王伟庆,刘惠民,刘雅利,等. 东营凹陷古近系页岩碳酸盐纹层内部结构与成因[J]. 油气地质与采收率,2022,29(3):11-19.

Wang Weiqing, Liu Huimin, Liu Yali, et al. Texture and genesis of Paleogene lacustrine shale carbonate laminae in Dongying Sag, Jiyang Depresion, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 11-19.
[69] 滕建彬,刘惠民,邱隆伟,等. 东营凹陷古近系湖相细粒混积岩沉积成岩特征[J]. 地球科学,2020,45(10):3808-3826.

Teng Jianbin, Liu Huimin, Qiu Longwei, et al. Sedimentary and diagenetic characteristics of lacustrine fine-grained hybrid rock in Paleogene formation in Dongying Sag[J]. Earth Science, 2020, 45(10): 3808-3826.
[70] 张建国. 济阳坳陷始新统沙三下亚段湖相细粒沉积岩成因机制研究[D]. 北京:中国地质大学(北京),2017.

Zhang Jianguo. The formation mechanisms of lacustrine fine-grained sedimentary rocks in the Eocene lower Es3 strata, the Jiyang Depression[D]. Beijing: China University of Geosciences (Beijing), 2017.
[71] 刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555.

Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4[J]. Earth Science, 2020, 45(10): 3543-3555.
[72] 刘姝君,操应长,梁超. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境[J]. 古地理学报,2019,21(3):479-489.

Liu Shujun, Cao Yingchang, Liang Chao. Lithologic characteristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3): 479-489.
[73]

Shinn E A, Steinen R P, Lidz B H, et al. Whitings, a sedimentologic dilemma[J]. Journal of Sedimentary Research, 1989, 59(1): 147-161.
[74]

Murphy D H, Wilkinson B H. Carbonate deposition and facies distribution in a central Michigan marl lake[J]. Sedimentology, 1980, 27(2): 123-135.
[75]

Gierlowski-Kordesch E H. Lacustrine carbonates[J]. Developments in Sedimentology, 2010, 61: 1-101.
[76]

Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032.
[77] Bennett R H, Bryant W R, Hulbert M H. Microstructure of fine-grained sediments: From mud to shale[M]. New York: Springer, 1991: 5-32.
[78] 姜在兴,王雯雯,王俊辉,等. 风动力场对沉积体系的作用[J]. 沉积学报,2017,35(5):863-876.

Jiang Zaixing, Wang Wenwen, Wang Junhui, et al. The influence of wind field on depositional systems[J]. Acta Sedimentologica Sinica, 2017, 35(5): 863-876.
[79] 柳波,孙嘉慧,张永清,等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发,2021,48(3):521-535.

Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535.
[80] 邓远,陈世悦,蒲秀刚,等. 渤海湾盆地沧东凹陷孔店组二段细粒沉积岩形成机理与环境演化[J]. 石油与天然气地质,2020,41(4):811-823,893.

Deng Yuan, Chen Shiyue, Pu Xiugang, et al. Formation mechanism and environmental evolution of fine-grained sedimentary rocks from the Second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-823, 893.
[81] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020,38(3):554-570.

Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.
[82] 余恩晓. 松辽盆地晚白垩世嫩江组一段细粒沉积物沉积环境及年际古气候特征[D]. 北京:中国地质大学(北京),2019.

Yu Enxiao. Depositional environments and inter-annual paleoclimatic characteristics of the fine-grained sedimentary rocks of the First member of the Nenjiang Formation in the Late Cretaceous Songliao Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
[83] 彭君,周勇水,李红磊,等. 渤海湾盆地东濮凹陷盐间细粒沉积岩岩相与含油性特征[J]. 断块油气田,2021,28(2):212-218.

Peng Jun, Zhou Yongshui, Li Honglei, et al. Lithofacies and oil-bearing characteristics of fine-grained sedimentary rocks of salt-layers in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 212-218.
[84]

Ojala A E K, Francus P, Zolitschka B, et al. Characteristics of sedimentary varve chronologies:A review[J]. Quaternary Science Reviews, 2012, 43: 45-60.
[85]

Li Y F, Zhang T W, Ellis G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
[86]

Ariztegui D, Anselmetti F S, Robbiani J M, et al. Natural and human-induced environmental change in southern Albania for the last 300 years:Constraints from the Lake Butrint sedimentary record[J]. Global and Planetary Change, 2010, 71(3/4): 183-192.
[87]

Schieber J. Reverse engineering mother nature:Shale sedimentology from an experimental perspective[J]. Sedimentary Geology, 2011, 238(1/2): 1-22.
[88]

Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627.
[89] 赵艳军,刘成林,张华,等. 古盐湖卤水温度对钾盐沉积的控制作用探讨[J]. 岩石学报,2015,31(9):2751-2756.

Zhao Yanjun, Liu Chenglin, Zhang Hua, et al. The controls of paleotemperature on potassium salt precipitation in ancient salt lakes[J]. Acta Petrologica Sinica, 2015, 31(9): 2751-2756.
[90] 张建国,姜在兴,刘鹏,等. 陆相超细粒页岩油储层沉积机制与地质评价[J]. 石油学报,2022,43(2):234-249.

Zhang Jianguo, Jiang Zaixing, Liu Peng, et al. Deposition mechanism and geological assessment of continental ultrafine-grained shale oil reservoirs[J]. Acta Petrolei Sinica, 2022, 43(2): 234-249.
[91] 张建国,姜在兴,刘立安,等. 渤海湾盆地沾化凹陷沙河街组三段下亚段细粒沉积岩岩相特征与沉积演化[J]. 石油学报,2021,42(3):293-306.

Zhang Jianguo, Jiang Zaixing, Liu Li’an, et al. Lithofacies and depositional evolution of fine-grained sedimentary rocks in the lower submember of the member 3 of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 293-306.
[92]

Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
[93] 陈钰,刘兴起,何利,等. 青藏高原北部可可西里库赛湖年纹层微区分析及形成机理[J]. 地质学报,2016,90(5):1006-1015.

Chen Yu, Liu Xingqi, He Li, et al. Micro-area analysis and mechanism of varves from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau[J]. Acta Geologica Sinica, 2016, 90(5): 1006-1015.
[94]

Stow D A V, Shanmugam G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42.
[95]

Bar-Matthews M, Ayalon A, Kaufman A, et al. The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel[J]. Earth and Planetary Science Letters, 1999, 166(1/2): 85-95.
[96] 高红灿,郑荣才,肖应凯,等. 渤海湾盆地东濮凹陷古近系沙河街组盐岩成因:来自沉积学和地球化学的证据[J]. 石油学报,2015,36(1):19-32.

Gao Hongcan, Zheng Rongcai, Xiao Yingkai, et al. Origin of the salt rock of Paleogene Shahejie Formation in Dongpu Sag, Bohai Bay Basin: Evidences from sedimentology and geochemistry[J]. Acta Petrolei Sinica, 2015, 36(1): 19-32.
[97] 吴靖,姜在兴,梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报,2017,38(10):1110-1122.

Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies characteristics of fine-grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122.
[98]

Einstein H A, Krone R B. Experiments to determine modes of cohesive sediment transport in salt water[J]. Journal of Geophysical Research, 1962, 67(4): 1451-1461.
[99] 祝幼华,刘传联,徐金鲤. 山东胜利油田第四系微体浮游藻类及其环境意义[J]. 古生物学报,2002,41(1):143-151.

Zhu Youhua, Liu Chuanlian, Xu Jinli. Microphytoplanktons and their environmental significance of Quaternary from Shengli oil field, Shandong[J]. Acta Palaeontologica Sinica, 2002, 41(1): 143-151.
[100]

Tripsanas E K, Bryant W R, Phaneuf B A. Depositional processes of uniform mud deposits (unifites), Hedberg Basin, northwest gulf of Mexico: New perspectives[J]. AAPG Bulletin, 2004, 88(6): 825-840.
[101]

Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
[102] 游海涛,刘强,刘嘉麒,等. 东北四海龙湾玛珥湖年纹层的研究方法及初步成果[J]. 地球与环境,2006,34(2):71-76.

You Haitao, Liu Qiang, Liu Jiaqi, et al. Research methodology prelimimary results for varved lacustrine sediments of the Sihailongwan Maar Lake[J]. Earth and Environment, 2006, 34(2): 71-76.
[103]

Tylmann W, Zolitschka B, Enters D, et al. Laminated lake sediments in northeast Poland: Distribution, preconditions for formation and potential for paleoenvironmental investigation[J]. Journal of Paleolimnology, 2013, 50(4): 487-503.
[104]

Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[105] 李哲萱,柳益群,焦鑫,等. 火山—热液作用相关细粒沉积岩研究现状及前沿探索[J]. 古地理学报,2019,21(5):727-742.

Li Zhexuan, Liu Yiqun, Jiao Xin, et al. Progress and present research on volcanic-hydrothermal related fine-grained sedimentary rocks[J]. Journal of Palaeogeography, 2019, 21(5): 727-742.
[106]

Tylmann W, Zolitschka B. Annually laminated lake sediments:Recent progress[J]. Quaternary, 2020, 3(1): 5.
[107] 王勇,刘惠民,宋国奇,等. 济阳坳陷泥页岩细粒沉积体系[J]. 石油学报,2019,40(4):395-410.

Wang Yong, Liu Huimin, Song Guoqi, et al. Lacustrine shale fine-grained sedimentary system in Jiyang Depression[J]. Acta Petrolei Sinica, 2019, 40(4): 395-410.
[108] 姜辉. 浊流沉积的动力学机制与响应[J]. 石油与天然气地质,2010,31(4):428-435.

Jiang Hui. Dynamical mechanism and depositional responses of turbidity current sedimentation[J]. Oil & Gas Geology, 2010, 31(4): 428-435.
[109]

Shanmugam G, Bloch R B, Mitchell S M, et al. Slump and debris-flow dominated basin-floor fans in the North Sea: An evaluation of conceptual sequence-stratigraphical models based on conventional core data[J]. Geological Society, London, Special Publications, 1996, 103(1): 145-176.
[110]

Hampton M A. Competence of fine-grained debris flows[J]. Journal of Sedimentary Research, 1975, 45(4): 834-844.
[111] Sanders J E. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[M]//Middleton G V. Primary sedimentary structures and their hydrodynamic interpretation. Tulsa: SEPM, 1965: 192-219.
[112]

Dolan J F. Eustatic and tectonic controls on deposition of hybrid siliciclastic/carbonate basinal cycles: Discussion with examples[J]. AAPG Bulletin, 1989, 73(10): 1233-1246.
[113]

O’sullivan P E. Annually-laminated lake sediments and the study of Quaternary environmental changes:A review[J]. Quaternary Science Reviews, 1983, 1(4): 245-313.
[114]

Zillén L, Snowball I, Sandgren P, et al. Occurrence of varved lake sediment sequences in Värmland, west central Sweden: Lake characteristics, varve chronology and AMS radiocarbon dating[J]. Boreas, 2003, 32(4): 612-626.
[115]

Berner R A. A new geochemical classification of sedimentary environments[J]. Journal of Sedimentary Research, 1981, 51(2): 359-365.
[116]

Larsen C P S, Pienitz R, Smol J P, et al. Relations between lake morphometry and the presence of laminated lake sediments: A re-examination of Larsen and MacDonald (1993)[J]. Quaternary Science Reviews, 1998, 17(8): 711-717.
[117] 王勇,熊伟,郝雪峰,等. 湖相泥页岩细粒沉积组构成因及油气地质意义:以济阳坳陷沙四上—沙三下亚段泥页岩为例[J]. 地质论评,2019,65(增刊1):217-219.

Wang Yong, Xiong Wei, Hao Xuefeng, et al. Fabric characteristics and its oil-gas significance of lacustrine mud shale fine-grained sedimentary: A case study of upper Es4 and lower Es3 member in Jiyang Depression[J]. Geological Review, 2019, 65(Suppl.1): 217-219.
[118]

Sánchez-Román M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882.
[119] 郭志刚,杨作升,曲艳慧,等. 东海陆架泥质区沉积地球化学比较研究[J]. 沉积学报,2000,18(2):284-289.

Guo Zhigang, Yang Zuosheng, Qu Yanhui, et al. Study on comparison sedimentary geochemistry of mud area on East China Sea continental shelf[J]. Acta Sedimentologica Sinica, 2000, 18(2): 284-289.
[120]

Bruner K R, Walker-Milani M, Smosna R. Lithofacies of the Devonian Marcellus shale in the eastern Appalachian Basin, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(8): 937-954.
[121]

Smith V C, Staff R A, Blockley S P E, et al. Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: Chronostratigraphic markers for synchronising of East Asian/West Pacific palaeoclimatic records across the last 150 ka[J]. Quaternary Science Reviews, 2013, 67: 121-137.
[122]

Seghedi I. Permian rhyolitic volcanism, changing from subaqueous to subaerial in post-Variscan intra-continental Sirinia Basin (SW Romania–eastern Europe)[J]. Journal of Volcanology and Geothermal Research, 2011, 201(1/2/3/4): 312-324.
[123] 李庆,卢浩,吴胜和,等. 鄂尔多斯盆地南部三叠系长7~3亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质,2022,43(5):1141-1154.

Li Qing, Lu Hao, Wu Shenghe, et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 7~3 tuffs in the southern Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1141-1154.
[124] 朱国华,张杰,姚根顺,等. 沉火山尘凝灰岩:一种赋存油气资源的重要岩类:以新疆北部中二叠统芦草沟组为例[J]. 海相油气地质,2014,19(1):1-7.

Zhu Guohua, Zhang Jie, Yao Genshun, et al. Sedimentary volcanic dust tuff, an important kind of rock storing hydrocarbon resources: Disscusion on the lithology of Middle Permian Lucaogou oil-bearing rocks in the north of Xinjiang[J]. Marine Origin Petroleum Geology, 2014, 19(1): 1-7.
[125]

Frogner P, Gíslason S R, Óskarsson N. Fertilizing potential of volcanic ash in ocean surface water[J]. Geology, 2001, 29(6): 487-490.
[126] 葸克来,李克,操应长,等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发,2020,47(6):1244-1255.

Xi Kelai, Li Ke, Cao Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1244-1255.
[127]

Fisher R V. Submarine volcaniclastic rocks[J]. Geological Society, London, Special Publications, 1984, 16(1): 5-27.
[128] 康积伦,王家豪,马强,等. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义[J]. 地质科技通报,2023,42(5):82-93.

Kang Jilun, Wang Jiahao, Ma Qiang, et al. Fine-grained sublacustrine fan deposits and their significance of shale oil reservoirs in the Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):82-93.
[129]

Zanon V, Viveiros F, Silva C, et al. Impact of lightning on organic matter-rich soils: Influence of soil grain size and organic matter content on underground fires[J]. Natural Hazards, 2008, 45(1): 19-31.
[130]

Verolino A, White J D L, Zimanowski B. Particle transport in subaqueous eruptions: An experimental investigation[J]. Journal of Volcanology and Geothermal Research, 2018, 349: 298-310.
[131]

Chen J Z, Elmi C, Goldsby D, et al. Generation of shock lamellae and melting in rocks by lightning‐induced shock waves and electrical heating[J]. Geophysical Research Letters, 2017, 44(17): 8757-8768.
[132]

Miller S L. A production of amino acids under possible primitive earth conditions[J]. Science, 1953, 117(3046): 528-529.
[133]

Nriagu J O. A history of global metal pollution[J]. Science, 1996, 272(5259): 223.
[134]

Lottermoser B G, Schütz U, Boenecke J, et al. Natural and anthropogenic influences on the geochemistry of Quaternary lake sediments from Holzmaar, Germany[J]. Environmental Geology, 1997, 31(3/4): 236-247.
[135]

Stockhecke M, Anselmetti F S, Meydan A F, et al. The annual particle cycle in Lake Van (Turkey)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334: 148-159.
[136]

Leverington D W, Teller J T. Paleotopographic reconstructions of the eastern outlets of glacial Lake Agassiz[J]. Canadian Journal of Earth Sciences, 2003, 40(9): 1259-1278.
[137]

Haltia-Hovi E, Saarinen T, Kukkonen M. A 2000-year record of solar forcing on varved lake sediment in eastern Finland[J]. Quaternary Science Reviews, 2007, 26(5/6): 678-689.
[138]

Holzhauser H, Magny M, Zumbuühl H J. Glacier and lake-level variations in west-central Europe over the last 3500 years[J]. The Holocene, 2005, 15(6): 789-801.
[139] 朱毅秀,金振奎,金科,等. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征:以四川盆地元坝地区下侏罗统大安寨段为例[J]. 石油与天然气地质,2021,42(2):494-508.

Zhu Yixiu, Jin Zhenkui, Jin Ke, et al. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks in continental lacustrine basins: A case study on the Lower Jurassic Da’anzhai member of Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(2): 494-508.
[140]

Johns W D. Clay mineral catalysis and petroleum generation[J]. Annual Review of Earth and Planetary Sciences, 1979, 7: 183-198.
[141] 刘莹,刘海燕,赵永福,等. 煤系细粒沉积纹层特点及与陆相湖泊细粒沉积对比[J]. 中国煤炭地质,2020,32(8):5-11.

Liu Ying, Liu Haiyan, Zhao Yongfu, et al. Characteristics of fine grain sedimentary striae of coal measures and comparison with fine grain deposits of continental lakes[J]. Coal Geology of China, 2020, 32(8): 5-11.
[142] 李超,罗晓容,张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报,2020,49(5):951-973.

Li Chao, Luo Xiaorong, Zhang Likuan. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction[J]. Journal of China University of Mining &Technology, 2020, 49(5): 951-973.
[143] 余志云,陈世悦,张顺,等. 成岩作用对泥页岩储集性能的影响:以东营凹陷古近系沙四上亚段为例[J]. 古地理学报,2022,24(4):771-784.

Yu Zhiyun, Chen Shiyue, Zhang Shun, et al. Influence of diagenesis on reservoir performance of shale: A case study of the upper sub-member of member 4 of Paleogene Shahejie Formation in Dongying Sag[J]. Journal of Palaeogeography, 2022, 24(4): 771-784.
[144] 白静,徐兴友,张君峰,等. 陆相页岩碳酸盐矿物成因及其页岩气富集作用:以松辽盆地梨树断陷沙河子组页岩为例[J]. 中国矿业大学学报,2022,51(4):742-756.

Bai Jing, Xu Xingyou, Zhang Junfeng, et al. Genesis of carbonate minerals in continental shale and their roles in shale gas enrichment: A case study of the shale of Shahezi Formation in Lishu Fault Depression, Songliao Basin, NE China[J]. Journal of China University of Mining & Technology, 2022, 51(4): 742-756.