[1] |
Montgomery S L, Jarvie D M, Bowker K A, et al. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2): 155-175. |
[2] |
Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
[3] |
张金川,徐波,聂海宽,等. 中国页岩气资源勘探潜力[J]. 天然气工业,2008,28(6):136-140.
Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140. |
[4] |
邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.
Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. |
[5] |
蒋裕强,董大忠,漆麟,等. 页岩气储层的基本特征及其评价[J]. 天然气工业,2010,30(10):7-12.
Jiang Yuqiang, Dong Dazhong, Qi Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010, 30(10): 7-12. |
[6] |
Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
[7] |
刘树根,马文辛, Luba J,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报,2011,27(8):2239-2252.
Liu Shugen, Ma Wenxin, Luba J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252. |
[8] |
陈文玲,周文,罗平,等. 四川盆地长芯1井下志留统龙马溪组页岩气储层特征研究[J]. 岩石学报,2013,29(3):1073-1086.
Chen Wenling, Zhou Wen, Luo Ping, et al. Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 well, southeast Sichuan Basin, China[J]. Acta Petrologica Sinica, 2013, 29(3): 1073-1086. |
[9] |
Ko L T, Loucks R G, Zhang T W, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford–equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. |
[10] |
谭静强,张煜麟,罗文彬,等. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报,2019,38(1):18-29.
Tan Jingqiang, Zhang Yulin, Luo Wenbin, et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(1): 18-29. |
[11] |
Gao Z Y, Fan Y P, Xuan Q X, et al. A review of shale pore structure evolution characteristics with increasing thermal maturities[J]. Advances in Geo-Energy Research, 2020, 4(3): 247-259. |
[12] |
Dong T, He Q, He S, et al. Quartz types, origins and organic matter-hosted pore systems in the lower Cambrian Niutitang Formation, Middle Yangtze Platform, China[J]. Marine and Pe-troleum Geology, 2021, 123: 104739. |
[13] |
腾格尔,卢龙飞,俞凌杰,等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发,2021,48(4):687-699.
Borjigin T, Lu Longfei, Yu Lingjie, et al. Formation, preser-vation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. |
[14] |
徐良伟,杨克基,鲁文婷,等. 富有机质泥页岩微纳米孔隙系统演化特征及模式研究新进展[J]. 沉积学报,2022,40(1):1-21.
Xu Liangwei, Yang Keji, Lu Wenting, et al. New research progress on organic-rich shale micro- and nanoscale pore system evolution characteristics and models[J]. Acta Sedimentologica Sinica, 2022, 40(1): 1-21. |
[15] |
卢龙飞,刘伟新,魏志红,等. 四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制[J]. 沉积学报,2022,40(1):73-87.
Lu Longfei, Liu Weixin, Wei Zhihong, et al. Diagenesis of the Silurian shale, Sichuan Basin: Focus on pore development and preservation [J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. |
[16] |
Jarvie D M. Shale resource systems for oil and gas: Part 1—shale-gas resource systems[M]//Breyer J A. Shale reservoirs-giant resources for the 21st century. AAPG Memoir, 2012: 69-87. |
[17] |
Milliken K L, Day-Stirrat R J. Cementation in mudrocks: Brief review with examples from cratonic basin mudrocks[M]//Chatellier J Y, Jarvie D M. Critical assessment of shale resource plays. AAPG Memoir, 2013: 133-150. |
[18] |
Fishman N S, Hackley P C, Lowers H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103: 32-50. |
[19] |
Ardakani O H, Sanei H, Ghanizadeh A, et al. Hydrocarbon potential and reservoir characteristics of Lower Cretaceous Garbutt Formation, Liard Basin Canada[J]. Fuel, 2017, 209: 274-289. |
[20] |
Nie H K, Sun C X, Liu G X, et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, South China: Implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019, 101: 243-251. |
[21] |
Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian–Mississippian shales, western Canadian sedimentary basin[J]. Chemical Geology, 2009, 260(1/2): 1-19. |
[22] |
Han C, Han M, Jiang Z X, et al. Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan Basin and its periphery, China[J]. Geological Journal, 2019, 54(1): 438-449. |
[23] |
卢龙飞,秦建中,申宝剑,等. 川东南涪陵地区五峰组—龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质,2016,38(4):460-465,472.
Lu Longfei, Qin Jianzhong, Shen Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi Formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465, 472. |
[24] |
Guo X W, Qin Z J, Yang R, et al. Comparison of pore systems of clay-rich and silica-rich gas shales in the Lower Silurian Longmaxi Formation from the Jiaoshiba area in the eastern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 101: 265-280. |
[25] |
Dong T, He S, Chen M F, et al. Quartz types and origins in the Paleozoic Wufeng-Longmaxi Formations, eastern Sichuan Basin, China: Implications for porosity preservation in shale reservoirs[J]. Marine and Petroleum Geology, 2019, 106: 62-73. |
[26] |
Chen L, Jiang Z X, Liu Q X, et al. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales[J]. Marine and Petroleum Geology, 2019, 104: 200-216. |
[27] |
董大忠,梁峰,管全中,等. 四川盆地五峰组—龙马溪组页岩气优质储层发育模式及识别评价技术[J]. 天然气工业,2022,42(8):96-111.
Dong Dazhong, Liang Feng, Guan Quanzhong, et al. Development model and identification evaluation technology of Wufeng-Longmaxi Formation quality shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 96-111. |
[28] |
Qiu Z, Liu B, Dong D Z, et al. Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for reservoir properties and paleoproductivity[J]. Marine and Petroleum Geology, 2020, 121: 104594. |
[29] |
李钜源. 东营凹陷泥页岩矿物组成及脆度分析[J]. 沉积学报,2013,31(4):616-620.
Li Juyuan. Analysis on mineral components and frangibility of shales in Dongying Depression[J]. Acta Sedimentologica Sinica, 2013, 31(4): 616-620. |
[30] |
Dong T, Harris N B, Ayranci K, et al. The impact of rock composition on geomechanical properties of a shale formation: Middle and Upper Devonian Horn River Group shale, Northeast British Columbia, Canada[J]. AAPG Bulletin, 2017, 101(2): 177-204. |
[31] |
Huo Z P, Zhang J C, Li P, et al. An improved evaluation method for the brittleness index of shale and its application: A case study from the southern North China Basin[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 47-55. |
[32] |
Xi Z D, Tang S H, Zhang S H, et al. Characterization of quartz in the Wufeng Formation in northwest Hunan province, South China and its implications for reservoir quality[J]. Journal of Petroleum Science and Engineering, 2019, 179: 979-996. |
[33] |
Xu H, Zhou W, Hu Q H, et al. Quartz types, silica sources and their implications for porosity evolution and rock mechanics in the Paleozoic Longmaxi Formation shale, Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 128: 105036. |
[34] |
Reynolds J H, Verhoogen J. Natural variations in the isotopic constitution of silicon[J]. Geochimica et Cosmochimica Acta, 1953, 3(5): 224-234. |
[35] |
Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148. |
[36] |
Moore T CJr. Biogenic silica and chert in the Pacific Ocean[J]. Geology, 2008, 36(12): 975-978. |
[37] |
Zhao J H, Jin Z K, Jin Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38. |
[38] |
McBride E F. Quartz cement in sandstones: A review[J]. Earth-Science Reviews, 1989, 26(1/2/3): 69-112. |
[39] |
Fishman N S, Egenhoff S O, Boehlke A R, et al. Petrology and diagenetic history of the upper shale member of the Late Devonian-Early Mississippian Bakken Formation, Williston Basin, North Dakota[M]//Larsen D, Egenhoff S O, Fishman N S. Paying attention to mudrocks: Priceless!. Geological Society of America, 2015: 125-151. |
[40] |
Milliken K L, Ergene S M, Ozkan A. Quartz types, authigenic and detrital, in the upper Cretaceous Eagle Ford Formation, south Texas, USA[J]. Sedimentary Geology, 2016, 339: 273-288. |
[41] |
Milliken K L, Olson T. Silica diagenesis, porosity evolution, and mechanical behavior in siliceous mudstones, Mowry Shale (Cretaceous), Rocky Mountains, U.S.A.[J]. Journal of Sedimentary Research, 2017, 87(4): 366-387. |
[42] |
Niu X, Yan D T, Zhuang X G, et al. Origin of quartz in the lower Cambrian Niutitang Formation in south Hubei province, Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2018, 96: 271-287. |
[43] |
孙川翔,聂海宽,刘光祥,等. 石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 地球科学,2019,44(11):3692-3704.
Sun Chuanxiang, Nie Haikuan, Liu Guangxiang, et al. Quartz type and its control on shale gas enrichment and production: A case study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44(11): 3692-3704. |
[44] |
Peng J W, Milliken K L, Fu Q L. Quartz types in the Upper Pennsylvanian organic‐rich Cline Shale (Wolfcamp D), Midland Basin, Texas: Implications for silica diagenesis, porosity evolution and rock mechanical properties[J]. Sedimentology, 2020, 67(4): 2040-2064. |
[45] |
张鹏辉,陈志勇,薛路,等. 塔里木盆地西北缘下寒武统黑色岩系差异性成岩演化及其影响因素[J]. 岩石学报,2020,36(11):3463-3476.
Zhang Penghui, Chen Zhiyong, Xue Lu, et al. The differential diagenetic evolution and its influencing factors of lower Cambrian black rock series in the northwestern margin of Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3463-3476. |
[46] |
Chen X L, Shi W Z, Hu Q H, et al. Origin of authigenic quartz in organic-rich shales of the Niutitang Formation in the northern margin of Sichuan Basin, South China: Implications for pore network development[J]. Marine and Petroleum Geology, 2022, 138: 105548. |
[47] |
刘国恒,翟刚毅,杨锐,等. 石英结晶度指数:中国四川盆地及周缘晚奥陶世—早志留世富有机质页岩中硅质为生物成因的定量性新证据[J]. 中国科学(D辑):地球科学,2021,51(7):1135-1149.
Liu Guoheng, Zhai Gangyi, Yang Rui, et al. Quartz crystallinity index: New quantitative evidence for biogenic silica of the Late Ordovician to Early Silurian organic-rich shale in the Sichuan Basin and adjacent areas, China[J]. Science China (Seri. D): Earth Sciences, 2021, 51(7): 1135-1149. |
[48] |
Knapp L J, Ardakani O H, Uchida S, et al. The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada[J]. International Journal of Coal Geology, 2020, 227: 103525. |
[49] |
Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. |
[50] |
郭旭升,胡东风,魏志红,等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探,2016,21(3):24-37.
Guo Xusheng, Hu Dongfeng, Wei Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. |
[51] |
Liu Z Q, Guo S B, Lv R. Shale-gas play risk of the Lower Cambrian on the Yangtze Platform, South China[J]. AAPG Bulletin, 2020, 104(5): 989-1009. |
[52] |
张君峰,许浩,周志,等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报,2019,40(8):887-899.
Zhang Junfeng, Xu Hao, Zhou Zhi, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899. |
[53] |
陈孔全,李君军,唐协华,等. 中扬子地区五峰组—龙马溪组页岩气成藏关键地质因素[J]. 天然气工业,2020,40(6):18-30.
Chen Kongquan, Li Junjun, Tang Xiehua, et al. Key geological factors for shale gas accumulation in the Wufeng-Longmaxi Fms in the central Yangtze area[J]. Natural Gas Industry, 2020, 40(6): 18-30. |
[54] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[55] |
邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1-14.
Zou Caineng, Zhao Qun, Cong Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. |
[56] |
施振生,邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报,2021,39(1):181-196.
Shi Zhensheng, Qiu Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. |
[57] |
Liu J S, Ding W L, Wang R Y, et al. Quartz types in shale and their effect on geomechanical properties: An example from the lower Cambrian Niutitang Formation in the Cen'gong block, South China[J]. Applied Clay Science, 2018, 163: 100-107. |
[58] |
Yang X R, Yan D T, Wei X S, et al. Different formation mechanism of quartz in siliceous and argillaceous shales: A case study of Longmaxi Formation in South China[J]. Marine and Petroleum Geology, 2018, 94: 80-94. |
[59] |
Dowey P J, Taylor K G. Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA[J]. Sedimentary Geology, 2017, 356: 15-25. |
[60] |
Chen Q, Fan J X, Zhang L N, et al. Paleogeographic evolution of the Lower Yangtze region and the break of the “platform-slope-basin” pattern during the Late Ordovician[J]. Science China Earth Sciences, 2018, 61(5): 625-636. |
[61] |
王文娟,陈建文,雷宝华,等. 下扬子巢湖鼓地1井五峰组—高家边组生物地层及部分笔石带缺失原因[J]. 海洋地质前沿,2021,37(4):61-67.
Wang Wenjuan, Chen Jianwen, Lei Baohua, et al. Cause of the partial missing of graptolite zones in Wufeng and Kaochiapien Formations of well GD-1, Chaohu area, Lower Yangtze region[J]. Marine Geology Frontiers, 2021, 37(4): 61-67. |
[62] |
Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985. |
[63] |
Schieber J. Early diagenetic silica deposition in algal cysts and spores: A source of sand in black shales?[J]. Journal of Sedimentary Research, 1996, 66(1): 175-183. |
[64] |
Lampitt R S, Salter I, Johns D. Radiolaria: Major exporters of organic carbon to the deep ocean[J]. Global Biogeochemical Cycles, 2009, 23(1): GB1010. |
[65] |
Crosta X, Romero O E, Ther O, et al. Climatically-controlled siliceous productivity in the eastern gulf of Guinea during the last 40 000 yr[J]. Climate of the Past, 2012, 8(2): 415-431. |
[66] |
王淑芳,邹才能,董大忠,等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版),2014,50(3):476-486.
Wang Shufang, Zou Caineng, Dong Dadong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486. |
[67] |
Gorjan P, Kaiho K, Fike D A, et al. Carbon-and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: Global correlation and environmental event interpretation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 337-338: 14-22. |
[68] |
Liu Y, Li C, Algeo T J, et al. Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463: 180-191. |
[69] |
Khan M Z, Feng Q L, Zhang K, et al. Biogenic silica and organic carbon fluxes provide evidence of enhanced marine productivity in the Upper Ordovician-Lower Silurian of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109278. |
[70] |
Cai Q S, Hu M Y, Zhang B M, et al. Source of silica and its implications for organic matter enrichment in the Upper Ordovician-Lower Silurian black shale in western Hubei province, China: Insights from geochemical and petrological analysis[J]. Petroleum Science, 2022, 19(1): 74-90. |
[71] |
Peltonen C, Marcussen Ø, Bjørlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898. |
[72] |
Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764. |
[73] |
Dong T, Harris N B, Knapp L J, et al. The effect of thermal maturity on geomechanical properties in shale reservoirs: An example from the Upper Devonian Duvernay Formation, western Canada sedimentary basin[J]. Marine and Petroleum Geology, 2018, 97: 137-153. |
[74] |
Lei Z H, Dashtgard S E, Wang J, et al. Origin of chert in Lower Silurian Longmaxi Formation: Implications for tectonic evolution of Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529: 53-66. |
[75] |
Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108. |
[76] |
Boström K, Kraemer T, Gartner S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments[J]. Chemical Geology, 1973, 11(2): 123-148. |
[77] |
Wedepohl K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8: 307-333. |
[78] |
Tan J Q, Wang Z H, Wang W H, et al. Depositional environment and hydrothermal controls on organic matter enrichment in the lower Cambrian Niutitang shale, southern China[J]. AAPG Bulletin, 2021, 105(7): 1329-1356. |
[79] |
Gambacorta G, Trincianti E, Torricelli S. Anoxia controlled by relative sea-level changes: An example from the Mississippian Barnett Shale Formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 306-320. |
[80] |
Wright A M, Spain D, Ratcliffe K T. Application of inorganic whole rock geochemistry to shale resource plays[C]//Canadian unconventional resources and international petroleum conference. Calgary, Canada: SPE, 2010: 137946. |
[81] |
Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publication, 1985. |
[82] |
Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. |
[83] |
Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25. |
[84] |
Rybacki E, Meier T, Dresen G. What controls the mechanical properties of shale rocks?–Part II: Brittleness[J]. Journal of Petroleum Science and Engineering, 2016, 144: 39-58. |
[85] |
Ye Y P, Tang S H, Xi Z D, et al. Quartz types in the Wufeng-Longmaxi Formations in southern China: Implications for porosity evolution and shale brittleness[J]. Marine and Petroleum Geology, 2022, 137: 105479. |
[86] |
Liu Z S, Liu D M, Cai Y D, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261. |
[87] |
Isaacs C M. Porosity reduction during diagenesis of Monterey Formation, Santa Barbara, California: Abstract[M]. AAPG Bulletin, 1981, 65(5): 940-941. |
[88] |
Rice S B, Freund H, Huang W L, et al. Application of Fourier Transform infrared spectroscopy to silica diagenesis: The opal-A to opal-CT transformation[J]. Journal of Sedimentary Research, 1995, 65(4a): 639-647. |
[89] |
卢龙飞,刘伟新,俞凌杰,等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质,2020,42(3),363-370.
Lu Longfei, Liu Weixin, Yu Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370. |