[1] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[2] |
Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. |
[3] |
Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
[4] |
Sun L, Tuo J C, Zhang M F, et al. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J]. Fuel, 2015, 158: 549-57. |
[5] |
Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16. |
[6] |
宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324.
Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic-rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324. |
[7] |
李楚雄,肖七林,陈奇,等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质,2019,41(6):901-909.
Li Chuxiong, Xiao Qilin, Chen Qi, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41(6): 901-909. |
[8] |
王朋飞,金璨,臧小鹏,等. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏,2020,32(5):46-53.
Wang Pengfei, Jin Can, Zang Xiaopeng, et al. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing[J]. Lithologic Reservoirs, 2020, 32(5): 46-53. |
[9] |
Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. |
[10] |
Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181. |
[11] |
谭静强,张煜麟,罗文彬,等. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报,2019,38(1):18-29.
Tan Jingqiang, Zhang Yulin, Luo Wenbin, et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2019, 38(1): 18-29. |
[12] |
Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
[13] |
Tian H, Pan L, Zhang T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43. |
[14] |
Tang X, Zhang J C, Jin Z J, et al. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin[J]. Marine and Petroleum Geology, 2015, 64: 165-172. |
[15] |
陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438-444.
Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. |
[16] |
Gu Y T, Wan Q, Qin Z H, Luo T, et al. Nanoscale pore characteristics and influential factors of Niutitang Formation shale reservoir in Guizhou province[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6178-6189. |
[17] |
Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239. |
[18] |
Hou Y G, He S, Wang J G, et al. Preliminary study on the pore characterization of lacustrine shale reservoirs using low pressure nitrogen adsorption and field emission scanning electron microscopy methods: A case study of the Upper Jurassic Emuerhe Formation, Mohe Basin, northeastern China[J]. Canadian Journal of Earth Sciences, 2015, 52(5): 294-306. |
[19] |
曹涛涛,邓模,罗厚勇,等. 下扬子地区中上二叠统页岩有机孔发育特征[J]. 石油实验地质,2018,40(3):315-322,396.
Cao Taotao, Deng Mo, Luo Houyong, et al. Characteristics of organic pores in Middle and Upper Permian shale in the Lower Yangtze region[J]. Petroleum Geology & Experiment, 2018, 40(3): 315-322, 396. |
[20] |
龙鹏宇,张金川,姜文利,等. 渝页1井储层孔隙发育特征及其影响因素分析[J]. 中南大学学报(自然科学版),2012,43(10):3954-3963.
Long Pengyu, Zhang Jinchuan, Jiang Wenli, et al. Analysis on pores forming features and its influence factors of reservoir well Yuye-1[J]. Journal of Central South University (Science and Technology), 2012, 43(10): 3954-3963. |
[21] |
Bu H L, Yuan P, Liu H M, et al. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis[J]. Geochimica et Cosmochimica Acta, 2017, 212: 1-15. |
[22] |
Liu H M, Yuan P, Liu D, et al. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216. |
[23] |
Liang M L, Wang Z X, Gao L, et al. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 2017, 197: 310-319. |
[24] |
Zhu H J, Ju Y W, Huang C, et al. Tectonic and thermal controls on the nano-micro structural characteristic in a Cambrian Organic-Rich Shale[J]. Minerals, 2019, 9(6): 354. |
[25] |
Zhu H J, Ju Y W, Qi Y, et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 2018, 228: 272-289. |
[26] |
Dai J X, Li J, Luo X, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36(12): 1617-1635. |
[27] |
Duan Y, Wang C Y, Zheng C Y, et al. Geochemical study of crude oils from the Xifeng oilfield of the Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2008, 31(4/5/6): 341-356. |
[28] |
Guo H J, Jia W L, Peng P A, et al. The composition and its impact on the methane sorption of lacustrine shales from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2014, 57: 509-20. |
[29] |
Yang H, Niu X B, Xu L M, et al. Exploration potential of shale oil in Chang7 member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 560-569. |
[30] |
董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.
Dong Dazhong, Wang Yuman, Li Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32. |
[31] |
熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学,2019,30(9):1319-1331.
Xiong Liang. The characteristics of pore development of the Lower Cambrian organic-rich shale in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331. |
[32] |
刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘,2016,23(1):11-28.
Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. |
[33] |
李中明,张栋,张古彬,等. 豫西地区海陆过渡相含气页岩层系优选方法及有利区预测[J]. 地学前缘,2016,23(2):39-47.
Li Zhongming, Zhang Dong, Zhang Gubin, et al. The transitional facies shale gas formation selection and favorable area prediction in the western Henan[J]. Earth Science Frontiers, 2016, 23(2): 39-47. |
[34] |
邱庆伦,张古彬,冯辉,等. 河南中牟区块页岩气特征及勘探前景分析[J]. 地质找矿论丛,2018,33(1):70-75.
Qiu Qinglun, Zhang Gubin, Feng Hui, et al. Characteristics of shale gas and analysis of the prospecting potential in Zhongmu block, Henean province[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(1): 70-75. |
[35] |
王香增,高胜利,高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发,2014,41(3):294-304.
Wang Xiangzeng, Gao Shengli, Gao Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3): 294-304. |
[36] |
赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.
Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586. |
[37] |
姜振学,唐相路,李卓,等. 中国典型海相和陆相页岩储层孔隙结构及含气性[M]. 北京:科学出版社,2018.
Jiang Zhenxue, Tang Xianglu, Li Zhuo, et al. Pore structure and gas bearing property of typical marine and continental shale reservoirs in China[M]. Beijing: Science Press, 2018. |
[38] |
吴伟,王雨涵,曹高社,等. 南华北盆地豫西地区C-P烃源岩地球化学特征[J]. 天然气地球科学,2015,26(1):128-136.
Wu Wei, Wang Yuhan, Cao Gaoshe, et al. The geochemical characteristics of the Carboniferous and Permian source rocks in the western Henan, the southern North China Basin[J]. Natural Gas Geoscience, 2015, 26(1): 128-136. |
[39] |
曾秋楠,张交东,于炳松,等. 南华北盆地尉参1井上古生界海陆交互相页岩地球化学及其含气特征[J]. 海相油气地质,2019,24(1):71-77.
Zeng Qiunan, Zhang Jiaodong, Yu Bingsong, et al. Geochemical characteristics and gas-bearing property of paralic transitional shale of the Upper Paleozoic in well Weican 1, southern North China Basin[J]. Marine Origin Petroleum Geology, 2019, 24(1): 71-77. |
[40] |
陈尚斌,左兆喜,朱炎铭,等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学,2015,26(3):564-574.
Chen Shangbin, Zuo Zhaoxi, Zhu Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574. |
[41] |
Kelemen S R, Fang H L. Maturity trends in raman spectra from kerogen and coal[J]. Energy & Fuels, 2001, 15(3): 653-658. |
[42] |
Tuschel D. Raman spectroscopy of oil shale[J]. Spectroscopy, 2013, 28(3): 20-28. |
[43] |
刘德汉,肖贤明,田辉,等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报,2013,58(13):1228-1241.
Liu Dehan, Xiao Xianming, Tian Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241. |
[44] |
Schoenherr J, Littke R, Urai J L, et al. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen[J]. Organic Geochemistry, 2007, 38(8): 1293-1318. |
[45] |
梁狄刚,郭彤楼,边立曾,等. 中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质,2009,14(2):1-19.
Liang Digang, Guo Tonglou, Bian Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19. |
[46] |
Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337. |
[47] |
Yang F, Ning Z F, Wang Q, et al. Pore structure of Cambrian shales from the Sichuan Basin in China and implications to gas storage[J]. Marine and Petroleum Geology, 2016, 70: 14-26. |
[48] |
Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. |
[49] |
Wang G C. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 2020, 104(1): 21-36. |
[50] |
王行信,王国力,蔡进功,等. 有机粘土复合体与油气生成[M]. 北京:石油工业出版社,2006.
Wang Xingxin, Wang Guoli, Cai Jingong, et al. Organic-clay composites and hydrocarbon formation[M]. Beijing: Petroleum Industry Press, 2006. |
[51] |
Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737. |
[52] |
Abid I, Hesse R. Illitizing fluids as precursors of hydrocarbon migration along transfer and boundary faults of the Jeanne d’Arc Basin offshore Newfoundland, Canada[J]. Marine and Petroleum Geology, 2007, 24(4): 237-245. |
[53] |
李颖莉,蔡进功. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J]. 石油实验地质,2014,36(3):352-358.
Li Yingli, Cai Jingong. Effect of smectite illitization on shale gas occurrence in argillaceous source rocks[J]. Petroleum Geology & Experiment, 2014, 36(3): 352-358. |
[54] |
Berthonneau J, Grauby O, Abuhaikal M, et al. Evolution of organo-clay composites with respect to thermal maturity in type II organic-rich source rocks[J]. Geochimica et Cosmochimica Acta, 2016, 195: 68-83. |
[55] |
Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. |
[56] |
Alcover J F, Qi Y, Al-Mukhtar M, et al. Hydromechanical effects: (I) on the Na-smectite microtexture[J]. Clay Minerals, 2000, 35(3): 525-536. |
[57] |
Li J, Li X F, Wu K L, et al. Water sorption and distribution characteristics in clay and shale: Effect of surface force[J]. Energy & Fuels, 2016, 30(11): 8863-8874. |
[58] |
Chen G J, Yen M C, Wang J M, et al. Layered inorganic/enzyme nanohybrids with selectivity and structural stability upon interacting with biomolecules[J]. Bioconjugate Chemistry, 2008, 19(1): 138-144. |
[59] |
刘艳杰,程党性,邱庆伦,等. 南华北盆地下二叠统泥页岩孔隙特征及控制因素[J]. 天然气地球科学,2020,31(10):1501-1513.
Liu Yanjie, Cheng Dangxing, Qiu Qinglun, et al. Characteristics of pores and controlling factors of Lower Permian shales in southern North China Basin[J]. Natural Gas Geoscience, 2020, 31(10): 1501-1513. |
[60] |
柳宇柯. 高演化阶段页岩有机质纳米孔隙、化学结构与力学性能研究[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2019.
Liu Yuke. Nanopore development, chemical structure and mechanical properties of organic matter in highly matured shale[D]. Guangzhou: University of Chinese Academy Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2019. |