[1] 朱光有,赵坤,李婷婷,等. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报,2020,41(12):1567-1586.

Zhu Guangyou, Zhao Kun, Li Tingting, et al. Sedimentary environment, development model and distribution prediction of lower Cambrian source rocks in South China[J]. Acta Petrolei Sinica, 2020, 41(12): 1567-1586.
[2] 赵坤. 华南下寒武统黑色岩系的形成发育与烃源岩分布及预测[D]. 北京:中国地质大学(北京),2020.

Zhao Kun. Formation, distribution and prediction of lower Cambrian black rock series in South China[D]. Beijing: China University of Geo-sciences (Beijing), 2020.
[3] 程建,郑伦举. 川南地区金页1井早寒武世烃源岩沉积地球化学特征[J]. 石油与天然气地质,2020,41(4):800-810.

Cheng Jian, Zheng Lunju. Sedimentary geochemical characteristics of the early Cambrian source rocks in well Jinye 1 in southern Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 800-810.
[4] 刘犟,张克银. 井研—犍为地区麦地坪组—筇竹寺组沉积相特征[J]. 科学技术与工程,2018,18(2):20-25.

Liu Jiang, Zhang Keyin. Sedimentary facies characteristics of Maidiping-Qiongzhusi Formation in Jingyan-Qianwei area[J]. Science Technology and Engineering, 2018, 18(2): 20-25.
[5] 王同. 川南地区下寒武统麦地坪组—筇竹寺组储层特征及形成机理研究[D]. 成都:成都理工大学,2016.

Wang Tong. Reservoir characteristics and formation mechanism of the lower Cambrian Maidiping-Qiongzhusi Formation in southern Sichuan[D]. Chengdu: Chengdu University of Technology, 2016.
[6]

Li J, Tang S H, Zhang S H, et al. Paleo-environmental conditions of the early Cambrian Niutitang Formation in the Fenggang area, the southwestern margin of the Yangtze Platform, southern China: Evidence from major elements, trace elements and other proxies[J]. Journal of Asian Earth Sciences, 2018, 159: 81-97.
[7] 马叶情,林丽,庞艳春,等. 四川峨嵋麦地坪组白云岩有机地球化学特征[J]. 成都理工大学学报(自然科学版),2008,35(3):242-247.

Ma Yeqing, Lin Li, Pang Yanchun, et al. Organic geochemistry of dolomite from the Cambrian Maidiping Formation in Emei, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(3): 242-247.
[8] 朱茂炎. 动物的起源和寒武纪大爆发:来自中国的化石证据[J]. 古生物学报,2010,49(3):269-287.

Zhu Maoyan. The origin and Cambrian explosion of animals: Fossil evidences from China[J]. Acta Palaeontologica Sinica, 2010, 49(3): 269-287.
[9]

Jin C S, Li C, Peng X F, et al. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China[J]. Science China Earth Sciences, 2014, 57(4): 579-591.
[10] 刘树根,孙玮,钟勇,等. 四川海相克拉通盆地显生宙演化阶段及其特征[J]. 岩石学报,2017,33(4):1058-1072.

Liu Shugen, Sun Wei, Zhong Yong, et al. Evolutionary episodes and their characteristics within the Sichuan marine craton basin during Phanerozoic Eon, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1058-1072.
[11] 周国晓,魏国齐,胡国艺,等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学,2020,31(4):498-506.

Zhou Guoxiao, Wei Guoqi, Hu Guoyi, et al. The development setting and the organic matter enrichment of the lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506.
[12] 汪正江,王剑,卓皆文,等. 扬子陆块震旦纪—寒武纪之交的地壳伸展作用:来自沉积序列与沉积地球化学证据[J]. 地质论评,2011,57(5):731-742.

Wang Zhengjiang, Wang Jian, Zhuo Jiewen, et al. Crust extensional activity during the transition from Sinian (Ediacaran) to Cambrian in Yangtze Block: Evidences from the depositional sequence and its geochemical data[J]. Geological Review, 2011, 57(5): 731-742.
[13] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312.

Wang Zecheng, Jiang Hua, Wang Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312.
[14] 刘树根,王一刚,孙玮,等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版),2016,43(1):1-23.

Liu Shugen, Wang Yigang, Sun Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23.
[15] 刘宝珺,许效松,罗安屏,等. 中国扬子地台西缘寒武纪风暴事件与磷矿沉积[J].沉积学报,1987,5(3):28-39.

Liu Baojun, Xu Xiaosong, Luo Anping.et al. Storm events and phos-phate deposition in Cambrian on the western margin of the Yang-tze Platorm,China[J]. Acta Sedimentologica sinica, 1987, 5(3):28-39.
[16]

Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[17]

Steiner M, Li G X, Qian Y, et al. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
[18] 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学,2019,44(3):738-755.

Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-early Cambrian tectonic-sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
[19] 周慧,李伟,张宝民,等. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化[J]. 石油学报,2015,36(3):310-323.

Zhou Hui, Li Wei, Zhang Baomin, et al. Formation and evolution of Upper Sinian to lower Cambrian intraplatformal basin in Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 310-323.
[20] 姜巽. 四川盆地主要不整合特征及其构造意义[D]. 成都:成都理工大学,2019.

Jiang Xun. Characteristics and tectonic significance of major unconformities in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2019.
[21]

Taylor S R, McLennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
[22]

McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
[23] 侯东壮,吴湘滨,刘江龙,等. 黔东南州下寒武统黑色页岩稀土元素地球化学特征[J]. 中国有色金属学报,2012,22(2):546-552.

Hou Dongzhuang, Wu Xiangbin, Liu Jianglong, et al. Geochemical characteristics of rare earth elements in lower Cambrian black shale in southeast Qian[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(2): 546-552.
[24] 赵相宽. 湘黔地区下寒武统牛蹄塘组黑色页岩地球化学特征和古海洋环境[D]. 北京:中国地质大学(北京),2015.

Zhao Xiangkuan. Geochemical characteristics of black shale and paleoceanic implications of Niutitang Formation of early Cambrian, Guizhou and Hunan province[D]. Beijing: China University of Geosciences (Beijing), 2015.
[25]

Murray R W, ten Brink M R B, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271.
[26]

Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
[27] 曹婷婷,徐思煌,王约. 川东北下寒武统筇竹寺组稀土元素特征及其地质意义:以南江杨坝剖面为例[J]. 石油实验地质,2018,40(5):716-723.

Cao Tingting, Xu Sihuang, Wang Yue. Characteristics of rare earth elements in lower Cambrian Qiongzhusi Formation in northeastern Sichuan Basin and its geological implications: A case study of Yangba section, Nanjiang[J]. Petroleum Geology & Experiment, 2018, 40(5): 716-723.
[28]

Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
[29]

Bhatia M R, Taylor S R. Trace-element geochemistry and sedimentary provinces: A study from the Tasman geosyncline, Australia[J]. Chemical Geology, 1981, 33(1/2/3/4): 115-125.
[30] 刘田,冯明友,王兴志,等. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学,2019,30(5):740-750.

Liu Tian, Feng Mingyou, Wang Xingzhi, et al. Elemental geochemical characteristics and limit on sedimentary environment in the Late Ordovician Wufengian period in the Wuxi area, NE Chongqing[J]. Natural Gas Geoscience, 2019, 30(5): 740-750.
[31]

Wei W, Frei R, Klaebe R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at ~1.4 Ga[J]. Precambrian Research, 2021, 354: 106058.
[32] Cronan D S. Underwater minerals[M]. New York: Academic Press, 1980.
[33]

Choi J H, Hariya Y. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro belt, northeastern Hokkaido, Japan[J]. Economic Geology, 1992, 87(5): 1265-1274.
[34]

Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643.
[35] 鲍志东,朱井泉,江茂生,等. 海平面升降中的元素地球化学响应:以塔中地区奥陶纪为例[J].沉积学报,1998,16(4):32-36.

Bao Zhidong, Zhu Jingquan, Jiang Maosheng, et al.Isotope and trace element evolution:responding to sea-level fluctuation:An example of Ordovician in middle Tarim Basin[J].Acta Sedimentologica Sinica, 1998, 16 (4) :32-36.
[36] 师晶,黄文辉,吕晨航,等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报,2018,39(8):876-889.

Shi Jing, Huang Wenhui, Chenhang Lü, et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 876-889.
[37] 郑荣才,柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质,1999(1):22-27.

Zheng Rongcai, Liu Meiqing. Study on palaeosalinity of chang 6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 1999(1): 22-27.
[38] 丁海峰. 川西南地区下寒武统麦地坪组及筇竹寺组页岩储层特征研究[D]. 成都:成都理工大学,2016.

Ding Haifeng. The research of the shale group of lower Cambrian Maidiping Formation and Qingzhusi Formation in southwestern Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2016.
[39] 吕荐阔,翟世奎,于增慧,等. 氧化还原敏感性元素在沉积环境判别中的应用研究进展[J]. 海洋科学,2021,45(12):108-124.

Jiankuo Lü, Zhai Shikui, Yu Zenghui, et al. Application and influence factors of redox-sensitive elements in a sedimentary environment[J]. Marine Sciences, 2021, 45(12): 108-124.
[40] 解兴伟,袁华茂,宋金明,等. 海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评,2019,65(3):671-688.

Xie Xingwei, Yuan Huamao, Song Jinming, et al. Indication of redox sensitive elements in marine sediments on anoxic condition of water environment[J]. Geological Review, 2019, 65(3): 671-688.
[41] 杨季华,罗重光,杜胜江,等. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报,2020,40(6):723-733.

Yang Jihua, Luo Chongguang, Du Shengjiang, et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta mineralogica Sinica, 2020, 40(6): 723-733.
[42]

Holser W T. Evaluation of the application of rare⁃earth elements to paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 309-323.
[43]

Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1/2): 43-53.
[44] 吴盛炜,夏勇,谭亲平,等. 贵州织金磷块岩型稀土矿含矿岩系REE地球化学特征与稀土富集[J]. 矿物学报,2019,39(4):359-370.

Wu Shengwei, Xia Yong, Tan Qinping, et al. The REE geochemical characteristics and REE enrichment of ore-bearing rocks of the Zhijin phosphorite-type REE deposit, Guizhou, China[J]. Acta Mineralogica Sinica, 2019, 39(4): 359-370.
[45]

McArthur J M, Walsh J N. Rare-earth geochemistry of phosphorites[J]. Chemical Geology, 1984, 47(3/4): 191-220.
[46] 樊奇,樊太亮,李一凡,等. 塔里木地台北缘早寒武世古海洋氧化—还原环境与优质海相烃源岩发育模式[J]. 地球科学,2020,45(1):285-302.

Fan Qi, Fan Tailiang, Li Yifan, et al. Paleo-environments and development pattern of high-quality marine source rocks of the early Cambrian, northern Tarim Platform[J]. Earth Science, 2020, 45(1): 285-302.
[47]

Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[48]

Dulski P. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry[J]. Fresenius' Journal of Analytical Chemistry, 1994, 350(4): 194-203.
[49]

Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
[50] 冯洪真,俞剑华,方一亭,等. Ceanom对古海洋氧化还原条件相对变化的另一种可能解释[J]. 南京大学学报(自然科学),1997,33(3):402-408.

Feng Hongzhen, Yu Jianhua, Fang Yiting, et al. Another possible interpretation of Ceanom for relative changes in paleo oceanic redox conditions[J]. Journal of Nanjing University (Natural Sciences), 1997, 33(3): 402-408.
[51]

Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.
[52] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[53] 李延钧,赵圣贤,黄勇斌,等. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究[J]. 地质学报,2013,87(8):1136-1148.

Li Yanjun, Zhao Shengxian, Huang Yongbin, et al. The sedimentary micro-facies study of the lower Cambrian Qiongzhusi Formation in southern Sichuan Basin[J]. Acta Geologica Sinica, 2013, 87(8): 1136-1148.
[54] 张君,张玙,杨豫川,等. 四川雷波矿集区磷矿沉积特征及成矿规律研究[J]. 沉积与特提斯地质,2018,38(4):76-84.

Zhang Jun, Zhang Yu, Yang Yuchuan, et al. Sedimentary characteristics and mineralization of the phosphorite deposits in the Leibo ore field, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(4): 76-84.
[55] 陈慕天. 四川省洪雅县老汞山磷矿地质特征及其成因模式研究[D]. 成都:成都理工大学,2018.

Chen Mutian. Geological characteristics and genetic model of the Laogongshan phosphate deposit in Hongya county, Sichuan province[D]. Chengdu: Chengdu University of Technology, 2018.
[56] 欧洋. 川西典型磷矿床中稀土元素的赋存状态研究[D]. 成都:成都理工大学,2015.

Yang Ou. The research of occurrence state of rare-earth element in typical western Szechuan phosphate ore deposit[D]. Chengdu: Chengdu University of Technology, 2015.
[57] 陈安清,侯明才,林良彪,等. 上扬子地区寒武纪岩相古地理:对中国小陆块海相盆地演化特点及其控藏效应的启示[J].沉积与特提斯地质,2020,40(3):38-47.

Chen Anqing, Hou Mingcai, Lin Liangbiao,et al. Cambrian lithofacies paleo-geographic characteristics of the Upper Yangtze Block:Implications for the marine basin evolution and hydrocarbon accumulation of small-scale tectonic blocks in China[J]. Sedimentary Geology and Tethyan Geology,2020,40(3):38-47.
[58] 沈树忠,朱茂炎,王向东,等. 新元古代—寒武纪与二叠—三 叠纪转折时期生物和地质事件及其环境背景之比较[J]. 中国科学:地球科学,2010, 40 (09):1228-1240.

Shen Shuzhong, Zhu Maoyan, Wang Xiangdong, et al. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions [J]. Sci China Earth Sci, 2010, 40 (09): 1228-1240.
[59] 潘晓强,董晓霞,代乔坤,等. 四川盆地井研—犍为地区寒武系第二统九老洞组古生物化石及其地层划分对比[J]. 微体古生物学报,2021,38(3):241-256.

Pan Xiaoqiang, Dong Xiao-xia, Dai Qiaokun, et al. Fossil assemblages and stratigraphic correlation of the Jiulaodong Formation (early Cambrian) in the Jingyan—Qianwei area, Sichuan Basin[J]. Acta Micro-palaeontologica Sinica, 2021, 38(3): 241-256.
[60] 施春华,山述娇,郝靖,等. 四川盆地震旦—寒武系高演化烃源岩无机地球化学特征与评价[J]. 石油实验地质,2022,44(3):505-514.

Shi Chunhua, Shan Shujiao, Hao Jing, et al. Inorganic geochemical characteristics and evaluation of Sinian-Cambrian post-mature source rocks in Sichuan Basin[J]. Petroleum Geology and Experiment, 2022, 44(3): 505-514.
[61] 范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,2021,39(4):1004-1019.

Fan Haijing, Deng Hucheng, Fu Meiyan, et al. Sedimentary characteristics of the lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019.
[62]

Gao P, Li S J, Lash G G, et al. Stratigraphic framework, redox history, and organic matter accumulation of an Early Cambrian intraplatfrom basin on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2021, 130: 105095.