[1] |
Liu X M, Hardisty D S, Lyons T W, et al. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank[J]. Geochimica et Cosmochimica Acta, 2019, 248: 25-42. |
[2] |
Hoffman P F, Kaufman A J, Halverson G P, et al. A neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346. |
[3] |
Hoffman P F. Pan-glacial—a third state in the climate system[J]. Geology Today, 2009, 25(3): 100-107. |
[4] |
Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983. |
[5] |
Hoffman P F, Schrag D P. The snowball Earth hypothesis: Testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155. |
[6] |
Holland H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B, 2006, 361(1470): 903-915. |
[7] |
Canfield D E, Poulton S W, Narbonne G M. Late-neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95. |
[8] |
Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549. |
[9] |
Cohen P A, Macdonald F A, Pruss S, et al. Fossils of putative marine algae from the Cryogenian glacial interlude of Mongolia[J]. Palaios, 2015, 30(3): 238-247. |
[10] |
Cohen P A, Macdonald F A. The Proterozoic record of eukaryotes[J]. Paleobiology, 2015, 41(4): 610-632. |
[11] |
Knoll A H, Carroll S E. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137. |
[12] |
Kirschvink J L. Late Proterozoic low-latitude global glaciation: The snowball Earth[M]//Schopf J W, Klein C. The proterozoic biosphere: A multidisciplinary study. New York: Cambridge University Press, 1992: 52-57. |
[13] |
Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785): 425-429. |
[14] |
Ye Q, Tong J N, Xiao S H, et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth[J]. Geology, 2015, 43(6): 507-510. |
[15] |
Rieu R, Allen P A, Plötze M, et al. Climatic cycles during a Neoproterozoic “snowball” glacial epoch[J]. Geology, 2007, 35(4): 299-302. |
[16] |
Le Heron D P, Busfield M E, Le Ber E, et al. Neoproterozoic ironstones in northern Namibia: Biogenic precipitation and Cryogenian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 48-57. |
[17] |
Benn D I, Le Hir G, Bao H M, et al. Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation[J]. Nature Geoscience, 2015, 8(9): 704-707. |
[18] |
李美俊,王铁冠. 扬子区新元古代“雪球”时期古环境的分子地球化学证据[J]. 地质学报,2007,81(2):220-229.
Li Meijun, Wang Tieguan. Molecular geochemical evidence for the Paleoenvironment of the Late Neoproterozoic "Snowball Earth" age in the Yangtze Region[J]. Acta Geologica Sinica, 2007, 81(2): 220-229. |
[19] |
Planavsky N J, Rouxel O J, Bekker A, et al. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467(7319): 1088-1090. |
[20] |
Condon D, Zhu M Y, Bowring S, et al. U-Pb ages from the neoproterozoic Doushantuo formation, China[J]. Science, 2005, 308(5718): 95-98. |
[21] |
Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on Late neoproterozoic glaciations[J]. Geology, 2005, 33(6): 473-476. |
[22] |
Ali K A, Stern R J, Manton W I, et al. Neoproterozoic diamictite in the eastern desert of Egypt and northern Saudi Arabia: Evidence of ~750 Ma glaciation in the Arabian–Nubian shield?[J]. International Journal of Earth Sciences, 2010, 99(4): 705-726. |
[23] |
Ali K K A, Stern R J, Manton W I, et al. Geochemical, U–Pb zircon, and Nd isotope investigations of the neoproterozoic Ghawjah Metavolcanic rocks, Northwestern Saudi Arabia[J]. Lithos, 2010, 120(3/4): 379-392. |
[24] |
Zhang K, Zhu X K, Yan B. A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82-91. |
[25] |
冯东,陈多福,刘芊. 新元古代晚期盖帽碳酸盐岩的成因与"雪球地球"的终结机制[J]. 沉积学报,2006,24(2):235-241.
Feng Dong, Chen Duofu, Liu Qian. Formation of Late Neoproterozoic cap carbonates and termination mechanism of “Snowball Earth”[J]. Acta Sedimentologica Sinica, 2006, 24(2): 235-241. |
[26] |
Lang X G, Chen J T, Cui H, et al. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China[J]. Precambrian Research, 2018, 310: 243-255. |
[27] |
卫炜. 成冰纪到寒武纪早期地球表面氧化还原状态演化[D]. 南京:南京大学,2018.
Wei Wei. Redox evolutions at earth’s surface from the cryogenian to Early Cambrian[D]. Nanjing: Nanjing University, 2018. |
[28] |
Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127. |
[29] |
Shen Y N, Zhang T G, Hoffman P F. On the coevolution of Ediacaran oceans and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(21): 7376-7381. |
[30] |
Jiang G Q, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920. |
[31] |
Kennedy M J, Christie-Blick N, Prave A R. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomen[J]. Geology, 2001, 29(12): 1135-1138. |
[32] |
Kennedy M, Mrofka D, von der Borch C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate[J]. Nature, 2008, 453(7195): 642-645. |
[33] |
刘鹏举,尹崇玉,唐烽,等. 瓮安生物群中后生动物化石研究进展及问题讨论[J]. 地质论评,2007,53(6):728-735.
Liu Pengju, Yin Chongyu, Tang Feng, et al. Progresses and questions on studying metazoan fossils of the Weng’an Biota[J]. Geological Review, 2007, 53(6): 728-735. |
[34] |
Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250. |
[35] |
Li G J, Chen J, Ji J F, et al. Global cooling forced increase in marine strontium isotopic ratios: Importance of mica weathering and a kinetic approach[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 303-312. |
[36] |
Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353. |
[37] |
Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3123-3137. |
[38] |
Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362. |
[39] |
沈洪娟,顾尚义,赵思凡,等. 华南南华纪南沱冰期海洋环境的沉积地球化学记录:来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据[J]. 地质论评,2020,66(1):214-228.
Shen Hongjuan, Gu Shangyi, Zhao Sifan, et al. The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan) glaciation in South China: Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou[J]. Geological Review, 2020, 66(1): 214-228. |
[40] |
Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. |
[41] |
Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223: 13-54. |
[42] |
Zheng Y F, Xiao W J, Zhao G C. Introduction to tectonics of China[J]. Gondwana Research, 2013, 23(4): 1189-1206. |
[43] |
杨明桂,祝平俊,熊清华,等. 新元古代—早古生代华南裂谷系的格局及其演化[J]. 地质学报,2012,86(9):1367-1375.
Yang Minggui, Zhu Pingjun, Xiong Qinghua, et al. Framework and evolution of the Neoproterozoic-Early Paleozoic South-China rift system[J]. Acta Geologica Sinica, 2012, 86(9): 1367-1375. |
[44] |
Zhang Q R, Chu X L, Feng L J. Chapter 32 neoproterozoic glacial records in the Yangtze Region, China[M]//Arnaud E, Halverson G P, Shields-Zhou G. The geological record of neoproterozoic glaciations. London: Geological Society, 2011, 36: 357-366. |
[45] |
Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in south China[J]. Gondwana Research, 2011, 19(4): 831-849. |
[46] |
Huang J, Feng L J, Lu D B, et al. Multiple climate cooling prior to Sturtian glaciations: Evidence from chemical index of alteration of sediments in South China[J]. Scientific Reports, 2014, 4: 6868. |
[47] |
Gu S Y, Fu Y, Long J X. Predominantly ferruginous conditions in south china during the marinoan glaciation: Insight from REE geochemistry of the syn-glacial dolostone from the nantuo formation in Guizhou province, China[J]. Minerals, 2019, 9(6): 348. |
[48] |
赵思凡,顾尚义,沈洪娟,等. 华南地区南沱冰期海洋氧化还原环境研究:来自贵州松桃南沱组白云岩稀土元素地球化学的指示[J]. 沉积学报,2020,38(6):1140-1151.
Zhao Sifan, Gu Shangyi, Shen Hongjuan, et al. Ocean redox environment in the nantuo ice age of South China: An indication of the rare earth element geochemistry in the dolomites from the Nantuo Formation in Guizhou province[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1140-1151. |
[49] |
Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4): 289-294. |
[50] |
Bao X J, Zhang S H, Jiang G Q, et al. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 2018, 483: 52-63. |
[51] |
周琦,杜远生,袁良军,等. 古天然气渗漏沉积型锰矿床找矿模型:以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例[J]. 地质学报,2017,91(10):2285-2298.
Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: A case study of the nanhua period “Datangpo” type manganese ore in the conjunction area of Guizhou, Hunan and Chongqing[J]. Acta Geologica Sinica, 2017, 91(10): 2285-2298. |
[52] |
戴传固,陈建书,卢定彪,等. 黔东及邻区武陵运动及其地质意义[J]. 地质力学学报,2010,16(1):78-84.
Dai Chuangu, Chen Jianshu, Lu Dingbiao, et al. Wuling orogeny in eastern Guizhou and its adjacent regions and its geological significance[J]. Journal of Geomechanics, 2010, 16(1): 78-84. |
[53] |
McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200. |
[54] |
Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. |
[55] |
Taylor S R, McLennan S M, McCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 1897-1905. |
[56] |
Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72. |
[57] |
Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579. |
[58] |
吴斌,吴盾,万宗启,等. 淮南潘二矿太原组灰岩稀土元素特征及沉积环境的分析[J]. 中国科学技术大学学报,2013,43(5):355-362.
Wu Bin, Wu Dun, Wan Zongqi, et al. Geochemical characteristics of REE in limestone of the Taiyuan Formation, Paner coalmine and their constraint on depositional environment[J]. Journal of University of Science and Technology of China, 2013, 43(5): 355-362. |
[59] |
赵彦彦. 皖南新元古界蓝田组碳酸盐岩沉积地球化学[D]. 合肥:中国科学技术大学,2009.
Zhao Yanyan. Sedimentary geochemistry of neoproterozoic carbonates in the Lantian Formation from southern Anhui in South China[D]. Hefei: University of Science and Technology of China, 2009. |
[60] |
李定龙. 皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义[J]. 地学前缘,2000,7(2):353-365.
Li Dinglong. REE geochemical features of carbonate rocks and its paleokarst significane in the Ordovician in northern Anhui[J]. Earth Science Frontiers, 2000, 7(2): 353-365. |
[61] |
Kamber B S, Webb G E. The geochemistry of Late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525. |
[62] |
Cherniak D J. REE diffusion in calcite[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 273-287. |
[63] |
Tanaka K, Kawabe I. REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution[J]. Geochemical Journal, 2006, 40(5): 425-435. |
[64] |
Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. |
[65] |
Tepe N, Bau M. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: Evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland[J]. Science of the Total Environment, 2014, 488-489: 243-251. |
[66] |
Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3/4): 203-221. |
[67] |
Bhatia M P, Kujawinski E B, Das S B, et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean[J]. Nature Geoscience, 2013, 6(4): 274-278. |
[68] |
Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340. |
[69] |
陈松,傅雪海,桂和荣,等. 皖北新元古界望山组灰岩微量元素地球化学特征[J]. 古地理学报,2012,14(6):813-820.
Chen Song, Fu Xuehai, Gui Herong, et al. Geochemical characteristics of trace elements in limestone of the Neoproterozoic Wangshan Formation in northern Anhui province[J]. Journal of Palaeogeography, 2012, 14(6): 813-820. |
[70] |
Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. |
[71] |
孙林华,桂和荣,贺振宇. 皖北灵璧地区新元古代灰岩的稀土元素特征[J]. 稀土,2010,31(6):32-40.
Sun Linhua, Gui Herong, He Zhenyu. Rare earth element characteristics of the neoproterozoic limestones in Lingbi district, northern Anhui province[J]. Chinese Rare Earths, 2010, 31(6): 32-40. |
[72] |
Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. |
[73] |
Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite[J]. Sedimentology, 2009, 56(5): 1433-1463. |
[74] |
Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471. |
[75] |
Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123-131. |
[76] |
Huang J, Chu X L, Jiang G Q, et al. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate[J]. Journal of the Geological Society, 2011, 168(3): 805-816. |
[77] |
Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304. |
[78] |
Sawaki Y, Ohno T, Tahata M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China[J]. Precambrian Research, 2010, 176(1/2/3/4): 46-64. |
[79] |
Zhou C M, Tucker R, Xiao S H, et al. New constraints on the ages of Neoproterozoic glaciations in south China[J]. Geology, 2004, 32(5): 437-440. |
[80] |
de Baar H J, German C R, Elderfield H, et al. Rare earth element distributions in anoxic waters of the Cariaco Trench[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1203-1219. |
[81] |
Kamber B S. Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry[J]. Chemical Geology, 2010, 274(1/2): 19-28. |
[82] |
Orians K J, Bruland K W. The biogeochemistry of aluminum in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1986, 78(4): 397-410. |
[83] |
Langmuir D, Herman J S. The mobility of thorium in natural waters at low temperatures[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1753-1766. |
[84] |
Brocks J J, Jarrett A J M, Sirantoine E, et al. The rise of algae in Cryogenian oceans and the emergence of animals[J]. Nature, 2017, 548(7669): 578-581. |
[85] |
Hoffman P F. Cryoconite pans on Snowball Earth: Supraglacial oases for Cryogenian eukaryotes?[J]. Geobiology, 2016, 14(6): 531-542. |
[86] |
Johnson B W, Poulton S W, Goldblatt C. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth[J]. Nature Communications, 2017, 8(1): 1316. |