[1] 李琪琪,蓝宝锋,李刚权,等. 黔中隆起北缘五峰—龙马溪组页岩元素地球化学特征及其地质意义[J]. 地球科学,2021,46(9):3172-3188.

Li Qiqi, Lan Baofeng, Li Gangquan, et al. Element geochemical characteristics and their geological significance of Wufeng-Longmaxi Formation shales in north margin of the central Guizhou uplift[J]. Earth Science, 2021, 46(9): 3172-3188.
[2] 何佳伟,谢渊,侯明才,等. 川西南盐津地区志留系龙马溪组页岩地球化学特征及地质意义[J]. 古地理学报,2021,23(6):1174-1191.

He Jiawei, Xie Yuan, Hou Mingcai, et al. Geochemical characteristics and geological significance of the Silurian Longmaxi Formation shale in Yanjin area, southwestern Sichuan Basin[J]. Journal of Palaeogeography, 2021, 23(6): 1174-1191.
[3] 王鹏万,张磊,李昌,等. 黑色页岩氧化还原条件与有机质富集机制:以昭通页岩气示范区A井五峰组—龙马溪组下段为例[J]. 石油与天然气地质,2017,38(5):933-943.

Wang Pengwan, Zhang Lei, Li Chang, et al. Redox conditions and organic enrichment mechanisms of black shale: A case from the Wufeng-lower Longmaxi Formations in well A in Zhaotong Shale Gas Demonstration Area[J]. Oil & Gas Geology, 2017, 38(5): 933-943.
[4] 杨跃明,陈玉龙,刘燊阳,等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业,2021,41(1):42-58.

Yang Yueming, Chen Yulong, Liu Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(1): 42-58.
[5] 胡明毅,邱小松,胡忠贵,等. 页岩气储层研究现状及存在问题探讨[J]. 特种油气藏,2015,22(2):1-7.

Hu Mingyi, Qiu Xiaosong, Hu Zhonggui, et al. Current researches on shale gas reservoirs and existing problems[J]. Special Oil & Gas Reservoirs, 2015, 22(2): 1-7.
[6] 张金川,陶佳,李振,等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业,2021,41(1):15-28.

Zhang Jinchuan, Tao Jia, Li Zhen, et al. Prospect of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28.
[7] 操应长,徐琦松,王健. 沉积盆地“源—汇”系统研究进展[J]. 地学前缘,2018,25(4):116-131.

Cao Yingchang, Xu Qisong, Wang Jian. Progress in "source-to-sink” system research[J]. Earth Science Frontiers, 2018, 25(4): 116-131.
[8] 梁兴,张朝,单长安,等. 山地浅层页岩气勘探挑战、对策与前景:以昭通国家级页岩气示范区为例[J]. 天然气工业, 2021, 41(2): 27-36.

Liang Xing, Zhang Zhao, Shan Chang’an, et al. Exploration challenges, countermeasures and prospect of mountain shallow shale gas: A cased study on the Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(2):27-36.
[9] 梁兴,徐政语,张朝,等. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义[J]. 石油勘探与开发,2020,47(1):11-28.

Liang Xing, Xu Zhengyu, Zhang Zhao, et al. Breakthrough of shallow shale gas exploration in Taiyang anticline area and its significance for resource development in Zhaotong, Yunnan province, China[J]. Petroleum Exploration and Development, 2020, 47(1): 11-28.
[10] 杜建平,叶熙,史树有,等. 复杂山地页岩气勘探开发技术创新与成效:以昭通国家级页岩气示范区为例[J]. 天然气工业,2021,41(4):41-50.

Du Jianping, Ye Xi, Shi Shuyou, et al. Technological innovation and achievements in the exploration and development of shale gas in complex mountainous areas: A case study of the Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(4): 41-50.
[11] 张廷山,陈雷,梁兴,等. 昭通国家级页岩气示范区五峰组—龙马溪组页岩气富集地质主控因素[J]. 天然气工业,2023,43(4):93-102.

Zhang Tingshan, Chen Lei, Liang Xing, et al. Geological control factors of shale gas enrichment in the Wufeng-Longmaxi Formation of the Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2023, 43(4): 93-102.
[12] 王鹏万,焦鹏飞,贺训云,等. 昭通示范区太阳—海坝浅层页岩气富集模式[J]. 中国石油大学学报(自然科学版),2023,47(3):45-54.

Wang Pengwan, Jiao Pengfei, He Xunyun, et al. Shallow shale gas enrichment model of Taiyang-Haiba in Zhaotong Demonstration Area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 45-54.
[13] 王鹏万,邹辰,李娴静,等. 昭通示范区页岩气富集高产的地质主控因素[J]. 石油学报,2018,39(7):744-753.

Wang Pengwan, Zou Chen, Li Xianjing, et al. Main geological controlling factors of shale gas enrichment and high yield in Zhaotong Demonstration Area[J]. Acta Petrolei Sinica, 2018, 39(7): 744-753.
[14] 王跃,桂和荣,苏尚国,等. 滇黔北五峰组—龙马溪组页岩沉积环境和古气候地球化学特征[J]. 沉积学报,2022,40(3):653-666.

Wang Yue, Gui Herong, Su Shangguo, et al. Sedimentary environment and paleoclimate geochemical characteristics of shale in the Wufeng and Longmaxi Formations, northern Yunan-Guizhou area[J]. Acta Sedimentologica Sinica, 2022, 40(3): 653-666.
[15] 梁兴,张廷山,舒红林,等. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价[J]. 中国地质,2020,47(1):72-87.

Liang Xing, Zhang Tingshan, Shu Honglin, et al. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong National Shale Gas Demonstration Area in the northern Yunnan-Guizhou[J]. Geology in China, 2020, 47(1): 72-87.
[16] 何勇,李林,刘成,等. 盆外山地浅层页岩气经济有效开发对策探索[J]. 天然气工业,2021,41(4):82-90.

He Yong, Li Lin, Liu Cheng, et al. Economic and effective development of shale gas in mountainous areas outside the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(4): 82-90.
[17] 李娟,陈雷,计玉冰,等. 浅层海相页岩含气性特征及其主控因素:以昭通太阳区块下志留统龙马溪组为例[J]. 石油实验地质,2023,45(2):296-306.

Li Juan, Chen Lei, Ji Yubing, et al. Gas-bearing characteristics and major controlling factors of shallow marine shale: A case study of the Lower Silurian Longmaxi Formation in Taiyang block of Zhaotong area[J]. Petroleum Geology and Experiment, 2023, 45(2): 296-306.
[18] 任官宝,陈雷,计玉冰,等. 昭通东北地区五峰组—龙马溪组龙一1亚段页岩岩相类型及其储层特征[J]. 石油实验地质,2023,45(3):443-454.

Ren Guanbao, Chen Lei, Ji Yubing, et al. Shale lithofacies types and reservoir characteristics from Ordovician Wufeng Formation to the First sub-member of the First member of Silurian Longmaxi Formation, northeast Zhaotong area[J]. Petroleum Geology & Experiment, 2023, 45(3): 443-454.
[19] 何卫红,汪啸风,卜建军. 晚奥陶世五峰期扬子海盆海平面变化旋回与古水体深度[J]. 沉积学报,2002,20(3):367-375.

He Weihong, Wang Xiaofeng, Bu Jianjun. The eustatic cycles and the depth of water mass of the latest Ordovician Wufengian in the Yangtse Basin[J]. Acta Sedimentologica Sinica, 2002, 20(3): 367-375.
[20] 梁兴,徐政语,张介辉,等. 浅层页岩气高效勘探开发关键技术:以昭通国家级页岩气示范区太阳背斜区为例[J]. 石油学报,2020,41(9):1033-1048.

Liang Xing, Xu Zhengyu, Zhang Jiehui, et al. Key efficient exploration and development technoloiges of shallow shale gas: A case study of Taiyang anticline area of Zhaotong National Shale Gas Demonstration Zone[J]. Acta Petrolei Sinica, 2020, 41(9): 1033-1048.
[21]

Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[22] 张茜,肖渊甫,王晓飞,等. 四川盆地西南缘龙马溪组泥岩地球化学特征及物源区和构造背景分析[J]. 地质论评,2020,66(5):1393-1411.

Zhang Qian, Xiao Yuanfu, Wang Xiaofei, et al. Geochemistry of the Longmaxi Formation mudstones of the southwest Sichuan Basin: Implications for provenance and source weathering[J]. Geological Review, 2020, 66(5): 1393-1411.
[23]

Zhou L, Algeo T J, Shen J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
[24]

Gromet L P, Haskin L A, Korotev R L, et al. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
[25] 杜远生,朱杰,顾松竹,等. 北祁连造山带寒武系—奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J]. 中国科学(D辑):地球科学,2007,37(10):1314-1329.

Du Yuansheng, Zhu Jie, Gu Songzhu, et al. Sedimentary geochemistry of the Cambrian-Ordovician cherts: Implication on archipelagic ocean of North Qilian orogenic belt[J]. Science China (Seri. D): Earth Sciences, 2007, 37(10): 1314-1329.
[26] 李友川,李宏义,兰蕾. 北部湾盆地流二段油页岩地球化学特征及成因[J]. 沉积学报,2022,40(3):616-625.

Li Youchuan, Li Hongyi, Lan Lei. Geochemical characteristics and genesis of oil shale in Beibuwan Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 616-625.
[27] 张茜,余谦,王剑,等. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境[J]. 岩矿测试,2018,37(2):217-224.

Zhang Qian, Yu Qian, Wang Jian, et al. Application of ICP-MS to study the rare earth element characteristics and sedimentary environment of black shale in the Longmaxi Formation in the southwestern Sichuan Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 217-224.
[28]

Bai Y Y, Liu Z J, Sun P C, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101.
[29] 邱振,谈昕,卢斌,等. 四川盆地巫溪地区五峰组—龙马溪组硅质岩地球化学特征[J]. 矿物岩石地球化学通报,2018,37(5):880-887.

Qiu Zhen, Tan Xin, Lu Bin, et al. Geochemical characteristics of cherts from the Wufeng and Longmaxi Formations in the Wuxi area, Sichuan Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(5): 880-887.
[30] 姚红生,何希鹏,汪凯明. 下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义[J]. 海洋地质前沿,2022,38(4):32-41.

Yao Hongsheng, He Xipeng, Wang Kaiming. Geochemical characteristics and significance of the shale of Lower Cambrian Hetang Formation in the southern Anhui province of Lower Yangtze area[J]. Marine Geology Frontiers, 2022, 38(4): 32-41.
[31] 刘江涛,李永杰,张元春,等. 焦石坝五峰组—龙马溪组页岩硅质生物成因的证据及其地质意义[J]. 中国石油大学学报(自然科学版),2017,41(1):34-41.

Liu Jiangtao, Li Yongjie, Zhang Yuanchun, et al. Evidences of biogenic silica of Wufeng-Longmaxi Formation shale in Jiaoshiba area and its geological significance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 34-41.
[32]

Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
[33]

Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108.
[34]

Holdaway H K, Clayton C J. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon[J]. Geological Magazine, 1982, 119(4): 371-382.
[35] 王淑芳,邹才能,董大忠,等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版),2014,50(3):476-486.

Wang Shufang, Zou Caineng, Dong Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486.
[36] 易婷. 川南五峰组—龙马溪组富有机质页岩硅质特征与储层之间的关系[D]. 成都:成都理工大学,2020.

Yi Ting. Relationship between silica’s characteristics and reservoirs of the organic-rich shale in Wufeng Formation-Longmaxi Formation in southern Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2020.
[37] 王拔秀,张鹏辉,梁杰,等. 生物成因微晶石英特征及其对海相页岩储层孔隙发育的影响[J/OL]. 沉积学报,doi:  10.14027/j.issn.1000-0550.2022.143.

Wang Baxiu, Zhang Penghui, Liang Jie, et al. Biogenic microcrystalline quartz and its influence on pore development in marine shale reservoirs[J/OL]. Acta Sedimentologica Sinica, doi:  10.14027/j.issn.1000-0550.2022.143.
[38] 张茜. 康滇古陆西侧龙马溪组黑色页岩地球化学特征及沉积环境研究[D]. 成都:成都理工大学,2017.

Zhang Qian. Black shale from the Longmaxi Formation in the western Xikang-Yunnan ancient land: Geochemistry and sedimentary environment[D]. Chengdu: Chengdu University of Technology, 2017.
[39] 黄梓桑,王兴志,杨西燕,等. 沉积环境对页岩中有机质富集的约束:以蜀南地区五峰组—龙马溪组为例[J]. 沉积学报,2021,39(3):631-644.

Huang Zisang, Wang Xingzhi, Yang Xiyan, et al. Constraints of sedimentary environment on organic matter accumulation in shale: A case study of the Wufeng-Longmaxi Formations in the southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 631-644.
[40]

Murray R W, Leinen M, Isern A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods[J]. Paleoceanography, 1993, 8(5): 651-670.
[41] 薛路,陈建文,吴飘,等. 下扬子巢湖地区鼓地1井五峰组—高家边组下段页岩地球化学特征及其地质意义[J]. 海洋地质前沿,2022,38(5):12-22.

Xue Lu, Chen Jianwen, Wu Piao, et al. Geochemical characteristics and geological significance of shale in the Lower member of Wufeng-Gaojiabian Formation of well Gudi 1 in Chaohu area, Lower Yangtze region[J]. Marine Geology Frontiers, 2022, 38(5): 12-22.
[42] 陈会军,刘招君,柳蓉,等. 银额盆地下白垩统巴音戈壁组油页岩特征及古环境[J]. 吉林大学学报(地球科学版),2009,39(4):669-675.

Chen Huijun, Liu Zhaojun, Liu Rong, et al. Characteristic of oil shale and paleoenvironment of the Bayingebi Formation in the Lower Cretaceous in Yin'e Basin[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 669-675.
[43] 王中刚,于学元,赵振华. 稀土元素地球化学[M]. 北京:科学出版社,1989.

Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. Geochemistry of rare earth elements[M]. Beijing: Science Press, 1989.
[44] 郭望,张卫刚,李玉宏,等. 柴北缘大煤沟组七段页岩地球化学特征:对中侏罗世晚期物源及风化作用的指示及意义[J]. 沉积学报,2020,38(3):676-686.

Guo Wang, Zhang Weigang, Li Yuhong, et al. Geochemistry of 7 member shale of the Dameigou Formation in the northern Qaidam Basin, China: Significance and implication for provenance and source weathering in the late Middle Jurassic[J]. Acta Sedimentologica Sinica, 2020, 38(3): 676-686.
[45]

Bhatia M R, Taylor S R. Trace-element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia[J]. Chemical Geology, 1981, 33(1/2/3/4): 115-125.
[46]

Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[47] Taylor S R, McClennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific, 1985.
[48] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1984.

Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental geochemistry[M]. Beijing: Science Press, 1989.
[49] 刘春来,熊国庆,董国明,等. 扬子北缘奥陶纪—志留纪之交泥岩地球化学特征及其源区、构造背景[J]. 地质论评,2021,67(5):1263-1279.

Liu Chunlai, Xiong Guoqing, Dong Guoming, et al. Geochemical characteristics of mudstones and its provenance and tectonic setting during the Ordovician-Silurian period in northern margin of Yangtze Block[J]. Geological Review, 2021, 67(5): 1263-1279.
[50]

Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[51]

Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[52] 周传芳,杨华本,蔡艳龙,等. 漠河盆地西缘漠河组形成时代及物源区构造环境判别[J]. 中国地质,2021,48(3):832-853.

Zhou Chuanfang, Yang Huaben, Cai Yanlong, et al. Stratigraphic age of the Mohe Formation in the western margin of Mohe Basin and tectonic environment discrimination of provenance[J]. Geology in China, 2021, 48(3): 832-853.
[53]

Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393-407.
[54]

Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
[55]

Yu B S, Dong H L, Widom E, et al. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, northwest China: Implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
[56]

Peter J M. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, gulf of California[J]. The Canadian Mineralogist, 1988, 26(3): 567-587.
[57] 侯东壮,吴湘滨,邓鑫楠. 贵州铜仁地区九门冲组黑色页岩地球化学特征及成岩环境研究[J]. 地质与勘探,2019,55(3):779-788.

Hou Dongzhuang, Wu Xiangbin, Deng Xinnan. Geochemical characteristics and diagenetic setting of the Jiumenchong Formation black shale in the Tongren area of Guizhou province[J]. Geology and Exploration, 2019, 55(3): 779-788.
[58] Cronan D S. Underwater minerals[M]. London: Academic Press, 1980.
[59]

Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 757-762.
[60]

Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert[J]. Sedimentary Geology, 2006, 183(3/4): 203-216.
[61]

Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394.
[62]

Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
[63]

Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[64] 张治波,徐颖,苗艳菊,等. 昌都盆地古近系贡觉组物源及其沉积环境[J]. 沉积学报,2022,40(6):1561-1581.

Zhang Zhibo, Xu Ying, Miao Yanju, et al. Provenance and sedimentary environment of Paleogene Gongjue Formation in Qamdo Basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1561-1581.
[65] 刘家铎,张成江,刘显凡,等. 扬子地台西南缘成矿规律及找矿方向[M]. 北京:地质出版社,2004.

Liu Jiaduo, Zhang Chengjiang, Liu Xianfan, et al. Mineralization regulation and exploration evaluation in southwest margin of Yangtze Platform[M]. Beijing: Geological Publishing House, 2004.
[66] 孙玮,刘树根,韩克猷,等. 四川盆地燕山期古构造发展及对油气的影响[J]. 成都理工大学学报(自然科学版),2012,39(1):70-75.

Sun Wei, Liu Shugen, Han Keyou, et al. Effect of the evolution of palaeotectonics on the petroleum genesis in Yanshan period, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1): 70-75.
[67] 骆耀南. 康滇构造带的古板块历史演化[J]. 地球科学,1983(3):93-102.

Luo Yaonan. The evolution of paleoplates in the Kang-Dian tectonic zone [J]. Earth Science, 1983(3): 93-102.
[68] 陈旭,戎嘉余,周志毅,等. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升[J]. 科学通报,2001,46(12):1052-1056.

Chen Xu, Rong Jiayu, Zhou Zhiyi, et al. The central Guizhou and Yi-Chang uplifts, Upper Yangtze region, between Ordovician and Silurian[J]. Chinese Science Bulletin, 2001, 46(12): 1052-1056.