[1] Brandano M, Mateu-Vicens G, Baceta J I. Understanding carbonate factories through palaeoecological and sedimentological signals-Tribute to Luis Pomar[J]. Sedimentology, 2022, 69(1): 5-23.
[2] Godet A. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes[J]. Sedimentary Geology, 2013, 293: 45-66.
[3] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.

Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 232-253.
[4] 王龙,吴海,张瑞,等. 碳酸盐台地的类型、特征和沉积模式:兼论华北地台寒武纪陆表海—淹没台地的沉积样式[J]. 地质论评,2018,64(1):62-76.

Wang Long, Wu Hai, Zhang Rui, et al. The types, characteristics and depositional models of carbonate platform: Implications for Cambrian sedimentary patterns of epeiric-drowned carbonate platform in North China[J]. Geological Review, 2018, 64(1): 62-76.
[5] 袁琼,韦龙明,吴限,等. 关于碳酸盐台地模式的几点讨论[J]. 地质论评,2017,63(增刊1):321-322.

Yuan Qiong, Wei Longming, Wu Xian, et al. Discussion on carbonate platform mode[J]. Geological Review, 2017, 63(Suppl.1): 321-322.
[6]

Schlager W. The paradox of drowned reefs and carbonate platforms[J]. GSA Bulletin, 1981, 92(4): 197-211.
[7]

Adachi N, Liu J B, Ezaki Y. Early Ordovician reefs in South China (Chenjiahe section, Hubei province): Deciphering the early evolution of skeletal-dominated reefs[J]. Facies, 2013, 59(2): 451-466.
[8] Zhan R B, Jin J S, Rong J Y. Ordovician-Early Silurian (Llandovery) stratigraphy and palaeontology of the Upper Yangtze Platform, South China[M]. Beijing: Science Press, 2007.
[9] 陈清,樊隽轩,张琳娜,等. 下扬子区奥陶纪晚期古地理演变及华南“台—坡—盆”格局的打破[J]. 中国科学(D辑):地球科学,2018,48(6):767-777.

Chen Qing, Fan Junxuan, Zhang Linna, et al. Paleogeographic evolution of the Lower Yangtze region and the break of the “platform-slope-basin” pattern during the Late Ordovician[J]. Science China (Seri. D): Earth Sciences, 2018, 48(6): 767-777.
[10] 戎嘉余,陈旭. 华南晚奥陶世的动物群分异及生物相、岩相分布模式[J]. 古生物学报,1987,26(5):507-535.

Rong Jiayu, Chen Xu. Faunal differentiation, biofacies and lithofacies pattern of Late Ordovician (Ashgillian) in South China[J]. Acta Palaeontologica Sinica, 1987, 26(5): 507-535.
[11]

Liu M, Chen D Z, Jiang L, et al. Oceanic anoxia and extinction in the latest Ordovician[J]. Earth and Planetary Science Letters, 2022, 588: 117553.
[12] 严德天,王清晨,陈代钊,等. 扬子地区晚奥陶世碳酸盐台地淹没事件及其地质意义[J]. 地质科学,2011,46(1):42-51.

Yan Detian, Wang Qingchen, Chen Daizhao, et al. The Late Ordovician drowning of the Yangtze carbonate platform and its geologic significance[J]. Chinese Journal of Geology, 2011, 46(1): 42-51.
[13] 周恳恳. 中上扬子及其东南缘中奥陶世—早志留世沉积特征与岩相古地理演化[D]. 北京:中国地质科学院,2015.

Zhou Kenken. Middle Ordovician-Early Silurian lithofacies paleogeography of Middle-Upper Yangtze and its southeastern margin[D]. Beijing: Chinese Academy of Geological Sciences, 2015.
[14] Chen X, Zhou Z Y, Fan J X. Ordovician paleogeography and tectonics of the major paleoplates of China[M]//Finney S C, Berry W B N. The Ordovician earth system. Boulder, Colo: Geological Society of America, 2010: 85-104.
[15]

Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
[16] Scotese C R. Map folio 76 Early Silurian early Llandovery, (439.8 Ma)[R]. Evanston: PALEOMAP, 2013.
[17]

Torsvik T H, Cocks L R M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation[J]. Geological Society, London, Memoirs, 2013, 38(1): 5-24.
[18] 陈旭,戎嘉余,周志毅,等. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升[J]. 科学通报,2001,46(12):1052-1056.

Chen Xu, Rong Jiayu, Zhou Zhiyi, et al. The central Guizhou and Yi-chang uplifts, Upper Yangtze region, between Ordovician and Silurian[J]. Chinese Science Bulletin, 2001, 46(12): 1052-1056.
[19] 刘伟,许效松,冯心涛,等. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境[J]. 沉积与特提斯地质,2010,30(3):65-70.

Liu Wei, Xu Xiaosong, Feng Xintao, et al. Radiolarian siliceous rocks and palaeoenvironmental reconstruction for the Upper Ordovician Wufeng Formation in the Middle-Upper Yangtze area[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 65-70.
[20] 张海全,许效松,刘伟,等. 中上扬子地区晚奥陶世—早志留世岩相古地理演化与黑色页岩的关系[J]. 沉积与特提斯地质,2013,33(2):17-24.

Zhang Haiquan, Xu Xiaosong, Liu Wei, et al. Late Ordovician-Early Silurian sedimentary facies and palaeogeographic evolution and its bearings on the black shales in the Middle-Upper Yangtze area[J]. Sedimentary Geology and Tethyan Geology, 2013, 33(2): 17-24.
[21] 唐鹏,黄冰,吴荣昌,等. 论上扬子区上奥陶统大渡河组[J]. 地层学杂志,2017,41(2):119-133.

Tang Peng, Huang Bing, Wu Rongchang, et al. On the Upper Ordovician Daduhe Formation of the Upper Yangtze region[J]. Journal of Stratigraphy, 2017, 41(2): 119-133.
[22] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin, Heidelberg: Springer, 2010.
[23]

Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the 'Cambrian explosion'[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 671-681.
[24] 任影,钟大康,柳慧琳,等. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据[J]. 地球科学,2018,43(11):4066-4095.

Ren Ying, Zhong Dakang, Liu Huilin, et al. Isotopic and elemental evidence for paleoenvironmental evolution of Cambrian stage 4 Longwangmiao Formation, east Chongqing, China[J]. Earth Science, 2018, 43(11): 4066-4095.
[25] 田洋,赵小明,王令占,等. 重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J]. 沉积学报,2014,32(6):1035-1045.

Tian Yang, Zhao Xiaoming, Wang Lingzhan, et al. Geochemical characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1035-1045.
[26]

Boyle E A, Sclater F R, Edmond J M. The distribution of dissolved copper in the Pacific[J]. Earth and Planetary Science Letters, 1977, 37(1): 38-54.
[27]

Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744): 525-531.
[28] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.

Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
[29]

Deng Y Y, Fan J X, Zhang S H, et al. Timing and patterns of the Great Ordovician Biodiversification Event and Late Ordovician mass extinction: Perspectives from South China[J]. Earth-Science Reviews, 2021, 220: 103743.
[30]

Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656.
[31] 汪宗欣,吕修祥,钱文文. 寒武系海相碳酸盐岩元素地球化学特征及其油气地质意义:以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 天然气地球科学,2017,28(7):1085-1095.

Wang Zongxin, Xiuxiang Lü, Qian Wenwen. Geochemical characteristics of the Cambrian marine carbonate elements and its petroleum geological significance: Case study of Xiaoerbulake Formation in Keping area of Tairm Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1085-1095.
[32]

Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.
[33]

Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
[34]

Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
[35] 樊秋爽,夏国清,李高杰,等. 古海洋氧化还原条件分析方法与研究进展[J]. 沉积学报,2022,40(5):1151-1171.

Fan Qiushuang, Xia Guoqing, Li Gaojie, et al. Analytical methods and research progress of redox conditions in the paleo-ocean[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1151-1171.
[36] 江纳言. 下扬子区二叠纪古地理和地球化学环境[M]. 北京:石油工业出版社,1994:214.

Jiang Nayan. Permian palaeogeography and geochemical environment in Lower Yangtze region, China[M]. Beijing: Petroleum Industry Press, 1994: 214.
[37] 何龙,王云鹏,陈多福,等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学,2019,30(2):203-218.

He Long, Wang Yunpeng, Chen Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2019, 30(2): 203-218.
[38] 戎嘉余,陈旭,王怿,等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学(D辑):地球科学,2011,41(10):1407-1415.

Rong Jiayu, Chen Xu, Wang Yi, et al. Northward expansion of central Guizhou oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Science China (Seri. D): Earth Sciences, 2011, 41(10): 1407-1415.
[39] 赵玉茹,高达,胡明毅,等. 古气候和海平面变化对浅水碳酸盐岩高频层序及有利储层的控制:以川中地区龙王庙组为例[J/OL]. 中国地质. http://kns.cnki.net/kcms/detail/11.1167.P.20220715.1159.002.html. http://kns.cnki.net/kcms/detail/11.1167.P.20220715.1159.002.html

Zhao Yuru, Gao Da, Hu Mingyi, et al. Controls of paleoclimate and sea-level changes on the high-frequency sequence of shallow-water carbonates: A case study of the Longwangmiao Formation in the central Sichuan Basin[J/OL]. Geology in China. http://kns.cnki.net/kcms/detail/11.1167.P.20220715.1159.002.html. http://kns.cnki.net/kcms/detail/11.1167.P.20220715.1159.002.html
[40] Wilson J L. Carbonate facies in geologic history[M]. Berlin, Heidelberg: Springer, 1975: 1-19.
[41] 李越,冯洪真,李军. 底栖藻对扬子地台西缘晚奥陶世生态危机的改善作用[J]. 古生物学报,2002,41(2):211-218.

Li Yue, Feng Hongzhen, Li Jun. Benthic algae in improvement of ecologic crisis of the Late Ordovician in the west margin of the Yangtze Platform[J]. Acta Palaeontologica Sinica, 2002, 41(2): 211-218.
[42]

Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169.
[43] 许效松,万方,尹福光,等. 奥陶系宝塔组灰岩的环境相、生态相与成岩相[J]. 矿物岩石,2001,21(3):64-68.

Xu Xiaosong, Wan Fang, Yin Fuguang, et al. Environment facies, ecological facies and diagenetic facies of Baota Formation, of Late Ordovina[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 64-68.
[44] 钟阳阳. 华南晚奥陶世米兰科维奇记录及其对太阳系行为的指示意义[D]. 北京:中国地质大学(北京),2019:143.

Zhong Yangyang. Late Ordovician Milankovitch records in South China and their implications for Solar System behavior[D]. Beijing: China University of Geosciences (Beijing), 2019: 143.
[45] 陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志,2015,39(4):351-358.

Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.
[46] 苏文博,李志明, Ettensohn F R,等. 华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学:中国地质大学学报,2007,32(6):819-827.

Su Wenbo, Li Zhiming, Ettensohn F R, et al. Distribution of black shale in the Wufeng-Longmaxi Formations (Ordovician-Silurian), South China: Major controlling factors and implications[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 819-827.