[1] 赵建华,金之钧. 泥岩成岩作用研究进展与展望[J]. 沉积学报,2021,39(1):58-72.

Zhao Jianhua, Jin Zhijun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72.
[2] 方维萱. 论沉积盆地内成岩相系划分及类型[J]. 地质通报,2020,39(11):1692-1714.

Fang Weixuan. Classification and types of diagenetic lithofacies systems in the sedimentary basin[J]. Geological Bulletin of China, 2020, 39(11): 1692-1714.
[3] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[4]

Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
[5]

Peltonen C, Marcussen Ø, Bjørlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898.
[6]

Milliken K L, Olson T . diagenesis Silica, evolution porosity, and mechanical behavior in siliceous mudstones, Mowry Shale (Cretaceous), Mountains Rocky, U.S.A.[J]. Journal of Sedimentary Research, 2017, 87(4): 366-387.
[7]

Dowey P J, Taylor K G. Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA[J]. Sedimentary Geology, 2017, 365: 15-25.
[8]

Piane Delle, C, Almqvist B S G, MacRae C M, et al. Texture and diagenesis of Ordovician shale from the Canning Basin, western Australia: Implications for elastic anisotropy and geomechanical properties[J]. Marine and Petroleum Geology, 2015, 59: 56-71.
[9]

Milliken K L, Ergene S M, Ozkan A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA[J]. Sedimentary Geology, 2016, 339: 273-288.
[10] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.

Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
[11] 王淑芳,邹才能,董大忠,等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版),2014,50(3):476-486.

Wang Shufang, Zou Caineng, Dong Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486.
[12] 郭雯,董大忠,李明,等. 富有机质页岩中石英的成因及对储层品质的指示意义:以四川盆地东南部及周缘龙马溪组龙一1亚段为例[J]. 天然气工业,2021,41(2):65-74.

Guo Wen, Dong Dazhong, Li Ming, et al. Quartz genesis in organic-rich shale and its indicative significance to reservoir quality: A case study on the First submember of the First member of Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(2): 65-74.
[13]

Taylor K G, Macquaker J H S. Diagenetic alterations in a silt- and clay-rich mudstone succession: An example from the Upper Cretaceous Mancos Shale of Utah, USA[J]. Clay Minerals, 2014, 49(2): 213-227.
[14]

Milliken K L, Esch W L, Reed R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578.
[15]

Niu X, Yan D T, Zhuang X G, et al. Origin of quartz in the lower Cambrian Niutitang Formation in south Hubei province, Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2018, 96: 271-287.
[16]

Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737.
[17] 燕继红,李启桂,朱祥. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向[J]. 石油实验地质,2016,38(4):445-452.

Yan Jihong, Li Qigui, Zhu Xiang. Main factors controlling shale gas accumulation and exploration targets in the lower Cambrian, Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment, 2016, 38(4): 445-452.
[18] 梁峰,姜巍,戴赟,等. 四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学,2022,33(5):755-763.

Liang Feng, Jiang Wei, Dai Yun, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763.
[19] 张爱云,伍大茂,郭丽娜,等. 海相黑色页岩建造地球化学与成矿意义[M]. 北京:科学出版社,1987: 13-62.

Zhang Aiyun, Wu Damao, Guo Lina, et al. The geochemistry of marine black shale formation and its metallogenic significance[M]. Beijing: Science Press, 1987: 13-62.
[20] 刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994: 174-175.

Liu Baojun, Xu Xiaosong. Atlas of the lithofacies and palaeogeography of south China (Sinian-Triassic)[M]. Beijing: Science Press, 1994: 174-175.
[21] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版),2013,40(5):511-520.

Liu Shugen, Sun Wei, Luo Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520.
[22] 杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1-16.

Du Jinhu, Wang Zecheng, Zou Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16.
[23] 魏国齐,杨威,杜金虎,等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015,35(1):24-35.

Wei Guoqi, Yang Wei, Du Jinhu, et al. Geological characteristics of the Sinian-early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35.
[24] 武赛军,魏国齐,杨威,等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学,2016,27(1):60-70.

Wu Saijun, Wei Guoqi, Yang Wei, et al. Tongwan Movement and its geologic significances in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(1): 60-70.
[25]

Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils:Insights into a lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191.
[26] 罗超. 上扬子地区下寒武统牛蹄塘组页岩特征研究[D]. 成都:成都理工大学,2014.

Luo Chao. Geological characteristics of gas shale in the lower Cambrian Niutitang Formation of the Upper Yangtze Platform[D]. Chengdu: Chengdu University of Technology, 2014.
[27] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
[28] 王鹏万,张磊,邹辰,等. 中国西南镇雄—赫章地区筇竹寺组高演化页岩气勘探方向[J]. 成都理工大学学报(自然科学版),2015,42(5):530-538.

Wang Pengwan, Zhang Lei, Zou Chen, et al. Exploration direction of highly mature shale gas from Qiongzhusi Formation in Zhenxiong-Hezhang area of southwest China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(5): 530-538.
[29] 冯增昭. 沉积岩石学[M]. 2版. 北京:石油工业出版社,1994: 199-202.

Feng Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 199-202.
[30] 远光辉,操应长,杨田,等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘,2013,20(5):207-219.

Yuan Guanghui, Cao Yingchang, Yang Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5): 207-219.
[31]

Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150.
[32]

Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Petrology, 1979, 49(1): 55-70.
[33]

Thyberg B, Jahren J. Quartz cementation in mudstones: Sheet-like quartz cement from clay mineral reactions during burial[J]. Petroleum Geoscience, 2011, 17(1): 53-63.
[34] 赵杏媛,陈洪起. 我国含油盆地粘土矿物分布特征及控制因素[J]. 石油学报,1988,9(3):28-37.

Zhao Xingyuan, Chen Hongqi. Characteristics of the distribution of clay minerals in oil-bearing basins in China and their controlling factors[J]. Acta Petrolei Sinica, 1988, 9(3): 28-37.
[35]

Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744.
[36] 房殿勇,王汝建,邵磊,等. 南海ODP1148站深海相渐新统硅质成岩作用[J]. 海洋地质与第四纪地质,2002,22(2):75-79.

Fang Dianyong, Wang Rujian, Shao Lei, et al. Silica diagenesis of deep-sea Oligocene at ODP site 1148, the South China Sea[J]. Marine Geology & Quaternary Geology, 2002, 22(2): 75-79.
[37] 杨瑞东,朱立军,高慧,等. 贵州遵义松林寒武系底部热液喷口及与喷口相关生物群特征[J]. 地质论评,2005,51(5):481-492.

Yang Ruidong, Zhu Lijun, Gao Hui, et al. A study on cha-racteristics of the hydrothermal vent and relating biota at the Cambrian bottom in Songlin, Zunyi county, Guizhou province[J]. Geological Review, 2005, 51(5): 481-492.
[38] 谢小敏,刘伟新,张瀛,等. 四川盆地下古生界硅质页岩层系中硅质来源及其对有机质保存的影响初探[J]. 地质论评,2021,67(2):429-440,475.

Xie Xiaomin, Liu Weixin, Zhang Ying, et al. Siliceous source and its influence on organic matter preservation of the two Lower Paleozoic siliceous shale reserviors in Sichuan Basin[J]. Geological Review, 2021, 67(2): 429-440, 475.
[39] 杨兴莲,赵元龙,朱茂炎,等. 贵州丹寨寒武系牛蹄塘组海绵动物化石及其环境背景[J]. 古生物学报,2010,49(3):348-359.

Yang Xinglian, Zhao Yuanlong, Zhu Maoyan, et al. Sponges from the early Cambrian Niutitang Formation at Danzhai, Guizhou and their environmental background[J]. Acta Palaeontologica Sinica, 2010, 49(3): 348-359.
[40] 谢小敏,腾格尔,秦建中,等. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究[J]. 地质学报,2015,89(2):425-439.

Xie Xiaomin, Tenger, Qin Jianzhong, et al. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou[J]. Acta Geologica Sinica, 2015, 89(2): 425-439.
[41] 贾智彬,侯读杰,孙德强,等. 热水沉积区黑色页岩稀土元素特征及其地质意义:以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业,2018,38(5):44-51.

Jia Zhibin, Hou Dujie, Sun Deqiang, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: A case study from the lower Cambrian Niutitang Fm shale in central and eastern Guizhou[J]. Natural Gas Industry, 2018, 38(5): 44-51.
[42] 魏怀瑞,杨瑞东,高军波,等. 贵州寒武系底部黑色岩系型矿床沉积构造特征研究[J]. 现代地质,2012,26(4):673-681.

Wei Huairui, Yang Ruidong, Gao Junbo, et al. Primary study on the sediment structures in black-shale-series deposits of the basal Cambrian, Guizhou province[J]. Geoscience, 2012, 26(4): 673-681.
[43] 高军波,魏怀瑞,刘坤,等. 贵州遵义—纳雍一带寒武系黑色岩系中钼镍矿层的沉积特征[J]. 地质与资源,2011,20(3):234-239.

Gao Junbo, Wei Huairui, Liu Kun, et al. Sedimentary features of molybdenum-nickel-bearing strata in the Cambrian black rock series in Zunyi-Nayong area, Guizhou province[J]. Geology and Resources, 2011, 20(3): 234-239.
[44] 杨剑. 黔北地区下寒武统黑色岩系形成环境与地球化学研究[D]. 西安:长安大学,2009.

Yang Jian. Study on the formation environment and geochemistry of lower Cambrian black shale series, northern Guizhou province, China[D]. Xi'an: Chang'an University, 2009.
[45]

Liu Z H, Zhuang X G, Teng G E, et al. The lower Cambrian Niutitang Formation at Yangtiao (Guizhou, SW China): Organic matter enrichment, source rock potential, and hydrothermal influences[J]. Journal of Petroleum Geology, 2015, 38(4): 411-432.
[46] 冯彩霞,池国祥,胡瑞忠,等. 遵义黄家湾Ni-Mo多金属矿床成矿流体特征:来自方解石流体包裹体、REE和C、O同位素证据[J]. 岩石学报,2011,27(12):3763-3776.

Feng Caixia, Chi Guoxiang, Hu Ruizhong, et al. Feature of ore-forming fluid: Evidence from fluid inclusion, REE and carbon-oxygen isotope geochemistry of calcite from Huangjiawan Mo-Ni polymetallic ore deposit, Zunyi, Guizhou province[J]. Acta Petrologica Sinica, 2011, 27(12): 3763-3776.
[47] 陈大. 贵州省镍钼钒多金属矿成矿地质特征及其控制因素[J]. 地质找矿论丛,2015,30(1):43-52.

Chen Da. Geological and metallogenic characteristics and ore-control factors of Ni-Mo-V poly-metal deposits in Guizhou province[J]. Contributions to Geology and Mineral Resources Research, 2015, 30(1): 43-52.
[48] 闵华军. 扬子板块西南缘下寒武统筇竹寺组高过成熟页岩储层特征及形成机理[D]. 成都:成都理工大学,2020.

Min Huajun. Characteristics and formation mechanism of highly over-mature shale gas reservoirs in lower Cambrian Qiongzhusi Formation in the southwestern Yangtze Plate[D]. Chengdu: Chengdu University of Technology, 2020.
[49]

Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25.
[50]

Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466.
[51]

Stow D A V, Huc A Y, Bertrand P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498.