[1] |
Jansen J H F, Kuijpers A, Troelstra S R. A Mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation[J]. Science, 1986, 232(4750): 619-622. |
[2] |
Crowley T J. Late Quaternary carbonate changes in the North Atlantic and Atlantic/Pacific comparisons[C]// Sundquist E T, Broecker W S. The carbon cycle and atmospheric CO2: Natural variations Archean to present. Geophysical Monograph Series, Washington: AGU, 1985,32:271-284. |
[3] |
Wang P X, Li Q Y, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 119-143. |
[4] |
Barth A M, Clark P U, Bill N S, et al. Climate evolution across the Mid-Brunhes Transition[J]. Climate of the Past, 2018, 14(12): 2071-2087. |
[5] |
Cronin T M, Dwyer G S, Caverly E K, et al. Enhanced arctic amplification began at the Mid-Brunhes event ~400, 000 years ago[J]. Scientific Reports, 2017, 7(1): 14475. |
[6] |
Yin Q Z. Insolation-induced Mid-Brunhes transition in southern ocean ventilation and deep-ocean temperature[J]. Nature, 2013, 494(7436): 222-225. |
[7] |
Rice A R, Weihaupt J G, Van d H F. Multiple meteoroid impacts in Antarctica at 481,000ky: a possible cause for the Mid-Brunhes Event/MIS 11 Stage via the disruption of the West Antarctic Ice Sheet?[C]// Agu Fall Meeting. AGU Fall Meeting Abstracts, 2010, NH51C-1249. |
[8] |
Johnson G C, Toole J M. Flow of deep and bottom waters in the Pacific at 10°N[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(2): 371-394. |
[9] |
Tian J W, Qu T D. Advances in research on the deep South China Sea circulation[J]. Chinese Science Bulletin, 2012, 57(24): 3115-3120. |
[10] |
Yamazaki T, Oda H. Orbital influence on Earth's magnetic field: 100, 000-year periodicity in inclination[J]. Science, 2002, 295(5564): 2435-2438. |
[11] |
Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the Middle Pleistocene: Potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2016, 58(1): 49-57. |
[12] |
Sagnotti L. Demagnetization Analysis in Excel (DAIE). An open source workbook in Excel for viewing and analyzing demagnetization data from paleomagnetic discrete samples and u-channels[J]. Annals of Geophysics, 2013, 56(1): D0114. |
[13] |
Stoner J S, St-Onge G. Chapter three magnetic stratigraphy in paleoceanography: Reversals, excursions, paleointensity, and secular variation[J]. Developments in Marine Geology, 2007, 1: 99-138. |
[14] |
Guyodo Y, Valet J P. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733): 249-252. |
[15] |
Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435(7043): 802-805. |
[16] |
Yamazaki T, Ioka N. Long-term secular variation of the geomagnetic field during the last 200 kyr recorded in sediment cores from the western equatorial Pacific[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 527-544. |
[17] |
Yamazaki T, Oda H. Intensity-inclination correlation for long-term secular variation of the geomagnetic field and its relevance to persistent non-dipole components[M]//Channell J E T, Kent D V, Lowrie W, et al. Timescales of the paleomagnetic field, Volume 145. Washington: Geophysical Monograph Series, 2004, 145. |
[18] |
Yamazaki T. Long-term secular variation in geomagnetic field inclination during Brunhes Chron recorded in sediment cores from Ontong-Java Plateau[J]. Physics of the Earth and Planetary Interiors, 2002, 133(1/2/3/4): 57-72. |
[19] |
Roberts A P, Tauxe L, Heslop D. Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: Successes and future challenges[J]. Quaternary Science Reviews, 2013, 61: 1-16. |
[20] |
贾奇. 70万年来西太平洋暖池的热带过程及其对上层水体pH和pCO2的影响[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2018.
Jia Qi. Tropical process in the western Pacific warm pool and its influence on pH and pCO2 variations in the upper water since 700 ka[D]. Qingdao: University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2018. |
[21] |
Nakai S, Halliday A N, Rea D K. Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 119(1/2): 143-157. |
[22] |
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003. |
[23] |
Owens W B, Warren B A. Deep circulation in the northwest corner of the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(4): 959-993. |
[24] |
Taira K, Kitagawa S, Yamashiro T, et al. Deep and bottom currents in the challenger deep, mariana trench, measured with super-deep current meters[J]. Journal of Oceanography, 2004, 60(6): 919-926. |
[25] |
Pälike H, Lyle M W, Nishi H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614. |
[26] |
Barker S, Archer D, Booth L, et al. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11[J]. Quaternary Science Reviews, 2006, 25(23/24): 3278-3293. |
[27] |
Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind[J]. Reviews of Geophysics, 1994, 32(2): 159-195. |
[28] |
Greaves M J, Elderfield H, Sholkovitz E R. Aeolian sources of rare earth elements to the western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 31-38. |
[29] |
Sun Y B, An Z S. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D23): D23101. |
[30] |
Hillenbrand C D, Kuhn G, Frederichs T. Record of a mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: An indicator for ice-sheet collapse?[J]. Quaternary Science Reviews, 2009, 28(13/14): 1147-1159. |
[31] |
Romero O, Schmieder F. Occurrence of thick Ethmodiscus oozes associated with a terminal mid-Pleistocene Transition event in the oligotrophic subtropical South Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235(4): 321-329. |
[32] |
Gingele F X, Schmieder F. Anomalous South Atlantic lithologies confirm global scale of unusual mid-Pleistocene climate excursion[J]. Earth and Planetary Science Letters, 2001, 186(1): 93-101. |
[33] |
翟滨,李铁刚. 末次冰期低纬度西太平洋硅藻席沉积与生态特征[J]. 海洋地质与第四纪地质,2009,29(4):65-70.
Zhai Bin, Li Tiegang. Distribution and ecology of diatom mat deposits in the west low-latitude Pacific Ocean during the last glacial period[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 65-70. |
[34] |
张金鹏,邓希光,朱本铎,等. 西太平洋挑战者深渊海底浅表层的硅藻软泥[J]. 微体古生物学报,2016,33(1):1-8.
Zhang Jinpeng, Deng Xiguang, Zhu Benduo, et al. Diatom ooze from the surface sediments in the challenger deep of the western Pacific Ocean[J]. Acta Micropalaeontologica Sinica, 2016, 33(1): 1-8. |
[35] |
Villareal T A, Joseph L, Brzezinski M A, et al. Biological and chemical characteristics of the giant diatom Ethmodiscus (bacillariophyceae) in the central North Pacific gyre[J]. Journal of Phycology, 1999, 35(5): 896-902. |