[1] |
Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8 |
[2] |
Love L G, Amstutz G C. Review of microscopic pyrite from the Devonian chattanooga shale and rammelsberg banderz[J]. Fortschritte der Mineralogie, 1966, 43:273-309. |
[3] |
Hallbauer D K. The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium, and carbonaceous matter[M]//Anhaeusser C R, Maske S. Mineral deposits of southern Africa. Johannesburg: Geological Society of South Africa, 1986: 731-752. |
[4] |
Sassano G P, Schrijver K. Framboidal pyrite; Early-diagenetic, Late-diagenetic, and hydrothermal occurrences from the Acton Vale quarry, Cambro-Ordovician, Quebec[J]. American Journal of Science, 1989, 289(2):167-179. http://cn.bing.com/academic/profile?id=7f064715152472b5ea21ebc8b7907e38&encoded=0&v=paper_preview&mkt=zh-cn |
[5] |
Ohfuji H, Rickard D. Experimental syntheses of framboids-a review[J]. Earth-Science Reviews, 2005, 71(3/4):147-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f8a96aec6691de39e5b218bb0ee0a0d |
[6] |
Sweeney R E, Kaplan I R. Pyrite framboid formation; laboratory synthesis and marine sediments[J]. Economic Geology, 1973, 68(5):618-634. doi: 10.2113/gsecongeo.68.5.618 |
[7] |
Perry K A, Pedersen T F. Sulphur speciation and pyrite formation in meromictic ex-fjords[J]. Geochimica et Cosmochimica Acta, 1993, 57(18):4405-4418. doi: 10.1016/0016-7037(93)90491-E |
[8] |
Rust G W. Colloidal primary copper ores at Cornwall mines, southeastern Missouri[J]. The Journal of Geology, 1935, 43(4):398-426. doi: 10.1086/624318 |
[9] |
Rickard D T. The origin of framboids[J]. Lithos, 1970, 3(3):269-293. doi: 10.1016/0024-4937(70)90079-4 |
[10] |
Massaad M. Framboidal pyrite in concretions[J]. Mineralium Deposita, 1974, 9(1):87-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0ff385ee4c13602eef6d83fff6b5f0a |
[11] |
黄元耕.华南及新疆地区二叠纪至三叠纪海洋、陆地古群落模拟及海洋氧化还原环境变化研究[D].武汉: 中国地质大学, 2018.
Huang Yuangeng. Ecological modeling of marine and terrestrial paleocommunities in South China and Xinjiang during Permian and Triassic and marine redox variations[D]. Wuhan: China University of Geosciences, 2018. |
[12] |
Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. doi: 10.1016/S0016-7037(01)00552-X |
[13] |
Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7):537-552. doi: 10.2475/ajs.298.7.537 |
[14] |
Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8):1265-1279. doi: 10.1130-B30042.1/ |
[15] |
Chang X L, Hou M C, Liu X C, et al. Abundant microspherules from the Upper Ordovician of northern Tarim Basin, Northwest China:Origin and palaeoenvironmental implications[J]. Geological Journal, 2018, 53(6):2896-2907. doi: 10.1002/gj.3128 |
[16] |
Passier H F, Middelburg J J, De Lange G J, et al. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern mediterranean sapropel[J]. Geology, 1997, 25(6):519-522. doi: 10.1130/0091-7613(1997)025<0519:PCMASI>2.3.CO;2 |
[17] |
Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4):183-188. http://cn.bing.com/academic/profile?id=50c33ca9d1e5b2fadd79a890003612a3&encoded=0&v=paper_preview&mkt=zh-cn |
[18] |
Hofmann P, Ricken W, Schwark L, et al. Carbon-sulfur-iron relationships and δ13C of organic matter for Late Albian sedimentary rocks from the north Atlantic Ocean:Paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163(3/4):97-113. https://www.sciencedirect.com/science/article/abs/pii/S0031018200001474 |
[19] |
Wei H Y, Chen D Z, Wang J G, et al. Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China:Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355:73-86. doi: 10.1016/j.palaeo.2012.07.005 |
[20] |
韦雪梅, 韦恒叶, 邱振, 等.广西来宾蓬莱滩剖面G-L界线草莓状黄铁微晶粒径特征及其氧化还原意义[J].地质科学, 2017, 52(1):230-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201701016
Wei Xuemei, Wei Hengye, Qiu Zhen, et al. Framboidal microcryst size characteristics of pyrite and its redox significance across the G-L boundary in Penglaitan section, Laibin, Guangxi[J]. Chinese Journal of Geology, 2017, 52(1):230-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201701016 |
[21] |
Wei H Y, Jiang X C. Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation:Constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, inner Mongolia, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 178:162-179. doi: 10.1016/j.petrol.2019.03.037 |
[22] |
常华进, 储雪蕾.草莓状黄铁矿与古海洋环境恢复[J].地球科学进展, 2011, 26(5):475-481. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105002
Chang Huajin, Chu Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5):475-481. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105002 |
[23] |
Chen Z Q, Yang H, Luo M, et al. Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China:Ecologically assessing mass extinction and its aftermath[J]. Earth-Science Reviews, 2015, 149:67-107. doi: 10.1016/j.earscirev.2014.10.005 |
[24] |
Takahashi S, Yamasaki S I, Ogawa K, et al. Redox conditions in the end-early Triassic Panthalassa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432:15-28. doi: 10.1016/j.palaeo.2015.04.018 |
[25] |
Wei H Y, Algeo T J, Yu H, et al. Episodic euxinia in the Changhsingian (Late Permian) of South China:Evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology, 2015, 319:78-97. doi: 10.1016/j.sedgeo.2014.11.008 |
[26] |
Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China:Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440:1-14. doi: 10.1016/j.chemgeo.2016.07.009 |
[27] |
Huang Y G, Chen Z Q, Wignall P B, et al. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China:Pyrite framboid evidence[J]. GSA Bulletin, 2017, 129(1/2):229-243. http://cn.bing.com/academic/profile?id=b52fcb065d1d90195fd0f4d411c2c3bc&encoded=0&v=paper_preview&mkt=zh-cn |
[28] |
Huang Y G, Chen Z Q, Algeo T J, et al. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir, northern India:Pyrite framboid evidence[J]. Global and Planetary Change, 2019, 172:124-139. doi: 10.1016/j.gloplacha.2018.10.002 |
[29] |
Love L G. Mircro-organisms and the presence of syngenetic pyrite[J]. Quarterly Journal of the Geological Society, 1957, 113(1/2/3/4):429-440. http://cn.bing.com/academic/profile?id=a1fd0eaf36c695aa57a917d885282375&encoded=0&v=paper_preview&mkt=zh-cn |
[30] |
Love L G. Biogenic primary sulfide of the Permian Kupferschiefer and Marl Slate[J]. Economic Geology, 1962, 57(3):350-366. doi: 10.2113/gsecongeo.57.3.350 |
[31] |
Berner R A. Migration of iron and sulfur within anaerobic sediments during early diagenesis[J]. American Journal of Science, 1969, 267(1):19-42. http://cn.bing.com/academic/profile?id=578d0c8820977ffbac3cd298ca098ad3&encoded=0&v=paper_preview&mkt=zh-cn |
[32] |
Berner R A. Sedimentary pyrite formation:An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4):605-615. doi: 10.1016/0016-7037(84)90089-9 |
[33] |
Sawlowicz Z. Pyrite framboids and their development:A new conceptual mechanism[J]. Geologische Rundschau, 1993, 82(1):148-156. doi: 10.1007/BF00563277 |
[34] |
Sawlowicz Z. Organic matter and its significance for the genesis of the copper-bearing shales (Kupferschiefer) from the fore-sudetic monocline (Poland)[M]//Parnell J, Kucha H, Landais P. Bitumens in ore deposits. Berlin Heidelberg: Springer, 1993: 431-446. |
[35] |
MacLean L C W, Tyliszczak T, Gilbert P U P A, et al. A highresolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 2009, 6(5):471-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc7aa809ab861b98a877718056c00d7f |
[36] |
Wacey D, Kilburn M R, Saunders M, et al. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping[J]. Geology, 2014, 43(1):27-30. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234267355/ |
[37] |
Kershaw S, Liu M. Modern black sea oceanography applied to the end-Permian extinction event[J]. Journal of Palaeogeography, 2015, 4(1):52-62. doi: 10.3724/SP.J.1261.2015.00067 |
[38] |
England B M, Ostwald J. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia[J]. Ore Geology Reviews, 1993, 7(5):381-412. doi: 10.1016/0169-1368(93)90002-G |
[39] |
Garrels R M, Perry E A. Cycling of carbon, sulfur, and oxygen through geologic time[M]//Goldberg E D. The sea. New York: John Wiley, 1974: 303-336. |
[40] |
Berner R A. The synthesis of framboidal pyrite[J]. Economic Geology, 1969, 64(4):383-384. doi: 10.2113/gsecongeo.64.4.383 |
[41] |
Degens E T, Ross D A. Chronology of the Black Sea over the last 25, 000 years[J]. Chemical Geology, 1972, 10(1):1-16. doi: 10.1016/0009-2541(72)90073-3 |
[42] |
Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339. doi: 10.1016/S0016-7037(96)00320-1 |
[43] |
Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8):1244-1263. doi: 10.2475/ajs.282.8.1244 |
[44] |
曹丰龙, 韦恒叶.湖北省恩施地区二叠系低丰度草莓状黄铁矿的两种成因[J].东华理工大学学报(自然科学版), 2015, 38(2):158-166. doi: 10.3969/j.issn.1674-3504.2015.02.004
Cao Fenglong, Wei Hengye. Two causes for the low abundance of framboidal pyrite in the Permian in Enshi area in Hubei province[J]. Journal of East China Institute of Technology (Natural Science Edition), 2015, 38(2):158-166. doi: 10.3969/j.issn.1674-3504.2015.02.004 |
[45] |
Muramoto J A, Honjo S, Fry B, et al. Sulfur, iron and organic carbon fluxes in the Black Sea:Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(Suppl.2):S1151-S1187. http://cn.bing.com/academic/profile?id=8f5e2d3d57b311cafd3dec2e751c3061&encoded=0&v=paper_preview&mkt=zh-cn |
[46] |
Wignall P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event[M]//Koeberl C, MacLeod K C. Catastrophic events and mass extinctions: Impacts and beyond. Colorado: Geological Society of America, 2002, 356: 395-413. |
[47] |
Butler I B, Rickard D. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide[J]. Geochimica et Cosmochimica Acta, 2000, 64(15):2665-2672. doi: 10.1016/S0016-7037(00)00387-2 |
[48] |
Wang Q W, Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2):99-121. doi: 10.1016/0304-4203(95)00082-8 |
[49] |
Morse J W, Wang Q W. Pyrite formation under conditions approximating those in anoxic sediments:Ⅱ. Influence of precursor iron minerals and organic matter[J]. Marine Chemistry, 1997, 57(3/4):187-193. https://www.sciencedirect.com/science/article/pii/S0304420397000509 |
[50] |
Sunagawa I, Endo Y, Nakai N. Hydrothermal synthesis of framboidal pyrite[J]. Journal of Society of Mining Geologists of Japan, Special Issue, 1971, 2:10-14. |
[51] |
Luther Ⅲ G W. Pyrite synthesis via polysulfide compounds[J]. Geochimica et Cosmochimica Acta, 1991, 55(10):2839-2849. doi: 10.1016/0016-7037(91)90449-F |
[52] |
Farrand M. Framboidal sulphides precipitated synthetically[J]. Mineralium Deposita, 1970, 5(3):237-247. |
[53] |
Graham U M, Ohmoto H. Experimental study of formation mechanisms of hydrothermal pyrite[J]. Geochimica et Cosmochimica Acta, 1994, 58(10):2187-2202. doi: 10.1016/0016-7037(94)90004-3 |
[54] |
李洪星, 陆现彩, 边立曾, 等.有孔虫壳体内草莓状黄铁矿成因及其地质意义:以湖北雁门口地区栖霞组有孔虫化石为例[J].高校地质学报, 2009, 15(4):470-476. doi: 10.3969/j.issn.1006-7493.2009.04.005
Li Hongxing, Lu Xiancai, Bian Lizeng, et al. Formation of pyrite framboids in the chamber of foraminiferas and its geological significance:A case study of the foraminiferas fossils in the Qixia Formation in the Yanmenkou area, Hubei province[J]. Geological Journal of China Universities, 2009, 15(4):470-476. doi: 10.3969/j.issn.1006-7493.2009.04.005 |
[55] |
Bailey J V, Raub T D, Meckler A N, et al. Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(1/2):131-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd34dc0dd252f1370a21978af3007816 |
[56] |
Wang L, Shi X Y, Jiang G Q. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334:218-227. doi: 10.1016/j.palaeo.2012.03.033 |
[57] |
常晓琳.晚奥陶世古海洋环境演化过程: 来自塔里木和中扬子地区的沉积学与地球化学证据[D].成都: 成都理工大学, 2018.
Chang Xiaolin. Late Ordovician paleoceanographic changing process: Sedimentary and geochemcial evidences from the Upper Ordovician of the Tarim Basin and middle Yangtze regions, China[D]. Chengdu: Chengdu University of Technology, 2018. |
[58] |
Wignall P B, Bond D P G, Sun Y D, et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation[J]. Geological Magazine, 2016, 153(2):316-331. doi: 10.1017/S0016756815000588 |
[59] |
常华进, 储雪蕾, 冯连君, 等.华南老堡组硅质岩中草莓状黄铁矿:埃迪卡拉纪末期深海缺氧的证据[J].岩石学报, 2009, 25(4):1001-1007. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904024
Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China:Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 2009, 25(4):1001-1007. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904024 |
[60] |
Rickard D. Sedimentary pyrite framboid size-frequency distributions:A meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522:62-75. doi: 10.1016/j.palaeo.2019.03.010 |
[61] |
Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2):65-83. http://www.sciencedirect.com/science/article/pii/S0031018210003913 |
[62] |
Vietti L A, Bailey J V, Fox D L, et al. Rapid formation of framboidal sulfides on bone surfaces from a simulated marine carcass fall[J]. Palaios, 2015, 30(4):327-334. doi: 10.2110/palo.2014.027 |
[63] |
Kershaw S, Tang H, Li Y, et al. Oxygenation in carbonate microbialites and associated facies after the end-Permian mass extinction:Problems and potential solutions[J]. Journal of Palaeogeography, 2018, 7(1):32-47. doi: 10.1016/j.jop.2017.10.001 |
[64] |
Mihailov M E, Tomescu-Chivu M I, Dima V. Black Sea water dynamics on the Romanian littoral-Case study:The upwelling phenomena[J]. Romanian Reports in Physics, 2012, 64(1):232-245. http://cn.bing.com/academic/profile?id=7a354ae892692149fe22865a9d5001c6&encoded=0&v=paper_preview&mkt=zh-cn |
[65] |
Lüning S, Kolonic S, Loydell D K, et al. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya)[J]. GeoArabia, 2003, 8(2):299-308. |
[66] |
周杰, 邱振, 王红岩, 等.草莓状黄铁矿形成机制及其研究意义[J].地质科学, 2017, 52(1):242-253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201701017
Zhou Jie, Qiu Zhen, Wang Hongyan, et al. Formation mechanism of pyrite framboid and its research significance[J]. Chinese Journal of Geology, 2017, 52(1):242-253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201701017 |
[67] |
Cornell R M, Schwertmann U. The iron oxides:Structure, properties, reactions, occurences and uses[M]. 2nd ed. New York:Wiley-VCH, 2003:663. |
[68] |
Wiersma C L, Rimstidt J D. Rates of reaction of pyrite and marcasite with ferric iron at pH 2[J]. Geochimica et Cosmochimica Acta, 1984, 48(1):85-92. doi: 10.1016/0016-7037(84)90351-X |
[69] |
Williamson M A, Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J]. Geochimica et Cosmochimica Acta, 1994, 58(24):5443-5454. doi: 10.1016/0016-7037(94)90241-0 |
[70] |
Fasiska E J, Wagenblast N, Dougherty M T. The oxidation mechanism of sulphide minerals:6F, 6R. BULL. ASSOC. ENGNG. GEOL. V11, N1, 1974, P75-82[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(11):A222. doi: 10.1016/0148-9062(74)90512-9 |
[71] |
Hawkins A B. Sulphate heave:A model to explain the rapid rise of ground-bearing floor slabs[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(1):113-117. doi: 10.1007/s10064-011-0408-1 |