[1] |
Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013 |
[2] |
Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417):546-549. doi: 10.1038/nature11445 |
[3] |
Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466):658-661. doi: 10.1126/science.288.5466.658 |
[4] |
Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean Ocean[J]. Science, 2002, 298(5602):2372-2374. doi: 10.1126/science.1078265 |
[5] |
Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444(7120):744-747. doi: 10.1038/nature05345 |
[6] |
Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, 382(6587):127-132. doi: 10.1038/382127a0 |
[7] |
McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9):3197-3202. doi: 10.1073/pnas.0708336105 |
[8] |
Shi W, Li C, Luo G M, et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion[J]. Geology, 2018, 46(3):267-270. doi: 10.1130/G39663.1 |
[9] |
Wang W, Guan C G, Zhou C M, et al. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China:Spatial gradient, ocean redox oscillation, and fossil distribution[J]. Geobiology, 2017, 15(4):552-571. doi: 10.1111/gbi.12226 |
[10] |
Shen B, Xiao S H, Bao H M, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation[J]. Geochimica et Cosmochimica Acta, 2011, 75(5):1357-1373. doi: 10.1016/j.gca.2010.12.015 |
[11] |
Ries J B, Fike D A, Pratt L M, et al. Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia:A consequence of low seawater sulfate at the dawn of animal life[J]. Geology, 2009, 37(8):743-746. doi: 10.1130/G25775A.1 |
[12] |
周春光, 杨起, 康西栋, 等.华北晚古生代煤中黄铁矿形成世代的硫同位素证据[J].中国煤田地质, 2000, 12(1):19-22. doi: 10.3969/j.issn.1674-1803.2000.01.007
Zhou Chunguang, Yang Qi, Kang Xidong, et al. Sulfur-isotope evidence of pyrite generation in coal of Late Palaeozoic in northern China[J]. Coal Geology of China, 2000, 12(1):19-22. doi: 10.3969/j.issn.1674-1803.2000.01.007 |
[13] |
Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 2010, 122(7/8):1265-1279. doi: 10.1130-B30042.1/ |
[14] |
张明亮, 郭伟, 沈俊, 等.古海洋氧化还原地球化学指标研究新进展[J].地质科技情报, 2017, 36(4):95-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704012
Zhang Ming-liang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4):95-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704012 |
[15] |
初凤友, 陈丽蓉, 申顺喜, 等.南黄海自生黄铁矿成因及其环境指示意义[J].海洋与湖沼, 1995, 26(3):227-233. doi: 10.3321/j.issn:0029-814X.1995.03.001
Chu Fengyou, Chen Lirong, Shen Shunxi, et al. Origin and environmental significance of authigenic pyrite from the South Yellow (Huanghai) Sea sediments[J]. Oceanologia et Limnologia Sinica, 1995, 26(3):227-233. doi: 10.3321/j.issn:0029-814X.1995.03.001 |
[16] |
严育通, 李胜荣, 贾宝剑, 等.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘, 2012, 19(4):214-226. http://d.old.wanfangdata.com.cn/Periodical/dxqy201204023
Yan Yutong, Li Shengrong, Jia Baojian, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4):214-226. http://d.old.wanfangdata.com.cn/Periodical/dxqy201204023 |
[17] |
Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J]. Sedimentary Geology, 2001, 140(1/2):143-175. |
[18] |
Machel H G. Some aspects of diagenetic sulphate-hydrocarbon redox reactions[J]. Geological Society, London, Special Publications, 1987, 36(1):15-28. http://cn.bing.com/academic/profile?id=31bb1b8c98362e1e861e2010973d12d5&encoded=0&v=paper_preview&mkt=zh-cn |
[19] |
Krouse H R, Viau C A, Eliuk L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6172):415-419. doi: 10.1038/333415a0 |
[20] |
Gomes M L, Fike D A, Bergmann K D, et al. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures[J]. Geobiology, 2018, 16(1):17-34. doi: 10.1111/gbi.12265 |
[21] |
Cui H, Kitajima K, Spicuzza M J, et al. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS[J]. American Mineralogist, 2018, 103(9):1362-1400. doi: 10.2138/am-2018-6489 |
[22] |
Riciputi L R, Cole D R, Machel H G. Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada:An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1996, 60(2):325-336. doi: 10.1016/0016-7037(96)83133-4 |
[23] |
Zhang J, Liang H D, He X D, et al. Sulfur isotopes of framboidal pyrite in the Permian-Triassic boundary clay at meishan section[J]. Acta Geologica Sinica (English Edition), 2011, 85(3):694-701. doi: 10.1111/j.1755-6724.2011.00462.x |
[24] |
Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. doi: 10.1016/S0016-7037(01)00552-X |
[25] |
Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440:26-41. doi: 10.1016/j.chemgeo.2016.07.007 |
[26] |
王平康.松辽盆地晚白垩世青山口组一段黄铁矿形态及古湖泊演化[D].北京: 中国地质大学(北京), 2009. http://cdmd.cnki.com.cn/article/cdmd-11415-2009075997.htm
Wang Pingkang. Pyrite morphology and the evolution of ancient lake in unit 1 of Qingshankou Formation of Late Cretaceous, Songliao Basin[D]. Beijing: China University of Geosciences (Beijing), 2009. http://cdmd.cnki.com.cn/article/cdmd-11415-2009075997.htm |
[27] |
Raiswell R, Berner R A. Pyrite formation in euxinic and semieuxinic sediments[J]. American Journal of Science, 1985, 285(8):710-724. doi: 10.2475/ajs.285.8.710 |
[28] |
Rickard D. Sulfidic sediments and sedimentary rocks[M]. Newnes:Elsevier, 2012. |
[29] |
Berner R A. Sedimentary pyrite formation:An update[J]. Geochimica et cosmochimica Acta, 1984, 48(4):605-615. doi: 10.1016/0016-7037(84)90089-9 |
[30] |
Wang Q W, Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2):99-121. doi: 10.1016/0304-4203(95)00082-8 |
[31] |
Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8):1244-1263. doi: 10.2475/ajs.282.8.1244 |
[32] |
Wang P K, Huang Y J, Wang C S, et al. 2013. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385:125-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2334489d30f4d68cb4042b5d5f0d8317 |
[33] |
Rust G W. Colloidal primary copper ores at Cornwall Mines, southeastern Missouri[J]. The Journal of Geology, 1935, 43(4):398-426. doi: 10.1086/624318 |
[34] |
Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339. doi: 10.1016/S0016-7037(96)00320-1 |
[35] |
Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8 |
[36] |
Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research, 2011, 19(4):831-849. doi: 10.1016/j.gr.2011.01.006 |
[37] |
Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4):289-294. doi: 10.1111/j.1365-3121.2008.00819.x |
[38] |
Condon D, Zhu M Y, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308(5718):95-98. doi: 10.1126/science.1107765 |
[39] |
Guan C G, Zhou C M, Wang W, et al. Fluctuation of shelf basin redox conditions in the Early Ediacaran:Evidence from Lantian Formation black shales in South China[J]. Precambrian Research, 2014, 245:1-12. doi: 10.1016/j.precamres.2014.01.003 |