[1] |
吴自军, 任德章, 周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展, 2013, 28(7):765-773. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307003
Wu Zijun, Ren Dezhang, Zhou Huaiyang. Anaerobic Oxidation of Methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J]. Advances in Earth Science, 2013, 28(7):765-773. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307003 |
[2] |
Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine geochemistry. Berlin, Heidelberg: Springer, 2006: 271-309. |
[3] |
Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7):1075-1090. doi: 10.1016/0016-7037(79)90095-4 |
[4] |
Egger M J. Anaerobic oxidation of methane and its impact on iron and phosphorus cycling in marine sediments[D]. Utrecht: University Utrecht, 2016. |
[5] |
Beal E J, House C H, Orphan V J. Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937):184-187. doi: 10.1126/science.1169984 |
[6] |
Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858):643-645. doi: 10.1038/296643a0 |
[7] |
Berner R A. Sedimentary pyrite formation:An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4):605-615. doi: 10.1016/0016-7037(84)90089-9 |
[8] |
Raiswell R, Hardisty D S, Lyons T W, et al. The iron paleoredox proxies:A guide to the pitfalls, problems and proper practice[J]. American Journal of Science, 2018, 318(5):491-526. doi: 10.2475/05.2018.03 |
[9] |
Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1):1-220. doi: 10.7185/geochempersp.1.1 |
[10] |
Rickard D. Sedimentary pyrite framboid size-frequency distributions:A meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522:62-75. doi: 10.1016/j.palaeo.2019.03.010 |
[11] |
Richardson J A, Keating C, Lepland A, et al. Silurian records of carbon and sulfur cycling from Estonia:The importance of depositional environment on isotopic trends[J]. Earth and Planetary Science Letters, 2019, 512:71-82. doi: 10.1016/j.epsl.2019.01.055 |
[12] |
Maharjan D, Jiang G Q, Peng Y B, et al. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion[J]. Earth and Planetary Science Letters, 2018, 494:202-215. doi: 10.1016/j.epsl.2018.04.043 |
[13] |
Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. doi: 10.1016/S0016-7037(01)00552-X |
[14] |
Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8 |
[15] |
Huang Y G, Chen Z Q, Wignall P B, et al. Latest Permian to middle Triassic redox condition variations in ramp settings, South China:Pyrite framboid evidence[J]. Geological Society of America Bulletin, 2017, 129(1/2):229-243. http://cn.bing.com/academic/profile?id=b52fcb065d1d90195fd0f4d411c2c3bc&encoded=0&v=paper_preview&mkt=zh-cn |
[16] |
Lin Z Y, Sun X M, Lu Y, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane:Insights from the South China Sea[J]. Chemical Geology, 2017, 449:15-29. doi: 10.1016/j.chemgeo.2016.11.032 |
[17] |
Antler G, Turchyn A V, Ono S, et al. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2017, 203:364-380. doi: 10.1016/j.gca.2017.01.015 |
[18] |
Böttcher M E, Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO[2 J]. Geochimica et Cosmochimica Acta, 2001, 65(10):1573-1581. doi: 10.1016/S0016-7037(00)00622-0 |
[19] |
Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog[J]. Geology, 2010, 38(5):415-418. doi: 10.1130/G30723.1 |
[20] |
Shi W, Li C, Luo G M, et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion[J]. Geology, 2018, 46(3):267-270. doi: 10.1130/G39663.1 |
[21] |
Ma Z X, Liu X T, Yu W C, et al. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin:Insight from the basal Datangpo Formation of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529:39-52. doi: 10.1016/j.palaeo.2019.05.031 |
[22] |
朱茂旭, 史晓宁, 杨桂朋, 等.海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展, 2011, 26(4):355-364. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201104001
Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments:An overview[J]. Advances in Earth Science, 2011, 26(4):355-364. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201104001 |
[23] |
Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds:Implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4671-4692. doi: 10.1016/j.gca.2010.05.008 |
[24] |
Riedinger N, Brunner B, Krastel S, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system:The argentine continental margin[J]. Frontiers in Earth Science, 2017, 5:33. doi: 10.3389/feart.2017.00033 |
[25] |
Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43:593-622. doi: 10.1146/annurev-earth-060313-054802 |
[26] |
Jørgensen B B, Findlay A J, Pellerin A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10:849. doi: 10.3389/fmicb.2019.00849 |
[27] |
Canfield D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1):607-636. doi: 10.2138/gsrmg.43.1.607 |
[28] |
Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle[J]. Earth and Planetary Science Letters, 2014, 396:14-21. doi: 10.1016/j.epsl.2014.03.057 |
[29] |
Burke A, Present T M, Paris G, et al. Sulfur isotopes in rivers:Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle[J]. Earth and Planetary Science Letters, 2018, 496:168-177. doi: 10.1016/j.epsl.2018.05.022 |
[30] |
Hurtgen M T. The marine sulfur cycle, revisited[J]. Science, 2012, 337(6092):305-306. doi: 10.1126/science.1225461 |
[31] |
Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466):658-661. doi: 10.1126/science.288.5466.658 |
[32] |
Hurtgen M T, Arthur M A, Halverson G P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite[J]. Geology, 2005, 33(1):41-44. doi: 10.1130/G20923.1 |
[33] |
Fakhraee M, Hancisse O, Canfield D E, et al. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry[J]. Nature Geoscience, 2019, 12(5):375-380. doi: 10.1038/s41561-019-0351-5 |
[34] |
Turchyn A V, DePaolo D J. Seawater chemistry through Phanerozoic time[J]. Annual Review of Earth and Planetary Sciences, 2019, 47:197-224. doi: 10.1146/annurev-earth-082517-010305 |
[35] |
Raiswell R, Berner R A. Pyrite formation in euxinic and semieuxinic sediments[J]. American Journal of Science, 1985, 285(8):710-724. doi: 10.2475/ajs.285.8.710 |
[36] |
Rickard D. How long does it take a pyrite framboid to form?[J]. Earth and Planetary Science Letters, 2019, 513:64-68. doi: 10.1016/j.epsl.2019.02.019 |
[37] |
Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1):1-23. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227553753/ |
[38] |
Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193):1973-1975. doi: 10.1126/science.11540246 |
[39] |
Gomes M L, Hurtgen M T. Sulfur isotope fractionation in modern euxinic systems:Implications for paleoenvironmental reconstructions of paired sulfate-sulfide isotope records[J]. Geochimica et Cosmochimica Acta, 2015, 157:39-55. doi: 10.1016/j.gca.2015.02.031 |
[40] |
Brunner B, Bernasconi S M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(20):4759-4771. doi: 10.1016/j.gca.2005.04.015 |
[41] |
Sim M S, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation[J]. Science, 2011, 333(6038):74-77. doi: 10.1126/science.1205103 |
[42] |
Wortmann U G, Bernasconi S M, Böttcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction[J]. Geology, 2001, 29(7):647-650. doi: 10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2 |
[43] |
Bradley A S, Leavitt W D, Schmidt M, et al. Patterns of sulfur isotope fractionation during microbial sulfate reduction[J]. Geobiology, 2016, 14(1):91-101. doi: 10.1111/gbi.12149 |
[44] |
Leavitt W D, Halevy I, Bradley A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28):11244-11249. doi: 10.1073/pnas.1218874110 |
[45] |
Liu X T, Fike D, Li A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates:Evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505:66-75. doi: 10.1016/j.chemgeo.2018.12.014 |
[46] |
Gomes M L, Hurtgen M T. Sulfur isotope systematics of a euxinic, low-sulfate lake:Evaluating the importance of the reservoir effect in modern and ancient oceans[J]. Geology, 2013, 41(6):663-666. doi: 10.1130/G34187.1 |
[47] |
Stebbins A, Algeo T J, Olsen C, et al. Sulfur-isotope evidence for recovery of seawater sulfate concentrations from a PTB minimum by the Smithian-Spathian transition[J]. Earth-Science Reviews, 2018, 195:83-95. http://cn.bing.com/academic/profile?id=6fb6b9576070ebcde812d86ee09ec730&encoded=0&v=paper_preview&mkt=zh-cn |
[48] |
张美, 陆红锋, 邬黛黛, 等.南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J].海洋地质与第四纪地质, 2017, 37(6):178-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706019
Zhang Mei, Lu Hongfeng, Wu Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(6):178-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706019 |
[49] |
张现荣, 孙治雷, 魏合龙, 等.自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J].海洋地质与第四纪地质, 2017, 37(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702004
Zhang Xianrong, Sun Zhilei, Wei Helong, et al. Micro-biomineralizaiton of authigenic pyrite and its implications for seafloor cold seeps[J]. Marine Geology & Quaternary Geology, 2017, 37(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702004 |
[50] |
Wang M, Cai F, Li Q, et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough[J]. Science China Earth Sciences, 2015, 58(12):2145-2153. doi: 10.1007/s11430-015-5196-1 |
[51] |
Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115:547-556. doi: 10.1016/j.jseaes.2015.11.001 |
[52] |
Lin Q, Wang J S, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea[J]. Marine Geology, 2016, 379:100-108. doi: 10.1016/j.margeo.2016.05.016 |
[53] |
Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440:26-41. doi: 10.1016/j.chemgeo.2016.07.007 |
[54] |
Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43:381-395. doi: 10.1016/j.marpetgeo.2012.12.009 |
[55] |
Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9):2095-2118. doi: 10.1016/j.gca.2003.07.017 |
[56] |
Xie L, Wang J S, Wu N Y, et al. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea:Implications for a possible mud volcano environment[J]. Science China Earth Sciences, 2013, 56(4):541-548. doi: 10.1007/s11430-012-4511-3 |
[57] |
Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea:An overview[J]. Journal of Asian Earth Sciences, 2018, 168:3-16. doi: 10.1016/j.jseaes.2018.09.021 |
[58] |
Bryant R N, Jones C, Raven M R, et al. Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging:Extracting local paleo-environmental information from modern and ancient sediments[J]. Rapid Communications in Mass Spectrometry, 2019, 33(5):491-502. doi: 10.1002/rcm.8375 |
[59] |
Jørgensen B B, Beulig F, Egger M, et al. Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2019, 254:231-245. doi: 10.1016/j.gca.2019.03.016 |
[60] |
Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments[J]. Nature Geoscience, 2018, 11(6):421-425. doi: 10.1038/s41561-018-0122-8 |
[61] |
Aller R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61(3/4):143-155. doi: 10.1016-S0304-4203(98)00024-3/ |
[62] |
Wang J L, Du J Z, Baskaran M, et al. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers[J]. Journal of Geophysical Research:Oceans, 2016, 121(1):224-239. doi: 10.1002/2015JC011300 |
[63] |
Zhu M X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(11):2811-2828. doi: 10.1002/2016JG003391 |
[64] |
Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 293-334. |
[65] |
Fry B, Ruf W, Gest H, et al. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution[J]. Chemical Geology:Isotope Geoscience section, 1988, 73(3):205-210. doi: 10.1016/0168-9622(88)90001-2 |
[66] |
Richardson J A, Newville M, Lanzirotti A, et al. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate[J]. Chemical Geology, 2019, 523:59-72. doi: 10.1016/j.chemgeo.2019.05.036 |
[67] |
Rose C V, Fischer W W, Finnegan S, et al. Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden[J]. Geochimica et Cosmochimica Acta, 2019, 246:299-316. doi: 10.1016/j.gca.2018.11.030 |
[68] |
Pasquier V, Sansjofre P, Rabineau M, et al. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23):5941-5945. doi: 10.1073/pnas.1618245114 |
[69] |
Liu X T, Rendle-Bühring R, Meyer I, et al. Holocene shelf sedimentation patterns off equatorial East Africa constrained by climatic and sea-level changes[J]. Sedimentary Geology, 2016, 331:1-11. doi: 10.1016/j.sedgeo.2015.10.009 |
[70] |
Claypool G E. Ventilation of marine sediments indicated by depth profiles of pore water sulfate and δ34S[J]. The Geochemical Society Special Publications, 2004, 9:59-65. doi: 10.1016/S1873-9881(04)80007-5 |
[71] |
Chang L, Bolton C T, Dekkers M J, et al. Asian monsoon modulation of nonsteady state diagenesis in hemipelagic marine sediments offshore of Japan[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11):4383-4398. doi: 10.1002/2016GC006344 |
[72] |
Jones D S, Fike D A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S[J]. Earth and Planetary Science Letters, 2013, 363:144-155. doi: 10.1016/j.epsl.2012.12.015 |
[73] |
Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate[J]. Geochimica et Cosmochimica Acta, 2005, 69(16):4117-4126. doi: 10.1016/j.gca.2005.02.004 |
[74] |
Hilligsøe K M, Jensen J B, Ferdelman T G, et al. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea)[J]. Geochimica et Cosmochimica Acta, 2018, 239:255-274. doi: 10.1016/j.gca.2018.07.040 |
[75] |
Blanchet C L, Thouveny N, Vidal L, et al. Terrigenous input response to glacial/interglacial climatic variations over southern Baja California:A rock magnetic approach[J]. Quaternary Science Reviews, 2007, 26(25/26/27/28):3118-3133. http://cn.bing.com/academic/profile?id=7b22903b83d773104e2633dc71beadfd&encoded=0&v=paper_preview&mkt=zh-cn |
[76] |
Liu J, Zhu R X, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B3):B03103. http://cn.bing.com/academic/profile?id=cb4e21911cb9966bf10245188a1e7c0b&encoded=0&v=paper_preview&mkt=zh-cn |
[77] |
Roberts A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151:1-47. doi: 10.1016/j.earscirev.2015.09.010 |
[78] |
Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea:Magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology, 2010, 268(1/2/3/4):34-42. http://cn.bing.com/academic/profile?id=40c20474819d470445a2bf5491449667&encoded=0&v=paper_preview&mkt=zh-cn |
[79] |
Chen T, Wang Z H, Wu X X, et al. Magnetic properties of tidal flat sediments on the Yangtze coast, China:Early diagenetic alteration and implications[J]. The Holocene, 2015, 25(5):832-843. doi: 10.1177/0959683615571425 |
[80] |
Ge C, Zhang W G, Dong C Y, et al. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(7):4720-4733. doi: 10.1002/2015JB011952 |
[81] |
Zheng Y, Zheng H B, Kissel C, et al. Sedimentation rate control on diagenesis, East China Sea sediments[J]. Physics of the Earth and Planetary Interiors, 2011, 187(3/4):301-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0015f53d295aa367317ca6fc7c2f257 |
[82] |
Roberts A P, Zhao X, Harrison R J, et al. Signatures of reductive magnetic mineral diagenesis from unmixing of first-order reversal curves[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(6):4500-4522. doi: 10.1029/2018JB015706 |
[83] |
徐方建, 李安春, 肖尚斌, 等.末次冰消期以来东海内陆架古环境演化[J].沉积学报, 2009, 27(1):118-127. http://www.cjxb.ac.cn/CN/abstract/abstract185.shtml
Xu Fangjian, Li Anchun, Xiao Shangbin, et al. Paleoenvironmental evolution in the inner shelf of the East China Sea since the last deglaciation[J]. Acta Sedimentologica Sinica, 2009, 27(1):118-127. http://www.cjxb.ac.cn/CN/abstract/abstract185.shtml |
[84] |
Liu X T, Li A C, Dong J, et al. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf[J]. Marine Chemistry, 2018, 205:90-97. doi: 10.1016/j.marchem.2018.08.009 |
[85] |
石学法, 刘升发, 乔淑卿, 等.中国东部近海沉积物地球化学:分布特征、控制因素与古气候记录[J].矿物岩石地球化学通报, 2015, 34(5):885-894. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201505002
Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from eastern China seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5):885-894. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201505002 |
[86] |
杨守业, 韦刚健, 石学法.地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J].矿物岩石地球化学通报, 2015, 34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003
Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003 |
[87] |
石学法, 胡利民, 乔淑卿, 等.中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J].海洋科学进展, 2016, 34(3):313-327. http://d.old.wanfangdata.com.cn/Periodical/hbhhy201603001
Shi Xuefa, Hu Limin, Qiao Shuqing, et al. Progress in research of sedimentary organic carbon in the East China Sea:Sources, dispersal and sequestration[J]. Advances in Marine Science, 2016, 34(3):313-327. http://d.old.wanfangdata.com.cn/Periodical/hbhhy201603001 |
[88] |
刘健, 秦华峰, 孔祥淮, 等.黄东海陆架及朝鲜海峡泥质沉积物的磁学特征比较研究[J].第四纪研究, 2007, 27(6):1031-1039. doi: 10.3321/j.issn:1001-7410.2007.06.019
Liu Jian, Qin Huafeng, Kong Xianghuai, et al. Comparative researches on the magnetic properties of muddy sediments from the Yellow Sea and East China Sea shelves and the Korea Strait[J]. Quaternary Sciences, 2007, 27(6):1031-1039. doi: 10.3321/j.issn:1001-7410.2007.06.019 |
[89] |
Yang S Y, Wang Z B, Dou Y G, et al. A review of sedimentation since the Last Glacial Maximum on the continental shelf of eastern China[J]. Geological Society, London, Memoirs, 2014, 41:293-303. doi: 10.1144/M41.21 |
[90] |
Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18):2141-2156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb0de1e2c1f888760bbc88e5eb37620e |
[91] |
Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea:Implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151:1-15. doi: 10.1016/j.jseaes.2017.10.017 |
[92] |
Gao S. Holocene shelf-coastal sedimentary systems associated with the Changjiang River:an overview[J]. Acta Oceanologica Sinica, 2013, 32(12):4-12. doi: 10.1007/s13131-013-0390-5 |
[93] |
Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352:268-294. doi: 10.1016/j.margeo.2014.03.021 |
[94] |
Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384:50-59. doi: 10.1016/j.sedgeo.2019.03.006 |
[95] |
Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004 |
[96] |
Dong J, Li A C, Liu X T, et al. Sea-level oscillations in the East China Sea and their implications for global seawater redistribution during 14.0-10.0 kyr BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511:298-308. doi: 10.1016/j.palaeo.2018.08.015 |
[97] |
Ge H M, Zhang C L, Versteegh G J M, et al. Evolution of the East China Sea sedimentary environment in the past 14 kyr:Insights from tetraethers-based proxies[J]. Science China Earth Sciences, 2016, 59(5):927-938. doi: 10.1007/s11430-015-5229-9 |
[98] |
王昆山, 石学法, 李珍, 等.东海DGKS9617岩心重矿物及自生黄铁矿记录[J].海洋地质与第四纪地质, 2005, 25(4):41-45. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504007
Wang Kunshan, Shi Xuefa, Li Zhen, et al. Records of heavy mineral and authigenous pyrite in Core DGKS9617 from the East China Sea[J]. Marine Geology & Quaternary Geology, 2005, 25(4):41-45. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504007 |
[99] |
Duan W M, Chen L R. Pyrite genesis during early diagenesis in Yellow Sea and East China Sea[J]. Science in China (Series B), 1994, 37(4):502-512. |
[100] |
Lin S, Huang K M, Chen S K. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments[J]. Continental Shelf Research, 2000, 20(4/5):619-635. doi: 10.1016-S0278-4343(99)00088-6/ |
[101] |
Zhu M X, Shi X N, Yang G P, et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf:Constraints from solid-phase sulfur speciation and stable sulfur isotope[J]. Continental Shelf Research, 2013, 54:24-36. doi: 10.1016/j.csr.2013.01.002 |
[102] |
Zhao B, Yao P, Bianchi T S, et al. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments[J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(12):3556-3569. doi: 10.1029/2018JG004649 |
[103] |
郑妍, 郑洪波, 王可.末次冰期以来东海内陆架沉积反映的海平面变化[J].同济大学学报(自然科学版), 2010, 38(9):1384-1386. doi: 10.3969/j.issn.0253-374x.2010.09.025
Zheng Yan, Zheng Hongbo, Wang Ke. History of sea level change since last glacial:Reflected by sedimentology of core from East China Sea inner shelf[J]. Journal of Tongji University (Natural Science), 2010, 38(9):1381-1386. doi: 10.3969/j.issn.0253-374x.2010.09.025 |
[104] |
Kang X M, Liu S M, Zhang G L. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2014, 33(9):100-108. doi: 10.1007/s13131-014-0499-1 |
[105] |
Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 1986, 54(1/2):149-155. doi: 10.1016-0009-2541(86)90078-1/ |
[106] |
Diaz R, Moreira M, Mendoza U, et al. Early diagenesis of sulfur in a tropical upwelling system, Cabo Frio, southeastern Brazil[J]. Geology, 2012, 40(10):879-882. doi: 10.1130/G33111.1 |
[107] |
Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea[J]. Journal of Asian Earth Sciences, 2016, 123:213-223. doi: 10.1016/j.jseaes.2016.04.007 |
[108] |
Holmkvist L, Kamyshny A, Jr, Brüchert V, et al. Sulfidization of lacustrine glacial clay upon Holocene marine transgression (Arkona Basin, Baltic Sea)[J]. Geochimica et Cosmochimica Acta, 2014, 142:75-94. doi: 10.1016/j.gca.2014.07.030 |
[109] |
Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139:390-405. doi: 10.1016/j.earscirev.2014.09.007 |
[110] |
Gomes M L, Fike D A, Bergmann K D, et al. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures[J]. Geobiology, 2018, 16(1):17-34. doi: 10.1111/gbi.12265 |
[111] |
Zhao B, Yao P, Bianchi T S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495:104-117. doi: 10.1016/j.chemgeo.2018.08.012 |
[112] |
刘喜停, 颜佳新.铁元素对海相沉积物早期成岩作用的影响[J].地球科学进展, 2011, 26(5):482-492. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105003
Liu Xiting, Yan Jiaxin. Advances in the role of iron in marine sediments during early diagenesis[J]. Advances in Earth Science, 2011, 26(5):482-492. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105003 |
[113] |
Zhang X, Lin C M, Li Y L, et al. Sealing mechanism for cap beds of shallow-biogenic gas reservoirs in the Qiantang River incised valley, China[J]. Continental Shelf Research, 2013, 69:155-167. doi: 10.1016/j.csr.2013.09.006 |
[114] |
Peng X T, Guo Z X, Chen S, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205:1-13. doi: 10.1016/j.gca.2017.02.010 |
[115] |
Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea[J]. Biogeosciences, 2018, 15(20):6329-6348. doi: 10.5194/bg-15-6329-2018 |