[1] Vaughan R G, Hook S J, Calvin W M, et al. Surface mineral mapping at steamboat springs, Nevada, USA, with multiwavelength thermal infrared images[J]. Remote Sensing of Environment, 2005, 99(1/2):140-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d551fdaf42fb932907adf7a69feea81
[2] Pentecost A, Jones B, Renaut R W. What is a hot spring?[J]. Canadian Journal of Earth Sciences, 2003, 40(11):1443-1446. doi:  10.1139/e03-083
[3] Smith I J, Lynne B Y, Jaworowski C, et al. The formation of geyser eggs at Old Faithful Geyser, Yellowstone National Park, U. S. A.[J]. Geothermics, 2018, 75:105-121. doi:  10.1016/j.geothermics.2018.04.006
[4] 朱梅湘.地热系统的成岩成矿作用[J].矿物岩石地球化学通讯, 1993, 12(4):227-230. http://www.cnki.com.cn/Article/CJFDTotal-KYDH199304019.htm

Zhu Meixiang. Diagenesis and mineralization of geothermal system[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1993, 12(4):227-230. http://www.cnki.com.cn/Article/CJFDTotal-KYDH199304019.htm
[5]

Guidry S A, Chafetz H S. Anatomy of siliceous hot springs:Examples from Yellowstone National Park, Wyoming, USA[J]. Sedimentary Geology, 2003, 157(1/2):71-106. doi:  10.1016-S0037-0738(02)00195-1/
[6]

Jones B, Renaut R W. Petrography and genesis of spicular and columnar geyserite from the Whakarewarewa and Orakeikorako geothermal areas, North Island, New Zealand[J]. Canadian Journal of Earth Sciences, 2003, 40(11):1585-1610. doi:  10.1139/e03-062
[7]

Walter M R. Chapter 3.3 Geyserites of Yellowstone National Park:An example of abiogenic "Stromatolites"[J]. Developments in Sedimentology, 1976, 20:87-112. https://www.sciencedirect.com/science/article/pii/S0070457108711312
[8]

Jones B, Renaut R W, Rosen M R. Microbial construction of siliceous stalactites at geysers and hot springs:Examples from the Whakarewarewa geothermal area, North Island, New Zealand[J]. Palaios, 2001, 16(1):73-94. doi:  10.1669/0883-1351(2001)016<0073:MCOSSA>2.0.CO;2
[9]

Channing A, Edwards D, Sturtevant S. A geothermally influenced wetland containing unconsolidated geochemical sediments[J]. Canadian Journal of Earth Sciences, 2004, 41(7):809-827. doi:  10.1139/e04-034
[10]

Djokic T, van Kranendonk M J, Campbell K A, et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits[J]. Nature Communications, 2017, 8:15263. doi:  10.1038/ncomms15263
[11]

Jones B, Renaut R W, Owen R B. Life cycle of a geyser discharge apron:Evidence from Waikite geyser, Whakarewarewa geothermal area, North Island, New Zealand[J]. Sedimentary Geology, 2011, 236(1/2):77-94.
[12] 李红中, 周永章, 杨志军, 等.秦岭造山带西段八方山-二里河地区硅质岩的地球化学特征及其地质意义[J].岩石学报, 2009, 25(11):3094-3102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911035

Li Hongzhong, Zhou Yongzhang, Yang Zhijun, et al. Geochemical characteristics and their geological implications of cherts from Bafangshan-Erlihe area in western Qinling orogen[J]. Acta Petrologica Sinica, 2009, 25(11):3094-3102. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911035
[13] 何俊国.特提斯构造域东段中、新生代硅质岩及其沉积环境研究[D].广州: 中山大学, 2009.

He Junguo. Study on Mesozonic and Caenozonic chert and its sedimentary environment in Tethyan Domain[D]. Guangzhou: Sun Yat-sen University, 2009.
[14]

Fortney N W, He S, Converse B J, et al. Microbial Fe (III) oxide reduction potential in chocolate pots hot spring, Yellowstone National Park[J]. Geobiology, 2016, 14(3):255-275. doi:  10.1111/gbi.12173
[15]

Day R, Jones B. Variations in water content in opal-A and opal-CT from geyser discharge aprons[J]. Journal of Sedimentary Research, 2008, 78(4):301-315. doi:  10.2110/jsr.2008.030
[16]

Jones B, Renaut R W. Water content of opal-A:Implications for the origin of laminae in geyserite and sinter[J]. Journal of Sedimentary Research, 2004, 74(1):117-128. doi:  10.1306/052403740117
[17]

Dunckel A E, Cardenas M B, Sawyer A H, et al. High-resolution in-situ thermal imaging of microbial mats at El Tatio Geyser, Chile shows coupling between community color and temperature[J]. Geophysical Research Letters, 2009, 36(23):L23403. doi:  10.1029/2009GL041366
[18]

Boudreau A E, Lynne B Y. The growth of siliceous sinter deposits around high-temperature eruptive hot springs[J]. Journal of Volcanology and Geothermal Research, 2012, 247-248:1-8. doi:  10.1016/j.jvolgeores.2012.07.008
[19]

Garcia-Valles M, Fernandez-Turiel J L, Gimeno-Torrente D, et al. Mineralogical characterization of silica sinters from the El Tatio geothermal field, Chile[J]. American Mineralogist, 2008, 93(8/9):1373-1383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2138/am.2008.2583
[20]

Rodgers K A, Browne P R L, Buddle T F, et al. Silica phases in sinters and residues from geothermal fields of New Zealand[J]. Earth Science Reviews, 2004, 66(1/2):1-61. http://cn.bing.com/academic/profile?id=d6c616023cb274788ed2a9f61dbd4060&encoded=0&v=paper_preview&mkt=zh-cn
[21]

Jones B, Renaut R W. Hot spring and geyser sinters:The integrated product of precipitation, replacement, and deposition[J]. Canadian Journal of Earth Sciences, 2003, 40(11):1549-1569. doi:  10.1139/e03-078
[22]

Smith D J, Jenkin G R T, Petterson M G, et al. Unusual mixed silica-carbonate deposits from magmatic-hydrothermal hot springs, Savo, Solomon Islands[J]. Journal of the Geological Society, 2011, 168:1297-1310. doi:  10.1144/0016-76492011-003
[23]

Kim J W, Kogure T, Yang K, et al. The characterization of CaCO 3 in a geothermal environment:A SEM/TEM-EELS study[J]. Clays and Clay Minerals, 2012, 60(5):484-495. doi:  10.1346/CCMN.2012.0600505
[24]

Watts-Henwood N, Campbell K A, Lynne B Y, et al. Snapshot of hot-spring sinter at Geyser Valley, Wairakei, New Zealand, following anthropogenic drawdown of the geothermal reservoir[J]. Geothermics, 2017, 68:94-114. doi:  10.1016/j.geothermics.2017.03.002
[25]

Braunstein D, Lowe D R. Relationship between spring and geyser activity and the deposition and morphology of high temperature (> 73℃) siliceous sinter, Yellowstone National Park, Wyoming, U. S. A.[J]. Journal of Sedimentary Research, 2001, 71(5):747-763. doi:  10.1306/2DC40965-0E47-11D7-8643000102C1865D
[26]

Jones B, Renaut R W. Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile[J]. Sedimentology, 1997, 44(2):287-304. doi:  10.1111/j.1365-3091.1997.tb01525.x
[27]

Renaut R W, Jones B, Tiercelin J J, et al. Sublacustrine precipitation of hydrothermal silica in rift lakes:Evidence from Lake Baringo, central Kenya Rift Valley[J]. Sedimentary Geology, 2002, 148(1/2):235-257. doi:  10.1016-S0037-0738(01)00220-2/
[28]

Jones B, Renaut R W, Rosen M R. Microbial biofacies in hot-spring sinters:A model based on Ohaaki Pool, North Island, New Zealand[J]. Journal of Sedimentary Research, 1998, 68(3):413-434. doi:  10.2110/jsr.68.413
[29]

Jones B, Renaut R W, Rosen M R. Taphonomy of silicified filamentous microbes in modern geothermal sinters:Implications for identification[J]. Palaios, 2001, 16(6):580-592. doi:  10.1669/0883-1351(2001)016<0580:TOSFMI>2.0.CO;2
[30]

Handley K M, Turner S J, Campbell K A, et al. Silicifying biofilm exopolymers on a hot-spring microstromatolite:Templating nanometer-thick laminae[J]. Astrobiology, 2008, 8(4):747-770. doi:  10.1089/ast.2007.0172
[31]

Rimstidt J D, Cole D R. Geothermal mineralization; I, the mechanism of formation of the Beowawe, Nevada, siliceous sinter deposit[J]. American Journal of Science, 1983, 283(8):861-875. doi:  10.2475/ajs.283.8.861
[32]

Guidry S A, Chafetz H S. Factors governing subaqueous siliceous sinter precipitation in hot springs:Examples from Yellowstone National Park, USA[J]. Sedimentology, 2002, 49(6):1253-1267. doi:  10.1046/j.1365-3091.2002.00494.x
[33]

Renaut R W, Owen R B, Ego J K. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya rift valley:Impact of lake level changes[J]. Journal of African Earth Sciences, 2017, 129:623-646. doi:  10.1016/j.jafrearsci.2017.01.012
[34]

Ruff S W, Farmer J D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile[J]. Nature Communications, 2016, 7:13554. doi:  10.1038/ncomms13554
[35]

Lewis A J, Palmer M R, Sturchio N C, et al. The rare earth element geochemistry of acid-sulphate and acid-sulphatechloride geothermal systems from Yellowstone National Park, Wyoming, USA[J]. Geochimica et Cosmochimica Acta, 1997, 61(4):695-706. doi:  10.1016/S0016-7037(96)00384-5
[36]

Jones B, Renaut R W. Influence of thermophilic bacteria on calcite and silica precipitation in hot springs with water temperatures above 90℃:Evidence from Kenya and New Zealand[J]. Canadian Journal of Earth Sciences, 1996, 33(1):72-83. doi:  10.1139/e96-008
[37]

Jones B, Renaut R W, Rosen M R. Silicified microbes in a geyser mound:The enigma of low-temperature cyanobacteria in a high-temperature setting[J]. Palaios, 2003, 18(2):87-109. doi:  10.1669/0883-1351(2003)18<87:SMIAGM>2.0.CO;2
[38]

Lowe D R, Braunstein D. Microstructure of high-temperature (>73℃) siliceous sinter deposited around hot springs and geysers, Yellowstone National Park:The role of biological and abiological processes in sedimentation[J]. Canadian Journal of Earth Sciences, 2003, 40(11):1611-1642. doi:  10.1139/e03-066
[39]

Jones B, Renaut R W, Rosen M R, et al. Coniform stromatolites from geothermal systems, North Island, New Zealand[J]. Palaios, 2002, 17(1):84-103. doi:  10.1669/0883-1351(2002)017<0084:CSFGSN>2.0.CO;2
[40]

Guidry S A, Chafetz H S. Depositional facies and diagenetic alteration in a relict siliceous hot-spring accumulation:Examples from Yellowstone National Park, U. S. A.[J]. Journal of Sedimentary Research, 2003, 73(5):806-823. doi:  10.1306/022803730806
[41]

Campbell K A, Guido D M, Gautret P, et al. Geyserite in hot-spring siliceous sinter:Window on earth's hottest terrestrial (Paleo) environment and its extreme life[J]. Earth-Science Reviews, 2015, 148:44-64. doi:  10.1016/j.earscirev.2015.05.009
[42]

Jones B, Renaut R W, Rosen M R. Stromatolites forming in acidic hot-spring waters, North Island, New Zealand[J]. Palaios, 2000, 15(5):450-475. doi:  10.1669/0883-1351(2000)015<0450:SFIAHS>2.0.CO;2
[43]

Barbieri R, Cavalazzi B, Stivaletta N, et al. Silicified biota in high-altitude, geothermally influenced ignimbrites at El Tatio geyser field, Andean Cordillera (Chile)[J]. Geomicrobiology Journal, 2014, 31(6):493-508. doi:  10.1080/01490451.2013.836691
[44] 付伟, 霍晓萍, 周永章, 等.太古宙的生命起源信息及研究评述[J].中山大学研究生学刊(自然科学、医学版), 2006, 27(2):42-49. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YJSK200602006

Fu Wei, Huo Xiaoping, Zhou Yongzhang, et al. Progresses and reviews on the Archean life[J]. Journal of the Graduates Sun Yat-Sen University (Natural Sciences、Medicine), 2006, 27(2):42-49. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YJSK200602006
[45]

Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497):1744-1747. doi:  10.1126/science.290.5497.1744
[46] 王海雷.西藏地热区微生物对铯的吸附及其对铯硅华成矿的贡献[D].北京: 中国地质科学院, 2006.

Wang Hailei. Accumulation of cesium by microorganisms and role of microorganisms in the formation of cesium-bearing geyserite in geothermal areas, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 2006.
[47]

Joshi K B. Microbes:Mini iron factories[J]. Indian Journal of Microbiology, 2014, 54(4):483-485. doi:  10.1007/s12088-014-0497-1
[48] 王海雷, 郑绵平, 黄晓星.菌株Thermus sp. TibetanG7对铯的吸附:热泉铯硅华形成过程中生物成矿作用的征兆[J].科学通报, 2007, 52(17):2043-2048. doi:  10.3321/j.issn:0023-074x.2007.17.012

Wang Hailei, Zheng Mianping, Huang Xiaoxing. Cesium accumulation by bacterium Thermus sp. TibetanG7:Hints for biomineralization of cesium-bearing geyserite in hot springs in Tibet, China[J]. Chinese Science Bulletin, 2007, 52(17):2043-2048. doi:  10.3321/j.issn:0023-074x.2007.17.012
[49]

Peng X T, Zhou H Y, Li J T, et al. Intracellular and extracellular mineralization of a microbial community in the Edmond deep-sea vent field environment[J]. Sedimentary Geology, 2010, 229(4):193-206. doi:  10.1016/j.sedgeo.2010.06.003
[50] 张天乐, 王宗良, 胡云中.腾冲现代热泉系统硅华的矿物学特征及其地质意义[J].岩石矿物学杂志, 1997, 16(2):170-178. http://www.cnki.com.cn/Article/CJFDTotal-YSKW702.007.htm

Zhang Tianle, Wang Zongliang, Hu Yunzhong. Mineralogy of geyserite from the Tengchong active hot spring system and its geological implications[J]. Acta Petrologica et mineralogica, 1997, 16(2):170-178. http://www.cnki.com.cn/Article/CJFDTotal-YSKW702.007.htm
[51] 张余.藏南中生代以来硅质沉积物的微组构特征及其地质意义[D].广州: 中山大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1086467

Zhang Yu. Mirco-fabrics and their geological implications of silica sediments from southern Tibet (China)[D]. Guangzhou: Sun Yat-Sen University, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1086467
[52] 赵元艺, 韩景仪, 郭立鹤, 等.西藏搭格架热泉型铯矿床矿物学与矿石组构特征及地质意义[J].岩石学报, 2008, 24(3):519-530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803012

Zhao Yuanyi, Han Jingyi, Guo Lihe, et al. Characteristics and geological significance of mineralogy and fabrics for the hot spring cesium deposit occurring within the Targejia district, Tibet[J]. Acta Petrologica Sinica, 2008, 24(3):519-530. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803012
[53] 周永章, 付伟, 杨志军, 等.雅鲁藏布江缝合带及藏南地区硅质岩微组构特征及其地质意义[J].岩石学报, 2006, 22(3):742-750. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603024

Zhou Yongzhang, Fu Wei, Yang Zhijun, et al. Microfabrics of chert from Yarlung Zangbo suture zone and southern Tibet and its geological implications[J]. Acta Petrologica Sinica, 2006, 22(3):742-750. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603024
[54]

Lynne B Y, Campbell K A. Morphologic and mineralogic transitions from opal-A to opal-CT in low-temperature siliceous sinter diagenesis, Taupo Volcanic Zone, New Zealand[J]. Journal of Sedimentary Research, 2004, 74(4):561-579. doi:  10.1306/011704740561
[55]

Jones B, Renaut R W. Microstructural changes accompanying the opal-A to opal-CT transition:New evidence from the siliceous sinters of Geysir, Haukadalur, Iceland[J]. Sedimentology, 2007, 54(4):921-948. doi:  10.1111/j.1365-3091.2007.00866.x
[56] 周永章, 付伟, 杨志军, 等.藏南硅质岩及富SiO2热水流体成岩成矿作用研究[J].矿物岩石地球化学通报, 2008, 27(增刊1):351-352. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb2008z1190

Zhou Yongzhang, Fu Wei, Yang Zhijun, et al. Study on diagenesis and mineralization of cherts and Si-rich hydrothermal fluids in southern Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(Suppl. 1):351-352. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb2008z1190
[57]

Watanabe S, Hayashi K I. Mineralogy, sulfur isotope and fluid inclusion studies of hydrothermal ore at the Hakurei Deposit, Bayonnaise Knoll, Izu-Bonin Arc[J]. Resource Geology, 2014, 64(2):77-90. doi:  10.1111/rge.12029
[58]

Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews, 1998, 43(3/4):91-121. doi:  10.1016-S0012-8252(97)00036-6/
[59]

Tivey M K, Stakes D S, Cook T L, et al. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge:Results of a petrologic and geochemical study[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B10):22859-22883.
[60]

Georgieva M N, Little C T S, Ball A D, et al. Mineralization of Alvinella polychaete tubes at hydrothermal vents[J]. Geobiology, 2015, 13(2):152-169. doi:  10.1111/gbi.12123
[61]

Tivey M K, Delaney J R. Growth of large sulfide structures on the endeavour segment of the Juan de Fuca ridge[J]. Earth and Planetary Science Letters, 1986, 77(3/4):303-317. http://cn.bing.com/academic/profile?id=b72570dc7c3b2d32bbb336777ecb8d2e&encoded=0&v=paper_preview&mkt=zh-cn
[62]

Jones B, de Ronde C E J, Renaut R W. Mineralized microbes from Giggenbach submarine volcano[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B8):B08S05. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2007JB005482
[63]

Rasmussen B, Muhling J R, Suvorova A, et al. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform[J]. Precambrian Research, 2017, 290:49-62. doi:  10.1016/j.precamres.2016.12.005