[1] Raup D M. Size of the Permo-Triassic bottleneck and its evolutionary implications[J]. Science, 1979, 206(4415):217-218. doi:  10.1126/science.206.4415.217
[2] Erwin D H. The great Paleozoic crisis[M]. New York:Columbia University Press, 1993:327.
[3] 王永标, 童金南, 王家生, 等.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义[J].科学通报, 2005, 50(6):552-558. doi:  10.3321/j.issn:0023-074X.2005.06.009

Wang Yongbiao, Tong Jinnan, Wang Jiasheng, et al. Calcimicrobialite after End-Permian mass extinction in South China and its palaeoenvironmental significance[J]. Chinese Science Bulletin, 2005, 50(6):552-558. doi:  10.3321/j.issn:0023-074X.2005.06.009
[4]

Yang H, Chen Z Q, Wang Y B, et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2):111-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec360794f274d8c8313e5808ae187718
[5]

Fang Y H, Chen Z Q, Kershaw S, et al., Permian-Triassic boundary microbialites at Zuodeng section, Guangxi province, South China:Geobiology and palaeoceanographic implications[J]. Global and Planetary Change, 2017, 152:115-128. doi:  10.1016/j.gloplacha.2017.02.011
[6]

Ezaki Y, Liu J B, Nagano T, et al. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform:Initiation and cessation of a microbial regime[J]. Palaios, 2008, 23(6):356-369. doi:  10.2110/palo.2007.p07-035r
[7]

Kershaw S, Zhang T S, Lan G Z. A? microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 146(1/2/3/4):1-18. https://www.sciencedirect.com/science/article/pii/S0031018298001394
[8]

Lehrmann D J. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China[J]. Geology, 1999, 27(4):359-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b874230a403846eb4e376dea777a28e
[9]

Ezaki Y, Liu J B, Adachi N. Earliest Triassic microbialite microto megastructures in the Huaying area of Sichuan province, South China:Implications for the nature of oceanic conditions after the end-Permian extinction[J]. Palaios, 2003, 18(4/5):388-402. http://cn.bing.com/academic/profile?id=3bd042d14859d5c7fbfa6356738ff8f0&encoded=0&v=paper_preview&mkt=zh-cn
[10] 杨浩, 张素新, 江海水, 等.湖北崇阳二叠纪-三叠纪之交钙质微生物岩的时代及基本特征[J].地球科学——中国地质大学学报, 2006, 31(2):165-170. http://d.old.wanfangdata.com.cn/Periodical/dqkx200602004

Yang Hao, Zhang Suxin, Jiang Haishui, et al. Age and general characteristics of calcimicrobialite near the Permian-Triassic boundary in Chongyang, Hubei province[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(2):165-170. http://d.old.wanfangdata.com.cn/Periodical/dqkx200602004
[11] 吴亚生, 姜红霞, 廖太平.重庆老龙洞二叠系-三叠系界线地层的海平面下降事件[J].岩石学报, 2006, 22(9):2405-2412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609017

Wu Yasheng, Jiang Hongxia, Liao Taiping. Sea-level drops in the Permian-Triassic boundary section at Laolongdong, Chong-qing, Sichuan province[J]. Acta Petrologica Sinica, 2006, 22(9):2405-2412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609017
[12] 吴亚生, 姜红霞, Wan Yang, 等.二叠纪-三叠纪之交缺氧环境的微生物和微生物岩[J].中国科学(D辑):地球科学, 2007, 37(5):618-628. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200705005

Wu Yasheng, Jiang Hongxia, Wan Yang, et al. Microbialite of anoxic condition from Permian-Triassic transition in Guizhou, China[J]. Science China (Seri. D):Earth Sciences, 2007, 37(5):618-628. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200705005
[13]

Kershaw S, Li Y, Crasquin-Soleau S, et al. Earliest Triassic microbialites in the South China block and other areas:Controls on their growth and distribution[J]. Facies, 2007, 53(3):409-425. doi:  10.1007/s10347-007-0105-5
[14] 姜红霞, 吴亚生.江西修水二叠系-三叠系界线地层树枝状微生物岩状岩石成因初解[J].地质论评, 2007, 53(3):323-328. doi:  10.3321/j.issn:0371-5736.2007.03.005

Jiang Hongxia, Wu Yasheng. Origin of microbialite-like dendroid rocks in the Permian-Triassic boundary section in Xiu-shui, Jiangxi province[J]. Geological Review, 2007, 53(3):323-328. doi:  10.3321/j.issn:0371-5736.2007.03.005
[15] 姜红霞, 吴亚生.重庆二叠系-三叠系界线地层微生物岩新认识[J].岩石学报, 2007, 23(5):1189-1196. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705032

Jiang Hongxia, Wu Yasheng. Restudy of the microbialite from the Permian-Triassic boundary section, Chongqing[J]. Acta Petrologica Sinica, 2007, 23(5):1189-1196. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705032
[16] 姜红霞, 吴亚生, 袁生虎.重庆二叠-三叠系界线地层的干裂缝和侵蚀面及其意义[J].高校地质学报, 2007, 13(1):53-59. doi:  10.3969/j.issn.1006-7493.2007.01.007

Jiang Hongxia, Wu Yasheng, Yuan Shenghu. Dessication cracks and erosional surface in the Permian-Triassic boundary section in Chongqing[J]. Geological Journal of China Universities, 2007, 13(1):53-59. doi:  10.3969/j.issn.1006-7493.2007.01.007
[17] 刘建波, 江崎洋一, 杨守仁, 等.贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征[J].古地理学报, 2007, 9(5):473-486. doi:  10.3969/j.issn.1671-1505.2007.05.005

Liu Jianbo, Yoichi E, Yang Shouren, et al. Age and sedimentology of microbialites after the End-Permian mass extinction in Luodian, Guizhou province[J]. Journal of Palaeogeography, 2007, 9(5):473-486. doi:  10.3969/j.issn.1671-1505.2007.05.005
[18]

Zheng Q F, Cao C Q, Wang Y, et al. Microbialite concretions in a dolostone crust at the Permian-Triassic boundary of the Xishan section in Jiangsu province, South China[J]. Palaeoworld, 2016, 25(2):188-198. doi:  10.1016/j.palwor.2015.02.002
[19] 冯增昭, 彭勇民, 金振奎, 等.中国寒武纪和奥陶纪岩相古地理[M].北京:石油工业出版社, 2004:82.

Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies paleogeography of the Cambrian and Ordovician in China[M]. Beijing:Petroleum Industry Press, 2004:82.
[20]

Enos P, Lehrmann D L, Wei J Y, et al. Triassic evolution of the Yangtze platform in Guizhou province, People's Republic of China[J]. Geological Society of America Special Paper, 2006, 417:1-105.
[21]

Lehrmann D J, Payne J L, Felix S V, et al. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China:Implications for oceanic conditions associated with the end-Permian extinction and its aftermath[J]. Palaios, 2003, 18(2):138-152. doi:  10.1669/0883-1351(2003)18<138:PBSFSC>2.0.CO;2
[22]

Adachi N, Ezaki Y, Liu J B. The fabrics and origins of Peloids immediately after the End-Permian extinction, Guizhou province, South China[J]. Sedimentary Geology, 2004, 164(1/2):161-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88d4cd3ee9069867b6751f59a67fb054
[23]

Galfetti T, Bucher H, Martini R, et al. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery[J]. Sedimentary Geology, 2008, 204(1/2):36-60. http://cn.bing.com/academic/profile?id=4f3fc9c9ca6fe19fdd0c421b0df60988&encoded=0&v=paper_preview&mkt=zh-cn
[24]

Lehrmann D J, Ramezani J, Bowring S A, et al. Timing of recovery from the End-Permian extinction:Geochronologic and biostratigraphic constraints from South China[J]. Geology, 2006, 34(12):1053-1056. doi:  10.1130/G22827A.1
[25]

Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events[J]. Geological Society of America Bulletin, 2007, 119(7/8):771-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c1b828a8e3d0802d44cd719644455c5
[26]

Song H, Tong J, Chen Z Q. Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China[J]. Australian Journal of Earth Sciences, 2009, 56(6):765-773. doi:  10.1080/08120090903002599
[27]

Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events:Comment[J]. Geological Society of America Bulletin, 2009, 121(5/6):954-956. http://cn.bing.com/academic/profile?id=908e59060c838a0cbc77bb6fd8493d1e&encoded=0&v=paper_preview&mkt=zh-cn
[28]

Yin H F, Jiang H S, Xia W C, et al. The End-Permian regression in South China and its implication on mass extinction[J]. Earth-Science Reviews, 2014, 137:19-33. doi:  10.1016/j.earscirev.2013.06.003
[29]

Jiang H S, Lai X L, Sun Y D, et al. Permian-Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the End-Permian mass extinction[J]. Journal of Earth Science, 2014, 25(3):413-430. doi:  10.1007/s12583-014-0444-4
[30]

Song H J, Tong J N, Chen Z Q, et al. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China[J]. Journal of Paleontology, 2009, 83(5):718-738. doi:  10.1666/08-175.1
[31]

Chen Z Q, Yang H, Luo M, et al. Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China:Ecologically assessing mass extinction and its aftermath[J]. Earth-Science Reviews, 2015, 149:67-107. doi:  10.1016/j.earscirev.2014.10.005
[32]

Yang S, Hao W, Wang X. Conodont evolutionary lineages, zonation, and P-T boundary beds in Guangxi, China[M]//Yao A, Ezaki Y, Hao W, et al. Biotic and Geological Developments in the Paleo-Tethys in China. Beijing: Peking University Press, 1999: 81-95.
[33]

Luo G M, Wang Y B, Yang H, et al. Stepwise and large-magnitude negative shift in δ13C carb preceded the main marine mass extinction of the Permian-Triassic crisis interval[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2):70-82.
[34]

Brand U, Veizer J. Chemical diagenesis of multicomponent carbonate system-1:Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4):1219-1236. http://cn.bing.com/academic/profile?id=bd508244d2fb70aa60de7efff3534d0a&encoded=0&v=paper_preview&mkt=zh-cn
[35]

Pierson B J. The control of cathodoluminescence in dolomite by iron and manganese[J]. Sedimentology, 1981, 28(5):601-610. doi:  10.1111/j.1365-3091.1981.tb01924.x
[36]

Ten Have A H M, Heijnen W. Cathodoluminescence activation and zonation in carbonate rocks:An experimental approach[J]. Geologie en Mijnbouw, 1985, 64(3):297-310.
[37] 黄思静.碳酸盐矿物的阴极发光性与其Fe、Mn含量的关系[J].矿物岩石, 1992, 12(4):74-79. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199204010.htm

Huang Sijing. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Mineralogy and Petrology, 1992, 12(4):74-79. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199204010.htm
[38]

Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3):59-88.
[39]

Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models[J]. Precambrian Research, 2000, 100(1/3):371-433. http://cn.bing.com/academic/profile?id=6b6fd9353466dc07ebca4593faf703b6&encoded=0&v=paper_preview&mkt=zh-cn
[40] 黄思静.海相碳酸盐矿物的阴极发光性与其成岩蚀变的关系[J].岩相古地理, 1990(4):9-15. http://www.cnki.com.cn/Article/CJFDTotal-TTSD199004001.htm

Huang Sijing. Cathodoluminescence and diagenetic alteration of marine carbonate minerals[J]. Sedimentary Facies and Palaeogeography, 1990(4):9-15. http://www.cnki.com.cn/Article/CJFDTotal-TTSD199004001.htm